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The formulation of robust and empirically-funded instructional principles is one of the

major goals of instructional science. Research on aptitude-treatment interactions (ATIs)

have, however, shown that instructional principles usually do not apply to any type of

learner. As learners’ prior knowledge is the most important learning pre-requisite, it is

clear that instructional principles should take prior knowledge into account: What could be

beneficial for beginning learners might get detrimental for advanced learners. In recent

years, the concept of the expertise reversal effect—developed within the framework of

cognitive load theory—has inspired a renewed interest on the interactions between levels

of learner prior knowledge and effectiveness of different instructional techniques and

procedures.

The expertise reversal is a reversal in the relative effectiveness of instructional methods

as levels of learner knowledge in a domain change. The effect has been investigated since

mid-1990s (see Kalyuga 2005, 2007; Kalyuga et al. 2003, for available overviews). It has

been replicated in many studies with a large range of instructional materials and partici-

pants either as a full reversal (a disordinal interaction with significant differences for both

novices and experts) or, more often, as a partial reversal (with non-significant differences

for novices or experts, but with a significant interaction). The major instructional design

implication of these studies is the need to adjust instructional methods and procedures as

learners acquire more experience in a specific domain.

The expertise reversal effect fits well some empirical findings obtained in ATIs studies

initiated in mid-1960s (Cronbach and Snow 1977). However, although learners’ prior

knowledge was recognized as an essential aptitude within the ATI approach (e.g., see

Tobias 1976, 1989 for overviews), aptitudes and instructional treatments were investigated

without taking into account underlying cognitive processes, and psychometric measure-

ment tools used in ATI studies were not suitable for realistic instructional systems that

could tailor instructional methods to individual learners.
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Cognitive load theory is based on an established model of human cognitive architecture

that includes working memory with very limited duration, as well as storage and pro-

cessing capacities for novel information, and effectively unlimited long-term memory as a

knowledge base (see Sweller 2004; van Merriënboer and Sweller 2005, for recent over-

views of the theory). The limitations of working memory lead to the necessity to avoid

cognitive overload, for example, by excessive amounts of interacting elements of infor-

mation that have to be processed by the learners. The theory distinguishes between pro-

ductive (intrinsic, germane) cognitive load that makes learning possible and wasteful

(extraneous) cognitive load that interferes with learning. For example, cognitive effort

involved in comprehending novel information in text and pictures is required for successful

learning as learners need to make connections between associated elements of presented

information and their knowledge base (productive load). However, when related text and

pictures are separated in space or time, the additional effort required for visual search

processes and their co-referencing is expected to increase extraneous cognitive load.

Physically integrating verbal and pictorial representations (placing them next to each other

or synchronizing them in time) may reduce or eliminate this load (split-attention effect in

cognitive load theory). A similar effect could be achieved by narrating the text rather than

presenting it in a visual form (modality effect).

It was demonstrated that procedures and techniques designed to reduce extraneous

cognitive load such as integrating textual explanations into diagrams to minimize split-

attention, replacing visual text with auditory narration, or using worked examples to

increase levels of instructional guidance and reduce unproductive search processes, were

more effective for novice learners (see Sweller et al. 1998 for a review of original studies

of major cognitive load effects). However, further studies with more advanced learners

indicated that with the development of learner knowledge in a domain, such procedures

and techniques often became unnecessary or even detrimental (Kalyuga et al. 1998, 2000,

2001; Renkl 1997; Renkl and Atkinson 2003; Renkl et al. 2002). For example, for more

advanced learners, eliminating redundant representations or detailed worked-out steps was

more effective than providing them. For these learners, processing redundant material

could induce unnecessary working memory load and may distract from the central con-

cepts and principles yet to be learned (see Renkl and Atkinson 2007; Wittwer and Renkl

2008). Especially, if more knowledgeable learners could not avoid or ignore redundant

sources of information, those sources might impose an additional cognitive load resulting

in negative rather than positive or neutral effects. A cognitive load interpretation of the

effect was supported by measures of mental load (using subjective rating scales).

Knowledgeable learners found it more difficult to process instructional formats and pro-

cedures involving redundant components because of additional, unnecessary information

that they had to attend to and integrate with their available knowledge structures to find

congruity between prior knowledge and incoming instruction.

Thus, in cognitive load theory, the effect is generally explained by imbalances between

learner organized knowledge base and provided instructional guidance. Such imbalances

could be caused by an insufficient learner knowledge base that is not compensated by

appropriate instructional guidance (especially at the initial stages of learning) or by

overlaps between available knowledge of more advanced learners and provided instruc-

tional guidance. In the first case (knowledge gaps), novice learners have to engage into

unsupported search processes that may cause excessive levels of extraneous cognitive load.

On the other hand, the need for higher knowledge learners to integrate and cross-reference

redundant instructional guidance with available knowledge structures may also consume
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additional cognitive resources. A minimal instructional guidance would allow these

learners to take advantage of their knowledge base in the most efficient way.

Thus, instructional guidance that is essential for novices may inhibit learning for more

experienced learners by interfering with retrieval and application of their available

knowledge structures, especially if these learners cannot ignore or otherwise avoid pro-

cessing the redundant explanations. In order to optimize cognitive load, appropriate

instructional support should be provided to novice learners, while unnecessary guidance

removed as the learners acquire higher levels of proficiency in a specific domain. Adaptive

learning environments that dynamically tailor levels of instructional support to changing

individual levels of learner expertise in a domain have the best potential for optimizing

cognitive load.

Issues of managing cognitive load by adapting instructions to individual learners are

generally difficult to tackle because of the involvement of many learner characteristics.

Studies of expert-novice differences in cognitive science have clearly demonstrated that

learner knowledge base is the most important and fundamental cognitive characteristic that

influences learning and performance (e.g., Bransford et al. 1999). A focus on the learner

knowledge base may provide evidence-based procedures for the design of efficient

adaptive learning environments.

The papers in this special issue present recent significant advances in research on the

expertise reversal effect. The single contributions will be introduced in the next section.

Nevertheless, some examples for new insights should be shortly mentioned at this point. It

is shown in this special issue that the expertise reversal effect (a) holds not only in well-

structured domains such as mathematics but also in such ill-structured domains as literary

interpretation (Oksa et al., this issue); (b) it holds not only for learning results but also if

the outcome variables refer to the employment of learning strategies and to motivation for

learning (Nückles et al., this issue); (c) it interacts also with the developmental level of the

learners (Homer and Plass, this issue); (d) it can be applied to ‘‘real-life’’ learning settings

(Blayney et al., this issue); (e) it can be used to fruitfully inform adaptation schedules in

intelligent tutoring systems (Salden et al., this issue).

Two commentaries conclude the issue. The first discussion paper is authored by a

prominent researcher in the area of Aptitude Treatment Interactions and their instructional

implications (Tobias 1976, 1989). The second discussion paper is authored by one of the

leaders in the field of cognitive load theory and multimedia learning (Schnotz 2002;

Schnotz and Kürschner 2007).

Structure of the special issue

Recent reviews of the expertise reversal studies (e.g., Kalyuga 2007) identified some

directions for further research in this area. The effect needs to be extended from well-

defined technical areas in which most of the studies have been conducted, to relatively

poorly defined tasks and domains. Identifying a broader range of instructional methods and

procedures that are optimal for learners with different levels of expertise also remains an

essential direction for research, as well as determining effective approaches to dynamic

tailoring of instruction to individual learners. Accordingly, the sequence of papers in the

current special issue follows these research directions. The issue includes five empirical

papers. The first two papers report on experimental studies of the expertise reversal effect

in two non-technical areas of reading classical Shakespearean texts and writing journals in

psychology courses. The following two papers present recent results demonstrating the
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expertise reversal effect with different instructional techniques using instructional visu-

alizations in science education and spreadsheets in training accountants. The fifth and

(partially) second papers investigate issues related to applying the effect to the design of

learner-tailored environments based on adaptive fading techniques. The discussion papers

focus on relations between the expertise reversal effect and ATI studies, theoretical

problems related to the effect, instructional implications, and directions for future research.

The first paper ‘‘Expertise reversal effect in using explanatory notes for readers of

Shakespearean text’’ by Oksa et al. (this issue) investigates the effects of explanatory notes

on reader comprehension of Shakespearean text. Such texts are usually filled with classical

references communicated through a language that is different from Modern English.

Traditional methods of learning such texts may impose high levels of cognitive load. The

design of instructional materials that assist in comprehending Shakespearean plays was

based on interpretations of play extracts in Modern English that were physically integrated

line by line with Shakespeare’s original text. Experiment 1 presented an extract from a play

to a novice group of Grade 10 students who had no prior knowledge of the text. The results

demonstrated that the explanatory condition group reported a lower cognitive load and

performed better in a comprehension test than the control group that studied the original

extract. In Experiment 2, the same material was presented to a group of Shakespearean

experts, and a reverse effect occurred: the control group outperformed the experimental

group. The test performance data along with verbal protocols indicated that the explana-

tions became redundant for these high-knowledge readers. Experiment 3 investigated

whether the results of Experiment 1 could be replicated using a different Shakespearean

text, with a group of Grade 10 high school novice-level students. In addition to test

performance data, verbal protocols were also recorded. Similar to Experiment 1, results

indicated advantages of explanatory text. The experiments showed that the relative

effectiveness of instructions depended on learner levels of prior knowledge, thus demon-

strating an expertise reversal effect in the literary comprehension area. Embedded

explanatory text benefits low-level knowledge readers. However, for learners with more

advanced and automated knowledge structures, needlessly processing redundant infor-

mation may overload working memory and impede its processing capacity. The benefits of

guided instruction may reverse and become detrimental for individuals with high prior

knowledge levels.

The second paper ‘‘Expertise reversal effects in writing-to-learn’’ by Nückles et al. (this

issue) provides evidence for the expertise reversal effect in another non-technical area

related to journal writing in developmental psychology courses. Journal writing is an

effective follow-up coursework that is used after a lecture or seminar session by asking

students to write down a text in which they reflect on the previously studied contents.

Previously conducted laboratory studies indicated that to fully exploit the potentials of

writing learning journals and to maximize productive (germane) cognitive load, instruc-

tional support could be required in the form of prompts for applying appropriate cognitive

and metacognitive strategies. Two longitudinal field studies reported in the current paper

investigated the long-term effects of prompts on strategy use and learning outcomes. In

Experiment 1, students wrote a journal entry about each weekly seminar session over a

whole term. The experimental group received a combination of cognitive and metacog-

nitive prompts, while the control group received no prompts. In the first half of the term,

the experimental group applied more strategies in their learning journals and showed a

higher learning success than the control group. Towards the end of the term, the amount of

cognitive and metacognitive strategies elicited by the experimental group decreased while

the number of cognitive strategies applied by the control group increased. Accordingly,
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when learning success was measured again at the end of the term, the experimental group

performed worse than the control group and it showed also less favorable motivation for

learning. In order to avoid these negative long-term effects of prompts, a gradual and

adaptive fading-out of the prompts was introduced in Experiment 2. In the experimental

group, each of the presented prompts was faded out as soon as a student applied the

prompted strategy to a satisfactory degree. In the control group, the prompts were pre-

sented permanently. The results showed that, over the course of the term, the fading group

applied increasingly more cognitive strategies while the permanent prompts group applied

increasingly less cognitive strategies. At the end of the term, the permanent prompts group

showed substantially lower learning outcomes than the fading group. Together, these

results provide evidence for an expertise reversal effect in writing-to-learn. In the begin-

ning of the term, the prompts successfully facilitated the application of beneficial strate-

gies. However, as the students became more skilled in journal writing and internalized the

desired strategies, the external guidance by prompts became a redundant stimulus that

interfered with the students’ internal tendency to apply the strategies and, thus, induced

extraneous load. Accordingly, a gradual fading-out of the prompts in line with the learner’s

growing competencies was effective in mitigating the negative side-effects of the provided

instructional support.

The third paper ‘‘Developmental changes in expertise reversal for iconic representations

in science visualizations’’ by Homer and Plass (this issue) investigates how the addition of

visual scaffolds in computer-based narrated chemistry visualizations affects learning out-

comes for middle- and high-school students with differing levels of prior knowledge. It

was demonstrated that visual scaffolds created by adding iconic representations to the

purely symbolic (text-based and numerical) representations improved learning outcomes

for low-prior knowledge but not for higher-prior knowledge high-school students. The

study also showed that cognitive developmental levels of learners might have influenced

the expertise reversal effect. For younger middle-school children who presumably lacked

more general symbolic competencies (even if they had content knowledge), the effect was

eliminated: the icons helped the younger children, regardless of their level of prior

knowledge. The results support the claim that iconic visual scaffolds can facilitate learning

in visual learning environments, particularly for low prior knowledge learners at lower

levels of cognitive development. The findings argue for the importance of considering

variations of individual learners when designing dynamic science visualizations. To be

cognitively efficient and effective, they should be tailored to developmental levels and

prior knowledge of individual learners.

The fourth paper ‘‘Interactions between the isolated-interactive elements effect and

levels of learner expertise: Experimental evidence from an accountancy class’’ by Blayney

et al. (this issue) investigates interactions between the isolated-interactive element

instructional formats and levels of learner expertise with first year undergraduate university

accounting students. The isolated-interactive elements effect occurs when learning is

facilitated by initially presenting elements of information sequentially in an isolated form

(e.g., using several less complex intermediate working formulas in spreadsheet-based

calculations) rather than in a fully interactive form (using a single complex formula). The

results demonstrated that learner expertise interacted with instructional formats using

isolated or interactive elements of information during the initial phase of instruction.

Novice learners primarily benefited from studying isolated elements first by performing

complex tasks in a sequential manner using intermediate spreadsheet cells and starting

from simple procedural steps. In contrast, for more experienced learners, this method did

not improve learning as compared to using single spreadsheet cells that allowed these
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learners to take advantage of their knowledge base. It was suggested that for more

experienced learners, the need to integrate and cross-reference the sequence of redundant

for them simplified intermediate formulas with their available knowledge of the complete

formula might have consumed additional cognitive resources.

The fifth and final empirical paper, ‘‘The expertise reversal effect and worked examples

in tutored problem solving: Benefits of adaptive instruction’’ by Salden et al. (this issue)

describes an experimental study related to a major instructional implication of the expertise

reversal effect, namely to tailoring instruction to levels of learner knowledge in a task

domain. According to cognitive load theory, worked examples are more favorable than

problem solving exercises for initiating cognitive skill acquisition (worked examples

effect). However, problem solving could be more effective in later phases of skill acqui-

sition. This switch in effectiveness of examples is an instance of the expertise reversal

effect. Moreover, a ‘‘smooth’’ transition from worked examples to problems (i.e., gradually

fading worked-out steps) particularly facilitates learning (e.g., Renkl and Atkinson 2003).

Recently, Koedinger and Aleven (2007) have noted the assistance dilemma that addresses

the balance between giving information to the students (e.g., by using worked examples)

and deliberately withholding it (e.g., by asking students to solve problems). It is, however,

unclear when exactly should the switch between these assistance conditions take place to

optimize learning. The reported study was designed to investigate if the current skill levels

in terms of self-explanation performance while studying examples and problem solving

performance could be employed to determine the appropriate learning conditions. A fading

approach adaptive to a learner’s current skill level was expected to be more effective than a

predetermined fading approach to structuring the transition from studying examples to

problem solving. One laboratory and one classroom experiments were conducted to test

this assumption. An individualized fading procedure (adaptive fading) was compared to a

fixed procedure (fixed fading), and to a standard tutored problem solving condition

(problem solving) with high school students studying geometry lessons in the Cognitive

Tutor. The results of the lab study showed that the adaptive fading of worked-out examples

lead to higher performance scores on immediate and delayed (a week later) posttests. The

classroom study replicated this effect on the delayed posttest but not on the immediate

posttest. Despite only partially replicating lab results in the classroom, the study demon-

strated benefits of the adaptive fading condition. Both experiments provided evidence of

better learning outcomes resulting from adaptive fading than from fixed fading or problem

solving.

We hope that we can convince the readers of this special issue that the expertise reversal

effect is a powerful concept in instructional science (a) with respect to the more basic issue

of explaining boundary conditions of instructional principles and (b) with regard to the

applied issue of adapting learning environments to the individual learners. We see the

findings of this Issue also as a strong plea for taking the learners’ prior-knowledge level

into account when investigating and formulating instructional principles in future research.
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