Skip to main content
Log in

Production, characterization, and dietary supplementation effect of rumen-protected fat on ruminal function and blood parameters of sheep

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Rumen-protected fat (RPF) was produced in the 1st experimental stage through melt-emulsification technique using buriti oil (BO) as core, at concentrations of 10% (BO10), 20% (BO20), and 30% (BO30) (w/w), and carnauba wax (CW) as encapsulant material. After obtention and characterization, protected fat microspheres were tested in a 2nd experimental stage on the sheep’ diet using six castrated 2-year-old male Santa Ines with initial weight 48.9 ± 5.23 kg, fistulated in rumen and distributed in a double Latin square design with 3 treatments × 3 periods, to evaluate rumen pH, temperature, protozoal count, and blood parameters. There was no difference (P > 0.05) among RPF microspheres for microencapsulation yield. However, microencapsulation efficiency increased (P < 0.05) with BO addition ranging from 36 to 61.3% for BO10 and BO30, respectively. The inclusion of BO10 in the sheep’s diet did not affect the ruminal dry matter degradability (DMD) of BO over time (P > 0.05); however, BO20 and BO30 had higher (P < 0.05) DMD values than BO10. No significant differences were observed among RPF for rumen pH and temperature (P > 0.05). There was an increase (P < 0.05) in the protozoal population in the rumen environment due to the microencapsulated BO30 inclusion. There was also increase (P < 0.05) in serum albumin, cholesterol, aspartate aminotransferase (ALT), and gamma-glutamyltransferase (GGT), and a reduction (P < 0.05) in serum triglycerides of the sheep when RPF microspheres increased in the diet. Melt-emulsification proved to be a good technique for microencapsulation of buriti oil into the carnauba wax matrix. RPF from buriti oil protected into carnauba wax is recommended for sheep diet because it increases energy density, without adverse effects on the protozoal populations and blood serum metabolites from the bypass effect in the rumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Alves-Bezerra, M. and Cohen, D. E., 2017. Triglyceride Metabolism in the Liver. Comprehensive Physiology, 8(1), 1-8. https://doi.org/10.1002/cphy.c170012.

    Article  PubMed  PubMed Central  Google Scholar 

  • American Society for Testing and materials - ASTM E2550–17 – Standard test method for thermal stability by thermogravimetry, ASTM International, West Conshohocken, PA, 2017.

  • AOAC, 2016. Official method of analysis, 20th Ed, Association of Officiating Analytical Chemists, (Washington DC).

  • Barboza N. L., Cruz, J. M. dos A., Corrêa, R. F., Lamarão, C. V., Lima, A. R., Inada, N. M., Sanches, E. A., Bezerra, J. de A., Campelo, P. H., 2022. Buriti (Mauritia flexuosa L. f.): An Amazonian fruit with potential health benefits. Food Research International, 159, 111654. https://doi.org/10.1016/j.foodres.2022.111654

    Article  CAS  PubMed  Google Scholar 

  • Behan, A.A., Loh, T.C., Fakurazi, S., Kaka, U., Kaka, A., Samsudin, A.A., 2019. Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals, 30, 400. https://doi.org/10.3390/ani9070400.

    Article  Google Scholar 

  • Carvalho, A. B., Silva, A. L., Silva, A. M. A., Netto, A. J., Medeiros, T. T. B., Araujo Filho, J. M., Agostini, D. L. S., Oliveira, D. L. V., Mazzetto, S. E., Kotzebue, L. R. V., Oliveira, J. R., Oliveira, R. L., Bezerra, L. R., 2019. Effect of slow-release urea microencapsulated in beeswax and its inclusion in ruminant diets. Small Ruminant Research, 179, 56-63. https://doi.org/10.1016/j.smallrumres.2019.09.005

    Article  Google Scholar 

  • Carvalho Neto, J. P., Bezerra, L.R., da Silva, A.L., Moura, J.F.P., Pereira Filho, J.M., da Silva Filho, E.C., Guedes, A.F., Araújo, M.J., Edvan R. L., Oliveira R. L., 2019. Methionine microencapsulated with a carnauba (Copernicia prunifera) wax matrix for protection from degradation in the rumen. Livestock Science, 228, 53-60. https://doi.org/10.1016/j.livsci.2019.07.024

    Article  Google Scholar 

  • Castillo-González, A.R., Burrola-Barraza, M. E, Domínguez-Viveros, J., Chávez-Martínez, A., 2014. Rumen microorganisms and fermentation. Archivos de medicina veterinaria, 46(3), 349-361. https://doi.org/10.4067/S0301-732X2014000300003

  • Cordeiro, L.M.C., Almeida, C. P., Iacomini, M., 2015. Unusual linear polysaccharides: (1→5)-α-l-Arabinan, (1→3)-(1→4)-α-d-glucan and (1→4)-β-d-xylan from pulp of buriti (Mauritia flexuosa), an edible palm fruit from the Amazon region. Food Chemistry, 173, 141-146. https://doi.org/10.1016/j.foodchem.2014.10.020

    Article  CAS  PubMed  Google Scholar 

  • Crewe, A. V., Isaacson, M., Johnson, D., 1969. A Simple Scanning Electron Microscope. Review of Scientific Instruments, 40, 241-246. https://doi.org/10.1063/1.1683910

    Article  Google Scholar 

  • De Barbieri, I., Hegarty, R. S., Silveira, C., Oddy, V. H., 2015. Positive consequences of maternal diet and post-natal rumen inoculation on rumen function and animal performance of Merino lambs. Small Ruminant Research, 129, 37-47. https://doi.org/10.1016/j.smallrumres.2015.05.017

    Article  Google Scholar 

  • De Sousa, S.V., Diogenes, L.V., Oliveira, R.L., Souza, M.N.S., Mazza, P.H.S., DA Silva Júnior, J.M., Pereira, E.S., Parente, M.O.M., Araújo, M.J., De Oliveira, J.P.F., Bezerra, L.R. 2022. Effect of dietary buriti oil on the quality, fatty acid profile and sensorial attributes of lamb meat. Meat Science, 186, 108734. https://doi.org/10.1016/j.meatsci.2022.108734

    Article  CAS  PubMed  Google Scholar 

  • Souza, J. G. de and Ribeiro, C. V. D. M., 2021. Ruminal biohidrogenation and main impact on met the fatty acid profile: a review. Research, Society and Development, 10, e28101321039, 2021. https://doi.org/10.33448/rsd-v10i13.21039.

    Article  Google Scholar 

  • Dehorty, B.A., 2003. Rumen Microbiology. Nottingham: Nottingham University Press.

    Google Scholar 

  • Diogenes, L. V.; Bezerra, L. R.; Pereira Filho, J. M.; Silva Júnior, Jarbas M.; Oliveira, J. P. F.; Moura, J. F. P.; Barbosa, A. M.; Souza, M. N. S.; Sousa, S. V.; Pereira, E. S.; Oliveira, R. L., 2020. Effects of the Dietary inclusion of buriti oil on lamb performance, carcass traits, digestibility, nitrogen balance, ingestive behavior and blood metabolites. Animals, 10, 1973. https://doi.org/10.3390/ani12040427

    Article  PubMed  PubMed Central  Google Scholar 

  • Doreau, M. and Ferlay, A., 1994. Digestion and utilisation of fatty acids by ruminants. AnimalFeed Science and Technology, 45, 379-396. https://doi.org/10.1016/0377-8401(94)90039-6

    Article  CAS  Google Scholar 

  • Hentschel, A., Gramdorf, S., Muller, R. H., Kurz, T., 2008. β-Carotene-loaded nanostructured lipid carriers. Journal of Food Science, 73, 1-6. https://doi.org/10.1016/j.foodres.2016.10.038

    Article  CAS  Google Scholar 

  • Kaneko, J. J., Harvey, J. W.; Bruss, M. L., 2008. Clinical Biochemistry of Domestic Animals. 6th ed. Academic Press, San Diego. 916 p.

    Google Scholar 

  • Kumar, M., 2017. By pass fat in animal feeding - A review. Journal of Entomology and Zoology Studies, 5 (6), 2251-2255.

  • Medeiros, T. T. B., Silva, A. M. A., Silva, A. L., Bezerra, L. R., Agostini, D. L. S., Oliveira, D. L. V., Mazzetto, S. E., Kotzebue, L. R. V., Oliveira, J. R., SOUTO, G. S. B., Carvalho, A. B., Netto, A. J., Oliveira, R. L., 2019. Carnauba wax as a wall material for urea microencapsulation. Journal of the Science of Food and Agriculture, 99, 078-1087, 2019. https://doi.org/10.1002/jsfa.9275

    Article  CAS  Google Scholar 

  • Melo, M., da Silva, A., Silva Filho, E., Oliveira, R., Silva Junior, J., Oliveira, J.P., VAZ, A., Moura, J., Pereira Filho, J., Bezerra, L., 2021. Polymeric microparticles of calcium pectinate containing urea for slow release in ruminant diet. Polymers, 13, 3776. https://doi.org/10.3390/polym13213776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertens, D. R., 1997. Creating a system for meeting the fiber requirements of dairy cows. Journal of Dairy Science, 80, 1463–1481.

    Article  CAS  PubMed  Google Scholar 

  • Morais, J. S., Bezerra, L. R., Silva, A. M. A., Araújo, M. J., Oliveira, R. L., Edvan, R. L., Torreão, J. N. C., Lanna, D. P. D., 2017. Production, composition, fatty acid profile and sensory analysis of goat milk in goats fed buriti oil. Journal of Animal Science, 95, 395-406. https://doi.org/10.2527/jas.2016.0746

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja, T. G., 2016. Microbiology of the Rumen. In: Millen, D., Arrigoni, M., Pacheco, R., Rumenology (pp. 39-62). Switzerland: Springer.

    Chapter  Google Scholar 

  • Nedovica, V., Kalusevica, A., Manojlovicb, V., Levica, S., Bugarskib, B., 2011. An overview of encapsulation technologies for food applications. Procedia Food Science, 1, 1806 -1815. https://doi.org/10.1016/j.profoo.2011.09.265

    Article  CAS  Google Scholar 

  • Netto, A.J., Silva, A.M.D.A., Bezerra, L.R., Carvalho, A.D.B., Agostini, D.L.D.S., de Oliveira, D.L.V., Mazzetto, S.E., Kotzebue, L.R.V., Oliveira, J.R., Oliveira, R.L., 2021. Lipid microspheres containing urea for slow release of non-protein N in ruminant diets. Animal Production Science, 62, 191-200. https://doi.org/10.1071/AN20694

    Article  CAS  Google Scholar 

  • NRC, 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids. Natl. Acad. Press, Washington, DC.

    Google Scholar 

  • O'Fallon, J. V., Busboom, J. R., Nelson, M. L., Gaskins, C. T., 2007. A direct method for fatty acid methyl ester (FAME) synthesis: Application to wet meat tissues, oils and feedstuffs. Journal of Animal Science, 85 (6), 1511−1521. https://doi.org/10.3390/polym13213776

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, R. M. M., Pereira, F. T., Pereira, E. C.; Mendonça, C. J. S., 2020. Óleo de Buriti: índice de qualidade nutricional e efeito antioxidante e antidiabético. Revista Virtual de Química, 14, (1), 1-100

    Google Scholar 

  • Ørskov, E.R. and McDonald, I., 1979.The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agriculture Science, 92, 449-453. https://doi.org/10.1017/S0021859600063048

    Article  Google Scholar 

  • Palmquist, D.L., 1994. The role of dietary fats in efficiency of ruminants. Journal of Nutrition, 8 (Suppl), 1377S-1382S. https://doi.org/10.1093/jn/124.suppl_8.1377S.

    Article  Google Scholar 

  • Parente, M.O.M., Rocha, K.S., Bessa, R.J.B., Parente, H.N., Zanine, A.M., Machado, N.A.F., Lourenço Júnior, J.B., Bezerra, L.R., Landim, A.V., Alves, S.P., 2020. Effects of the dietary inclusion of babassu oil or buriti oil on lamb performance, meat quality and fatty acid composition. Meat Science, 160, 107971. https://doi.org/10.1016/j.meatsci.2019.107971.

    Article  CAS  PubMed  Google Scholar 

  • Pezzini, B. R., Silva, M. A. S., Ferraz, H. G., 2007. Sustained release solid oral dosage forms: single-unity or multiple-unity systems. Revista Brasileira de Ciências Farmacêuticas, 43, 491-502. https://doi.org/10.1590/S1516-93322007000400002

    Article  CAS  Google Scholar 

  • Rodrigues, D. C., Caceres, C. A., Ribeiro, H. L., Abreu, R. F. A., Cunha, A. P., Azeredo, H. M. C., 2014. Influence of cassava starch and carnauba wax on physical properties of cashew tree gum-based films. Food Hydrocolloids, 38, 147-151. https://doi.org/10.1016/j.foodhyd.2013.12.010

    Article  CAS  Google Scholar 

  • Tripathi, M. K., Mishra, A. S., Misra, A. K., Mondal, D., Karim, S. A., 2001. Effect of substitution of groundnut with high glucosinolate mustard (Brassica juncea) meal on nutrient utilization, growth, vital organ weight and blood composition of lambs. Small Ruminant Research, 39(3), 261-267. https://doi.org/10.1016/S0921-4488(00)00198-X

    Article  PubMed  Google Scholar 

  • Tymensen, L., Barkley, C., McAllister, T. A., 2012. Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods. Journal of Microbiological Methods, 88, 1–6. https://doi.org/10.1016/j.mimet.2011.09.005

    Article  PubMed  Google Scholar 

  • Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarchpolyssacharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  PubMed  Google Scholar 

  • Wanapat, M., Kongmun, P., Poungchompu, O., Cherdthong, A., Khejornsart, P., Pilajun, R., Kaenpakdee, S., 2012. Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology. Tropical Animal Health and Production, 44(3), 399-405. https://doi.org/10.1007/s11250-011-9949-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES).

Funding

The research was financially supported by the National Council for Scientific and Technological Development (Brazil), with grant Number 423933/2021–3.

Author information

Authors and Affiliations

Authors

Contributions

JL, LB, and AS conceived and designed research. AS supervision, LB funding acquisition. JL, TF, and JO conducted experiments. JEO, DO, MC, and SM contributed with new reagents or analytical tools. JPF, RO, and JO analyzed data. JL wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Leilson R. Bezerra.

Ethics declarations

Ethics approval and consent to participate

All procedures followed the guidelines recommended by the National Ethical Committee for the Control of Animal Experimentation (CONCEA, Brazil) recommendation for the use of fistulated animals (Approval Protocol Number 35/2020).

Consent for publication

All the authors consent to the publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, J.A.M., Bezerra, L.R., Feitosa, T.J.d.O. et al. Production, characterization, and dietary supplementation effect of rumen-protected fat on ruminal function and blood parameters of sheep. Trop Anim Health Prod 55, 142 (2023). https://doi.org/10.1007/s11250-023-03563-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-023-03563-x

Keywords

Navigation