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Abstract
This pilot study used an alternative and economically efficient technique, the Kompetitive Allele-Specific Polymerase Chain 
Reaction (KASP-PCR) to examine 48 SNPs from 11 parasite-resistance genes found on 8 chromosomes in 110 animals from 
five sheep breeds reared in Hungary; Hungarian Tsigai, White Dorper, Dorper, Ile de France, and Hungarian Merino. Allele 
and genotype frequencies, fixation index, observed heterozygosity, expected heterozygosity, F statistic, and their relationship 
with the Hardy–Weinberg equilibrium (WHE) and the polymorphic information content (PIC) were determined, followed 
by principal component analysis (PCA). As much as 32 SNPs out of the 48 initially studied were successfully genotyped. 
A total of 9 SNPs, 4 SNPs in TLR5, 1 SNP in TLR8, and 4 SNPs in TLR2 genes, were polymorphic. The variable genotype 
and allele frequency of the TLRs gene indicated genetic variability among the studied sheep breeds, with the Hungarian 
Merino exhibiting the most polymorphisms, while Dorper was the population with the most SNPs departing from the HWE. 
According to the PIC value, the rs430457884-TLR2, rs55631273-TLR2, and rs416833129-TLR5 were found to be informative 
in detecting polymorphisms among individuals within the populations, whereas the rs429546187-TLR5 and rs424975389-
TLR5 were found to have a significant influence in clustering the population studied. This study reported a moderate level of 
genetic variability and that a low to moderate within-breed diversity was maintained in the studied populations.
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Introduction

Small ruminants account for a substantial percentage of 
the worldwide livestock sector, with estimates of 1173 
million heads for sheep and 1003 million heads for goats, 
respectively (FAO 2018). Sheep in Hungary is the third 
largest livestock population species, after poultry and pigs 
(Hungarian Central Statistical Office 2020). Hungary’s 
vast pastureland and temperate climate are excellent for 
sheep farming, making this country a significant sheep 
producer in the past, during nineteenth-century Europe. 
However, the changing political situations and agricul-
tural activities in 1989 had a massive impact on Hungarian 
sheep farming, and the lowest point in sheep farming was 
recorded in 1996 (Nagy et al. 2011; Beke-Lisányi 2018). 
According to EUROSTAT (2022), Hungary’s sheep popu-
lation was 1,061 thousand heads in 2019, with more than 
90% of the breed structure being represented by Merino 
or Merino-derived breeds (Fésüs et al. 2008), with the 
remainder filled by several other imported European and 
African breeds such as Dorper, White Dorper, and Ile 
de France, as well the indigenous Hungarian Tsigai and 
Racka are also commonly reared in Hungary (Kukovics 
and Jávor 1999). In recent years, numerous efforts have 
been undertaken to revitalize sheep production using sev-
eral approaches, one of which is through increasing pro-
duction levels through better animal health and pasture 
management.

One of the main causes of production losses in small 
ruminants worldwide is represented by parasitic infections 
in grazing animals. For instance, Charlier et al. (2020) 
estimated that helminth infections cost € 151 million/year 
in dairy sheep and € 206 million/year in meat sheep farm-
ing in the European countries. Furthermore, Mavrot (2016) 
previously estimated higher costs of € 157–477 million/
year in sheep meat farming, based on individual European 
country reports. These findings evidenced a significant 
economic loss caused by parasite infection in sheep.

Gastrointestinal parasitism’s impact on the health and 
production levels of grazing ruminants are well docu-
mented and includes significant weight and body condition 
losses and decreased milk yields (Carta et al. 2009; van 
der Voort et al. 2014; Ertaş et al. 2022), diarrhea (Jacob-
son et al. 2020), anorexia (al Kalaldeh et al. 2019), ane-
mia (Mongruel et al. 2020), and higher levels of mortal-
ity Underwood et al. 2015). Furthermore, with the threat 
of climate change, the prevalence of parasite infection in 
sheep is expected to increase, even in regions where such 
aspects were not significantly problematic up to date. For 
instance, the seasonality of helminth parasites is expected 
to change as a result of warmer temperatures, and while 
the parasite survival rates during wintertime in temperate 

climates are expected to improve (Short et al. 2017). More-
over, increased rainfall levels are predicted to increase the 
prevalence of the liver fluke, Fasciola hepatica (Shrestha 
et al. 2020), Leishmania (Short et al. 2017), and several 
tick-borne Hemiparasitic illnesses such as Anaplasma 
spp., Babesia spp., and Theileria spp., which have been 
demonstrated to be influenced by changes in temperature 
and humidity (Abdullah et al. 2019).

Limited studies have been made focusing on gastrointes-
tinal parasite infections in sheep reared in Hungary. Tóth 
et al. (2019) reported the most prevalent parasitic nematodes 
burden in Hungary to consist mainly out of Protostrongy-
lus sp. and Strongylus sp., tapeworm Moniezia sp. and the 
Coccidian eimeria sp. Understanding genetic diversity and 
susceptibility for gastrointestinal parasitism resistance would 
be an excellent starting point, given that the variability in 
genetics within a population is fundamental to the immune 
response during infectious diseases. Up-to-date, emphasis 
has been made on the significance and potential benefits of 
heterogeneous genetic populations, notably in terms of the 
complex reactions they confer to epidemics, their longevity, 
and general resilience (Springbett et al. 2003; Kristensen 
et al. 2015). The preservation of genetic heterogeneity in 
livestock populations is critical to maintaining healthy live-
stock practices and for the preservation of biodiversity, con-
sidering the genetic advantages that locally adapted breeds 
have in reacting to epidemiological outbreaks.

The current pilot study in gastrointestinal parasite infec-
tion related genes in African and European sheep breeds 
reared in Hungary investigated the polymorphism of 48 
SNPs belonging to 11 genes related to genetic gastrointes-
tinal parasite resistance in five European and African sheep 
breeds which currently are concerned as part of Hungary’s 
sheep genetic selection and improvement program: Hungar-
ian Tsigai, White Dorper, Dorper, Ile de France, and Hun-
garian Merino. The Hungarian Merino and the Hungarian 
Tsigai are two indigenous breeds of sheep vital to the Hun-
gary’s efforts to preserve its genetic resources in the face 
of rising global demand for sheep genetics due to climate 
change. The Hungarian Merino sheep breed accounts for 
more than 80% of Hungary’s total sheep population. There 
were less than 5000 Hungarian Merinos left in 2014, render-
ing them an endangered species. Although not as numer-
ous as Hungarian Merino, Hungarian Tsigai has remained 
a consistent component of the local livestock (< 10%) over 
the last two centuries.

In this study, the Kompetitive Allele Specific Polymerase 
Chain Reaction (KASP-PCR) was used. Fluorescence reso-
nance energy transfer (FRET) generates signals in KASP-
PCR. Two luminous cassettes detect bi-allelic SNP allele-spe-
cific amplification (Suo et al. 2020). Biallelic characterization 
of SNPs, insertions, and deletions in specific loci is easy, fast, 
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and inexpensive (Alvarez-Fernandez et al. 2021). In the first 
round of PCR, allele-specific primers match the target SNP, 
and the common reverse primer amplifies the target area. 
The fluor-labeled oligos keep connected to their quencher-
labeled complementary oligos, preventing fluorescence. The 
allele-specific primer is integrated into the template. As the 
PCR progresses, a fluor-labeled oligo corresponding to the 
amplified allele is incorporated into the template and no 
longer linked to its quencher-labeled complement, forming 
an adequate fluorescent signal (He et al. 2014).

Understanding the genetic diversity of sheep breeds will 
aid in understanding the significance of genetic variants in 
parasite resistance. In addition, the findings of the current 
study might be used for future sheep genetic improvement 
programs in Europe and Africa, as well as for future con-
servation initiatives, in order to improve sheep productivity, 
health, and animal welfare.

Materials and methods

Genomic DNA extraction

Blood samples were collected from 110 indigenous and 
non-indigenous sheep, as follows: Hungarian Tsigai = 10 
and Hungarian Merino = 50 as the indigenous breed, and 
White Dorper = 10, Dorper = 10, and Ile de France = 30 as 
the non-indigenous breeds. Although the sample population 
was relatively low because this is a pilot project, all of the 
animals selected were genetically unrelated, and sampling 
was conducted in several different farms to better represent 
the breed. The method of Zsolnai and Orbán (1999) for iso-
lating genomic DNA from blood was utilized. The DNA 
was stored at − 20 °C until it was analyzed. A NanoDrop 
Spectrophotometer was used to assess the concentration and 
quality of DNA (Thermo Scientific, Waltham, MA, USA). 
All samples were diluted to a uniform concentration before 
genotyping, which was done with 50 ng of DNA per sample.

Selection of SNPs

A panel of 48 SNPs from 11 parasite-resistance genes 
located on 8 chromosome was chosen based on previous 
genome-wide association studies (GWAS) and marker-
assisted selection studies (Carracelas et  al. 2022; Oget 
et al. 2019; Archibald et al. 2010) across the sheep genome 
(Table 1). The SNP data for Ovis were obtained from the 
NCBI’s Single Nucleotide Polymorphism Database (dbSNP 
http:// www. ncbi. nlm. nih. gov) or Ensembl (http:// www. 
ensem bl. org). In the end, only 32 SNPs out of the 48 initially 
studied were successfully genotyped.

Table 1  Details of SNP ID, gene, and chromosome at the 48 SNPs 
panel used in the study

Code SNP ID Locus Chromosome Allele

SNP1 rs429546187 TLR5 12 C/G
SNP2 rs403288183 TLR8 X C/T
SNP3 rs401390846 TLR2 17 C/A
SNP4 rs424975389 TLR5 12 A/C
SNP5 rs418959585 TLR5 12 G/A
SNP6 rs160387232 IL1R1_2 3 C/T
SNP7 rs590620426 IL2_1 17 C/G
SNP8 rs596312311 IL2_2 17 C/T
SNP9 rs419524929 CRYL1 10 C/T
SNP10 rs160515511 CRYL1 10 G/C
SNP11 rs160515510 CRYL1 10 G/A
SNP12 rs160515503 CRYL1 10 A/G
SNP13 rs160515483 CRYL1 10 G/A
SNP14 rs594194839 CRYL1 10 A/G
SNP15 rs160515477 CRYL1 10 A/G
SNP16 rs55632294 TLR2 17 T/C
SNP17 rs55632297 TLR2 17 A/G
SNP18 rs55631273 TLR2 17 C/T
SNP19 rs430457884 TLR2 17 A/G
SNP20 rs160821602 TLR2 17 T/G
SNP21 rs162073322 TLR2 17 A/G
SNP22 rs162136344 RARα 11 C/G
SNP23 rs160601236 MAPRE1 13 A/G
SNP24 rs160601254 MAPRE1 13 A/G
SNP25 rs420375907 TLR5 12 A/G
SNP26 rs399647577 TLR5 12 C/T
SNP27 rs412232316 TLR5 12 A/C
SNP28 rs416833129 TLR5 12 A/G
SNP29 rs593219494 TLR8 X A/C
SNP30 rs159830151 SOCS2 3 G/A
SNP31 rs868996547 SOCS2 3 T/C
SNP32 rs159830157 SOCS2 3 G/A
SNP33 rs160515509 CRYL1 10 C/T
SNP34 rs161992521 CRYL1 10 C/A
SNP35 rs413718437 CRYL1 10 T/C
SNP36 rs55631283 TLR2 17 A/G
SNP37 rs398141211 TLR2 17 G/A
SNP38 rs597393983 SLC40A1 2 G/T
SNP39 rs159515567 SLC40A1 2 G/A
SNP40 rs405524806 SLC40A1 2 C/T
SNP41 rs399765789 MAPRE1 13 T/G
SNP42 rs405485855 TLR5 12 G/T
SNP43 rs410533606 TLR5 12 G/A
SNP44 GQ175930 TLR7 X C/A
SNP45 GQ175929 TLR7 X G/A
SNP46 GQ175927 TLR7 X A/G
SNP47 GQ175932 TLR7 X G/A
SNP48 rs161696362 TLR8 X C/G

http://www.ncbi.nlm.nih.gov
http://www.ensembl.org
http://www.ensembl.org
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Genotyping and quality control

KASP PCR (KASPTM, LGC Genomics, Teddington, Mid-
dlesex, UK) was used to perform bi-allelic discrimination 
of the selected 48 SNPs. The data were visualized using 
SNP Viewer software version 1.99 (Hoddesdon, UK). All 
genotype data were exported for statistical analysis. Only 
SNPs that were found in at least 90% of the breeds were 
included. Quality control of genotyped data comprised 
of eliminating a number of animals with more than 10% 
missing SNP calls and a number of SNPs with call rates 
less than 90%, resulting in disparities for the number of 
individuals among SNPs.

Data analysis

The raw allele calls provided from LGC Genomics were 
examined using LGC Genomics’ KlusterCaller program. 
POPGENE software version 1.31 (Yeh et al. 1999) was 
used to calculate allele and genotype frequencies, fixation 
index (Fis), observed heterozygosity (Ho), expected hete-
rozygosity (He), F statistic (Fst), and their accordance with 
or deviation from the Hardy–Weinberg equilibrium(HWE). 
Polymorphic information content (PIC) was determined 
online at https:// gene- calc. pl/ pic.

To visualize the genetic divergences between sheep 
breeds, the principal component analysis (PCA) was per-
formed using FactoMineR (Lê et al. 2008) and ggplot2 
(Wickham 2016) tools from the R Program (R Core Team 
2020).

Results

Genetic diversity

This work studied 48 SNPs in 11 genes related to gastrointes-
tinal parasite resistance in five European and African sheep 
breeds using the KASP genotyping technique (Table 1). A 
number of 32 SNPs out of the 48 initially studied were suc-
cessfully genotyped (66.67%), while 16 others failed. As 
many as 9 markers (18.75%) of the successfully genotyped 
were found to be polymorphic (Table 2). The monomorphic 
markers were removed from further investigation.

The identified allele calls from the nine polymorphic mark-
ers with a 99.80% allele call rate. Polymorphic markers were 
rs429546187-TLR5, rs403288183-TLR8, rs401390846-TLR2, 
rs424975389-TLR5, rs55631273-TLR2, rs430457884-TLR2, 
rs160821602-TLR2, rs412232316-TLR5, and rs416833129-
TLR5. The polymorphic markers were discovered in TLR5, 
TLR8, and TLR2 genes on chromosomes 12, 27, and 17, 
respectively. Varies genotype and allele frequency were 
observed (Table 3).

The genotype of homozygous GG in rs429546187-TLR5 
was found dominantly in all five populations studied, with 
the range of G allele frequency varying between 0.80 to 1.00, 
followed by the heterozygote GA, which was only found in 
Dorper and Hungarian Merino breeds. The same pattern was 
observed with the homozygote AA for rs424975389-TLR5, 
with A allele frequency of 0.80 to 1.00. For rs416833129-
TLR5, the G allele was more frequent in all five populations, 
with an allele frequency ranging between 0.50 and 1.00, 
except for the Dorper, where the heterozygote GA was the 

Table 2  The 9 polymorphic loci details

Code SNP ID Locus Chromosome position Chromosome Allele Sequence

SNP1 rs429546187 TLR5 24,624,977 12 C/G AGC AGG AAG ACT GTC TGT CTC GTG A[G/C]CAG ACA CTT 
CCT TAG AGA CGG GTG G

SNP2 rs403288183 TLR8 10,404,549 X C/T CTA CGA ACT GAA AAA ATA TCC TCA G[T/C]ACA TTA ACA 
TTT CCA AAA ATT TCT C

SNP3 rs401390846 TLR2 3,844,163 17 C/A CTT ATA GAT ATT GTA AGT TCC TTA G[A/C]TTA TTT AGA ACT 
GAG AGA TAC TAA T

SNP4 rs424975389 TLR5 24,625,779 12 A/C TCA TCT CCA ACT CCT CTA TCT GAA T[C/A]AAA ACT ACC 
TGA ATT TCC TTC CAC C

SNP18 rs55631273 TLR2 3,842,829 17 C/T GGA GCT GGA GCA CTT CAA CCC TCC C[T/C]TTA AGC TGT 
GTC TTC ATA AGC GAG A

SNP19 rs430457884 TLR2 3,842,888 17 A/G GAC GCC TTT GTG TCC TAC AGC GAG C[G/A]GGA TTC CTA 
CTG GGT GGA GAA CCT C

SNP20 rs160821602 TLR2 3,843,675 17 T/G CTC AGC CTG TGA GCA TGC CTG GCC C[G/T]TCC TTC AAA 
CCC TGG TTT TAA GGC A

SNP27 rs412232316 TLR5 24,625,722 12 A/C TCA TCT CCA ACT CCT CTA TCT GAA T[C/A]AAA ACT ACC 
TGA ATT TCC TTC CAC C

SNP28 rs416833129 TLR5 24,626,978 12 A/G TTG ACC ATT TAC AGA GAA GCC TTC C[A/G]AAA CCT GCC 
CAA TCT CAG GAT CCT G

https://gene-calc.pl/pic
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most frequent. While for rs412232316-TLR5, the C allele 
was the most dominant in all populations, except for the 
Dorper breed, for which the genotypes CA and AA were 
more frequent, with an A allele frequency of 0.70.

For rs403288183-TLR8, the homozygote TT was found in 
most Hungarian Tsigai, White Dorper, and Merino individuals, 
with the allele frequency ranging between 0.92 and 1.00, while 
in Dorper and Ile de France breeds, the heterozygote TC was the 
most prevalent, with the homozygote CC being observed as well.

For the TLR2 locus, there were four polymorphic mark-
ers observed. For the rs401390846, both alleles A and C 
were moderately found in Hungarian Tsigai (A = 0.550 
and C = 0.450), White Dorper (A = 0.650 and C = 0.350), 
and Ile de France (A = 0.533 and C = 0.467), even though 
the A allele was dominant in Dorper and Merino breeds, 
with a frequency of 1.00 and 0.79, respectively. For the 
rs55631273, both alleles C and T were found moderately 
in each of the sampled populations, except for the White 
Dorper and Merino. In rs430457884, the genotype GG was 
highly observed in all populations, although the heterozy-
gote GA was dominantly observed in the White Dorper pop-
ulation, while the G allele dominant for rs160821602 with 
the allele frequency varied between 0.85 and 1.00.

The Ho, He, PIC, and Fst values for the various breeds 
studied were determined and are listed in Table  4. The 
most polymorphic markers were found in rs55631273-
TLR2 (0.269–0.375), rs430457884-TLR2 (0–0.375), and 
rs416833129-TLR5 (0–0.375). In general, the obtained results 
showed that the PIC values were smaller than 0.5, with the min-
imum and maximum values of 0.044 and 0.361, suggesting that 
all investigated markers are considered moderately informative.

The highest observed heterozygosity, which indi-
cated a high within-population diversity, was obtained for 
rs403288183-TLR8, rs412232316-TLR5, and rs416833129-
TLR5 in the Dorper population, with a value of 0.700, 
0.600, and 0.600, respectively. With a similar pattern for 
rs424975389-TLR5 and rs55631273-TLR2 in the Ile de 
France population, with the value of 0.600 for both SNPs. 
The Fst value ranged from 0.104 to 0.462, indicating a mod-
erate relationship among the observed breeds.

The HWE test (x2) is also shown in Table 3. Some SNPs 
have deviated from the HWE, such as the SNP rs416833129-
TLR5 in Hungarian Tsigai, rs430457884-TLR2 in White 
Dorper, rs55631273 and rs430457884 of TLR2 in Dorper, 
and rs55631273-TLR2 in the Hungarian Merino population. 
The South African Dorper population was found to be a 
population with most SNPs deviating from the HWE. It was 
found that the Hungarian Merino population had the high-
est proportion of polymorphic markers (100%), and Ile de 
France had the lowest one (33.33%), with a fixed allele in 6 
SNPs, except for rs403288183-TLR8, rs401390846-TLR2, 
and rs55631273-TLR2.

Principal component analysis

The result of the PCA is shown in Figs. 1 and 2. As displayed 
in Fig. 1, PC1 and PC2 account for 26.62% and 20.35% of 
the total variation in the five breeds, respectively, with a 
cumulative variance of 46.97%. The PCA was unsuccess-
ful in separating breeds based on the genetic data. Based 
on the PCA loadings value (Fig. 2), the rs429546187-TLR5 
(SNP1) and rs424975389-TLR5 (SNP4) had maximum val-
ues in PC1, as they showed maximum variance.

Discussion

This study aimed to examine the genetic polymorphism of 
48 SNPs in five European and African sheep breeds reared 
in Hungary, with an emphasis on gastrointestinal parasite 
resistance, using the KASP-PCR technique. As many as 
16 (33.33%) of 48 SNPs were failed for genotyping, result-
ing in the success rate of the KASP technique in this study 
(66.67%) being lower than in previous studies on similar 
genes in goats (Ilie et al. 2018) and genes involved in milk 
composition in goats (Kusza et al. 2018) Due to the fact 
that monomorphic markers were excluded, only 9 SNPs 
(18.75%) were included for further analysis.

In this study, 9 polymorphic markers located in 3 genes 
associated with the parasite resistance were observed, namely 
the TLR5 (4 SNPs; rs429546187, rs424975389, rs412232316, 
and rs416833129), TLR8 (1 SNPs; rs403288183), and TLR2 
(4 SNPs; rs401390846, rs430457884, rs55631273 and 
rs160821602).

When studying disease resistance in livestock, toll-like 
receptors (TLRs) are frequently investigated, considering 
that they are proteins pattern-recognition receptors (PRRs) 
that initiate the inflammatory processes (Ruiz-Larrañaga et al. 
2011; Nie et al. 2018) and induce innate immune responses by 
identifying pathogen-associated molecular patterns (PAMPs) 
produced by pathogens such as bacteria, viruses, fungi, and 
parasites (Ma et al. 2011; Vijay et al. 2018). Mammalian 
TLRs are a large family with at least 13 members (Roach 
et al. 2005); however, only 10 members have been identified 
in sheep, even though all TLR genes in the species are highly 
comparable to caprine TLR, also showing over 95% similarity 
to bovine orthologs (Jungi et al. 2011). TLRs are present in 
a variety of cellular locations; for instance, TLR2 and TLR5 
are found on the cell surface, which acts as bacterial and fun-
gal sensors, whereas TLR8 acts as a sensor for intercellular 
pathogens (e.g., viruses), being found on the membranes of 
intracellular vesicles such as endosomes (Takeda 2004; Kawai 
and Akira 2006; Schumann and Tapping 2007).

Numerous studies have implicated TLR genes in natu-
ral genetic resistance to a variety of diseases in sheep, 
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Table 4  Polymorphic information content (PIC), expected heterozygosity (He), observed heterozygosity (He), fixation index (Fis), F statistic 
(Fst), and sample size (n)

SNP Locus Hungarian Tsigai White Dorper Dorper Ile de France Hungarian Merino Overall

rs429546187 TLR5 PIC 0.000 0.000 0.000 0.269 0.000 0.053
H obs 0.000 0.000 0.400 0.000 0.040 0.545
H exp 0.000 0.000 0.337 0.000 0.040 0.053
n 20.000 20.000 20.000 60.000 100.000 220.000
Fis 0.000 0.000 -0.250 0.000 -0.020 -0.025
Fst 0.146

rs403288183 TLR8 PIC 0.000 0.223 0.373 0.371 0.136 0.276
H obs 0.000 0.300 0.700 0.467 0.160 0.291
H exp 0.000 0.268 0.521 0.499 0.149 0.332
n 20.000 20.000 20.000 60.000 100.000 220.000
Fis 0.000 -0.177 -0.414 0.050 -0.087 -0.172
Fst 0.198

rs401390846 TLR2 PIC 0.373 0.352 0.000 0.374 0.277 0.329
H obs 0.500 0.500 0.000 0.600 0.420 0.446
H exp 0.521 0.479 0.000 0.506 0.335 0.418
n 20.000 20.000 20.000 60.000 100.000 220.000
Fis -0.010 -0.099 0.000 -0.205 -0.266 -0.135
Fst 0.145

rs424975389 TLR5 PIC 0.000 0.000 0.269 0.000 0.038 0.053
H obs 0.000 0.000 0.400 0.000 0.040 0.055
H exp 0.000 0.000 0.337 0.000 0.040 0.053
n 20.000 20.000 20.000 60.000 100.000 220.000
Fis 0.000 0.000 -0.250 0.000 -0.020 -0.225
Fst 0.462

rs55631273 TLR2 PIC 0.373 0.269 0.375 0.374 0.277 0.361
H obs 0.500 0.400 0.200 0.600 0.420 0.455
H exp 0.521 0.337 0.526 0.506 0.335 0.474
n 20.000 20.000 20.000 60.000 100.000 220.000
Fis -0.010 -0.250 0.600 -0.205 -0.266 0.012
Fst 0.141

rs430457884 TLR2 PIC 0.223 0.373 0.375 0.000 0.038 0.177
H obs 0.300 0.900 0.200 0.000 0.040 0.147
H exp 0.268 0.521 0.526 0.000 0.040 0.197
n 20.000 20.000 20.000 58.000 100.000 218.000
Fis -0.177 -0.818 0.600 0.000 -0.020 -0.117
Fst 0.258

rs160821602 TLR2 PIC 0.223 0.000 0.000 0.000 0.038 0.044
H obs 0.300 0.000 0.000 0.000 0.400 0.046
H exp 0.268 0.000 0.000 0.000 0.040 0.045
n 20.000 20.000 20.000 60.000 100.000 220.000
Fis -0.177 0.000 0.000 0.000 -0.020 -0.156
Fst 0.104

rs412232316 TLR5 PIC 0.365 0.091 0.332 0.000 0.038 0.182
H obs 0.200 0.100 0.600 0.000 0.040 0.100
H exp 0.505 0.100 0.442 0.000 0.040 0.202
n 20.000 20.000 20.000 60.000 100.000 220.000
Fis 0.583 -0.053 -0.429 0.000 -0.020 0.091
Fst 0.434

rs416833129 TLR5 PIC 0.365 0.091 0.375 0.000 0.000 0.146
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including ovine paratuberculosis (Yaman 2020), Myco-
plasma pneumonia infections (Du et al. 2020), brucellosis 
(Li et al. 2021), and Haemonchus contortus infections (Tos-
cano et al. 2019), outlining the importance of these genes 
in sheep health and immune system functioning. Several 
polymorphisms of the TLR genes have also been investi-
gated and proven to be associated with sheep health and 
immunity (Taylor et al. 2008; Mikula et al. 2010; Olech 
et al. 2021). In this study, the PIC value of rs430457884-
TLR2, rs55631273-TLR2, and rs416833129-TLR5 indicated 
these SNPs to some degree, informative in detecting the 
polymorphism among individuals of the five populations 
investigated. Aside from that, the loading value of PCA 
showed that rs429546187-TLR5 and rs424975389-TLR5 
have a substantial influence on clustering for the Hungar-
ian populations (Tsigai and Merino).

The different genotype and allele frequency of TLRs genes 
in this study demonstrated genetic diversity amongst Hungar-
ian sheep breeds. These results are encouraging for future 
development of selection and genetic improvement programs 
for disease and environmental adaptation, as well as utiliza-
tion for conservation efforts of Hungarian local sheep breeds. 

The Dorper and Hungarian Merino showed the most distinc-
tive genotype and allele frequency for the studied SNPs com-
pared to the other three breeds. An indigenous breed such as 
the Hungarian Tsigai is assumed to maintain high levels of 
genetic diversity, compared to commercial breeds, as indig-
enous breeds are usually under less selection pressure; how-
ever, in this study, a high proportion of monomorphic loci were 
found in the Hungarian Tsigai (n = 10) as well as in the Ile de 
France population (n = 30). In some instances, monomorphic 
loci associated with disease resistance are observed, such as 
Tendinopathies in the Greek native horse breed (Giantsis et al. 
2020) and Mycobacterium bovis infection in Hostein Friesien 
cattle (Richardson et al. 2016). This is likely because native 
breeds are highly tolerant of and adaptable to a wide range of 
environmental circumstances has led to the evolution of dis-
ease-resistant phenotype. Although the moderate Fst value and 
the PCA indicated a moderate relationship among the observed 
breeds, no noteworthy clustering was formed from the PCA 
score value biplot (Fig. 1), as it was also in line with the previ-
ous finding by Loukovitis et al. (2022). This failed grouping in 
PCA was also affected by the small sample size and the large 
variation in sample size across populations.

Table 4  (continued)

SNP Locus Hungarian Tsigai White Dorper Dorper Ile de France Hungarian Merino Overall

H obs 0.200 0.100 0.600 0.000 0.000 0.083
H exp 0.505 0.100 0.526 0.000 0.000 0.160
n 20.000 20.000 20.000 60.000 98.000 218.000
Fis 0.583 -0.526 -0.200 0.000 0.000 0.163
Fst 0.302

Fig. 1  Score biplot of principal 
component analysis (PCA) of 
9 SNPs of 110 animals from 5 
different sheep breeds. Different 
breeds are showed in different 
colors
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The Hungarian Merino observed in this study showed the 
highest polymorphism levels among all. The breed is a commer-
cial breed and has been developed through crossbreeding with 
a variety of Spanish Merino and Merino-derived breeds over 
years of history, which has resulted in extensive genetic admix-
ture, results in line with those reported previously by Ciani et al. 
(2015), which stated that the Hungarian Merino sheep dates back 
over 250 years and evolved from the original fine-wool Span-
ish Merino rams and local semi-fine wool populations. Over 
the years, numerous different Merino and indigenous Hungar-
ian breeds have contributed to the breed’s evolution. Moreover, 
the Hungarian Merino has been through a dynamic population 
expansion for the past years. To support this, a study by Loukovi-
tis et al. (2022) has confirmed the high levels of genetic variation 
within the population of the Hungarian Merino.

The South African Dorper is also a widely spread commer-
cial breed, being a hardy composite breed established by cross-
ing the Black-headed Persian and the Dorset Horn. Due to its 
outstanding characteristics, such as the thermotolerance ability 
(Joy et al. 2020), the Dorper has gained popularity in certain 
European regions, including Hungary (Gavojdian et al. 2013). 
Since its introduction in 2007, the Dorper has been one of the 
most prolific breeds found in Hungary (Budai et al. 2013), 
although the number of purebreds in Hungary is still limited, 
and the ram is mainly used as terminal sires for crossbreeding 

with indigenous maternal breeds to increase production traits 
(Gavojdian et al. 2015a, b). According to some authors, the 
drawback of this breed to European rearing conditions would 
be the lower resistance to diseases, as evidenced by previous 
findings by Guo et al. (2016) and Estrada-Reyes et al. (2019). 
However, according to reports by Gavojdian et al. (2015a, b), 
the Dorper and White Dorper breeds have similar disease resist-
ance and health indicators as the local Hungarian Tsigai, when 
reared under identical conditions.

Our current findings serve as a starting point for the char-
acterization of European and African sheep breeds based 
on gastrointestinal parasitism resistance genes. They can be 
utilized to establish precise conservation measures aimed 
at improving disease resistance and monitoring the genetic 
variability of sheep breeds, especially those reared in Cen-
tral Europe. However, populations with a larger sample size 
would be beneficial to obtain a better figure of the genetic 
diversity of the European sheep breeds.

Conclusion

This study describes polymorphisms in parasite resistance 
genes in European and African sheep breeds reared in Hun-
gary. Our study revealed nine polymorphic markers in TLR5, 

Fig. 2  Loadings biplot of 
principal component analysis 
(PCA) of 9 SNPs of 110 sheep. 
SNP1 = rs429546187-TLR5; 
SNP2 = rs403288183-TLR8; 
SNP3 = rs401390846-TLR2; 
SNP4 = rs424975389-TLR5; 
SNP18 = rs55631273-TLR2; 
SNP19 = rs430457884-TLR2; 
SNP20 = rs160821602-TLR2; 
SNP27 = rs412232316-TLR5; 
and SNP28 = rs416833129-
TLR5 
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TLR8, and TLR2 genes associated with parasite resistance 
in Hungarian Tsigai, White Dorper, Dorper, and Hungarian 
Merino sheep using the KASP assay, giving room for genet-
ics selection for parasite resistance traits in Hungarian sheep 
population. In general, the study reported a moderate level of 
genetic variability and that a low to moderate within-breed 
diversity was maintained in the studied populations. Although 
these SNPs require additional research into marker associa-
tions and their marker-quantitative trait locus phase relation-
ships in each population to precisely define each SNP effect, 
and the number of samples is limited in this pilot study, the 
results obtained may prove valuable and contribute to the 
future molecular marker studies on disease resistance in sheep.
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