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Abstract
To increase rams’ post-thaw semen quality following cryopreservation, this study used enriched Tris-based diluent with 
varying amounts of moringa leaf methanolic extract (MLME). The antioxidant activity, total phenolic, and total flavonoid 
content were all assessed in MLME. The sperm of five healthy Awassi rams were collected, divided into 4 equal aliquots, 
and diluted [1:5; (v/v)] in Tris-citrate-glucose extender supplemented with 0.48, 0.56, and 0.64 mg MLME/ml or without 
MLME supplementation (control). The percentages of sperm total motility (STM, %), sperm progressive motility (SPM, %) 
and viability (V, %), abnormal morphology (AM, %), membrane functional integrity (MFI, %), and acrosome integrity (AI %) 
were measured. Malondialdehyde (MDA), nitric oxide (NO), ascorbic acid (AA), superoxide dismutase (SOD), glutathione 
peroxidase (GPx), total cholesterol (TC), low-density lipoproteins (LDL), lactate dehydrogenase (LDH), alkaline phosphatase 
(ALP), zinc (Zn), and copper (Cu) were measured. The total phenolic gallic acid and flavonoid catechin (equivalent) contents 
were 19.78 mg/g and 11.94 mg/g, respectively. 2,2-Diphenyl-1-picrylhydrazyl (34.37 mM TE/g) and 2,2′-azino-bis/3-ethylb-
enzothiazoline-6-sulfonic acid (53.47 mM TE/g) were found in MLME. MLME had a 64.59 mM TE/g ferric-reducing power. 
In comparison to control, the addition of 0.64 mg/ml MLME to Tris-based extender resulted in the highest (P < 0.001) STM 
(55.22 ± 0.98), SPM (45.41 ± .70), SV (60.01 ± 1.05), MFI (75.23 ± 0.77), and AI (73.13 ± 0.72) and the lowest (P < 0.001) 
AM (21.34 ± 0.72) values. In comparison to the control, the addition of 0.56 mg/ml semen extender resulted in lower 
STM, SPM, SV, MFI, and AI with higher AM percentages. MDA (P = 0.03), NO (P = 0.012), CHO (P = 0.0001), and LDL 
(P = 0.004) were reduced by 0.64 mg/ml MLME, while AA (P = 0.017) and SOD (P = 0.0001) were elevated. In conclusion, 
the highest copper (P = 0.006) and lowest zinc concentrations in MLME (0.48 mg/ml extender) deteriorated the post-thaw 
semen quality, prompting us to suggest the addition of 0.64 mg MLME to rams’ Tris-based semen extender.
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Introduction

Artificial insemination (AI) plays a substantial role in 
improving breeding efficiency and livestock productivity. 
Among the major determinants of AI program success, germ 

cell cryopreservation comes in the advanced position. Sperm 
cells, during the stages of freezing and thawing processes, 
face dramatic challenges to withstand the adverse effects 
of extender hypertonicity and ice crystallization (Aisen 
et al. 2002), as well as membranes (plasma, acrosomal, and 
nuclear) lipid peroxidation (Bucak et al. 2009). Although 
reactive oxygen species (ROS), in optimal levels, are inte-
grated into the physiological capacitation reaction and ferti-
lizing potential of spermatozoa, their higher levels generated 
during the cryopreservation process provoke oxidative stress 
(OS) with subsequent sperm membrane lipid peroxidation 
and protein denaturation cascades which, in turn, disrupt its 
fluidity, intactness, and fertilizing capacity (Sarıözkan et al. 
2009). Ram spermatozoa contain, in its plasma membrane, 
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a high level of polyunsaturated fatty acids (PUFA), which 
make them more vulnerable to lipid peroxidation than other 
species. Mitigation of the harmful impacts of OS during 
sperm cryopreservation has been a primary goal for AI 
specialists in the last few decades. Supplementation of the 
cryopreservation medium with antioxidants, either synthetic 
or natural, has been proved to be helpful for sperm viability 
and fertilizing potential (Tuncer et al. 2011)

Natural extracts and infusions from fruits and vegeta-
bles attracted researchers’ interest to supplement semen 
extenders for preserving animal sperm (El-Sheshtawy and 
El-Nattat 2020; El-Nattat et al. 2011). Plants and their prod-
ucts are possible sources of phytochemicals, which have 
antioxidant activity, and hence prevent free radicals’ gen-
eration (Khalafalla et al. 2010). Drumstick tree, horseradish 
tree, and Moringa oleifera Lam (Family: Moringaceae) are 
extremely prized plants in tropical and subtropical nations 
where they are usually grown (Bakre et al. 2013; Taher 
et al. 2017). The leaves contain higher concentrations of 
protein, carotene, vitamins (such as A, B, C, E, riboflavin, 
nicotinic acid, folic acid, and pyridoxine), amino acids, 
minerals, and numerous antioxidant compounds (polyphe-
nols, flavonoids, proanthocyanidins, and flavonols) (Anwar 
et al. 2007; Khalafalla et al. 2010). These polyphenols, fla-
vonoids, proanthocyanidins, flavonols, vitamin C and E, 
carotene, zinc, and selenium have all been reported to have 
high antioxidant properties (Dhalaria et al. 2020). Heat-
stressed rats treated with Moringa oleifera leaves extract 
showed improvements in the perspectives of sexual activ-
ity, spermogram, reproductive hormones, and antioxidant 
capacity (Prabsattroo et  al. 2015; Afolabi et  al. 2013;  
Venkatesh et al. 2019). In rabbits, dietary supplementation 
of Moringa oleifera leaf extract (MOLE) (Ajuogu et al. 
2019), orally (El-Desoky et al. 2017), or added to semen 
extenders (El-Seadawy et al. 2017) improved sperm motil-
ity, viability, and seminal antioxidant capacity. In another 
study, MOLE supplemented orally to Barki rams did not 
improve spermatozoa motility and viability over 64 days 
of the administration, but it improved their antioxidant sta-
tus (Shokry et al. 2020). Higher post-thaw sperm motility 
and viability were reported following fortification of Barki 
ram freezing extender with MOLE (Shokry et al. 2021). In 
rams, Moringa oleifera seed methanolic extract improved 
post-thaw semen motility and antioxidant capacity  
(Carrera-Chávez et al. 2020). The biochemical analysis of 
chilled and frozen ram semen was reported (Abd El-Hamid 
2019). There was a lack of information about the defined 
composition and antioxidant potential of the MOLE that 
supported the positive effects on sperm viability. Besides, 
the reports described a full biochemical analysis of the 
post-thaw sperm environment are scarce. Therefore, this 
study aimed, for the first time, to provide a full biochemi-
cal analysis of the freezing outcomes including oxidants, 

antioxidants, enzymes, and minerals profiles, as well as a 
defined detailed MOLE composition, and moreover, to spec-
ify the most appropriate dose of MOLE enrichment of the 
Tris-based diluent to optimize high post-thaw semen quality.

Material and methods

Samples and chemicals

Moringa oleifera leaves samples

Moringa oleifera leaves were purchased from the Moringa 
Production Unit (National Research Centre) and then air-
dried, preserved in the shade for 7 days, pulverized into pow-
der, passed through a mesh sieve-40, and stored in plastic 
bags until needed.

Phenolic acid standards

Gallic, protocatechuic, gentisic, chlorogenic, vanillic, caf-
feic, syringic, p-coumaric, ferulic, sinapic, rosmarinic, and 
cinnamic acid, catechin, and apigenin were collected From 
Sigma–Aldrich, Inc. (Louis, USA).

Radical precursor

Sigma–Aldrich, Inc., supplied DPPH (2,2-diphenyl-1-pic-
rylhydrazyl), ABTS (2,2-azino-bis/3-ethil-benothiazoline-
6-sulfonic acid), TPTZ (2,4,6-tripyridyl-s-triazine), and 
Folin–Ciocalteu reagent (St. Louis, USA).

Solvents and other chemicals

Aldrich Chemical provided acetonitrile (HPLC grade) 
(GmbH & Co KG, Steinheim, Germany). Tedia Company, 
45014, USA, provided petroleum ether, diethyl ether, ethyl 
acetate, tetrahydrofuran, and methanol (analytical grade). 
Sodium hydroxide, potassium persulfate, dinitrosalicylic 
acid, aluminum chloride, sodium carbonate, hydrochloric, 
sulfuric, and acetic acids were included in this experiment.

Preparation of the MLME

The raw materials (30 g) were homogenized with 300 ml 
methanol (1:10 w/v) and agitated at room temperature to 
make moringa leaf methanolic extract (MLME). For 24 h, 
the solution was maintained at 4°C. The resulting extract 
was filtered and then dried under decreased pressure at 40°C 
using a rotary evaporator, and the final yield of extract was 
reported (Roopalatha and Nair 2013). The extract was recon-
stituted in 10 ml DMSO and stored at −80°C until further 
use.
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Major phytochemicals in the prepared extract

Evaluation of total phenolic content

The total phenolic content was determined according to the 
Folin–Ciocalteu procedure (Zilic et al. 2012). Total phenolic 
content was calculated as mg/g gallic acid equivalent using 
equation Y = 0.034 x + 0.111, R2 = 0.999, where X is the 
absorbance and Y is the gallic acid equivalent (mg/g).

Total flavonoid content determination

The total flavonoid content was determined according to 
Zilic et al. (2012) using aluminum chloride assay. Total fla-
vonoid contents were performed as equivalent (mg/g) using 
the following Y= 0.012 x + 0.008, R2 = 0.998, where x is the 
absorbance and Y is the catechin equivalent (mg/g).

Antioxidant activity determination of prepared 
extracts

DPPH radical scavenging activity

The stable DPPH was used to measure the free radical scav-
enging ability of extracts, according to Hwang and Do Thi 
(2014), with a Trolox curve (Y= 0.4841 x + 2.113, R2 = 
0.999, where x is the inhibition percent and Y is the Trolox 
equivalent mg/g). The results are given in milligrams of 
Trolox equivalent per gram of extract.

ABTS radical scavenging activity

ABTS radical scavenging capacity of extract was determined 
according to Hwang and Do Thi (2014) with a curve using 
Y= 2.965 x + 0.693, R2 = 0.999, where x is the inhibition 
percentage and Y is the Trolox equivalent mg/g). Results are 
expressed as mg of Trolox equivalent per g of extract.

Ferric‑reducing activity power (FRAP) assay

The FRAP test was performed using Y= 0.041 x + 0.006, 
R2 = 0.999, where x is the inhibition percentage and Y is the 
Trolox equivalent mg/g), as described by Hwang and Do 
Thi (2014). The results are given in milligrams of Trolox 
equivalent per gram of extract.

Separation and identification of phenolic acids 
by high‑performance liquid chromatography (HPLC)

Samples were automatically fed into a diode array detector-
equipped HP 1100 series HPLC system (Hewlett-Packard, 
GmbH, Germany) (DAD). The primary peaks’ absorption 
spectra were measured at 280 and 320 nm. A Xterra RP18 

reverse phase column (4.6 mm250 mm) with a spherical 
particle size of 5 m was used in the HPLC system, which 
was maintained at 25°C. The mobile phase contains 1% for-
mic acid (A) and acetonitrile (B), and the elution gradient 
was 2 to 100% (B) in 40 min at a flow rate of 0. ml/min at a 
temperature of 25°C. Gayosso-García Sancho et al. (2011) 
used a 20-l injection volume.

Animal management and semen collection

Five fertile and clinically healthy Awassi rams, 42.35±3.25 
months of age and 55.25±2.35 kg body weight, exposed to 
natural daylight, ambient temperature, and relative humid-
ity of the breeding season of rams in Egypt (winter season), 
were used in the current work. They received their mainte-
nance requirement of feed following NRC (1985). The ration 
(1.25 kg/day) was introduced to each ram, composed of 850 
g of green fodder and wheat straw with 400 g-formed con-
centrates (Abdelnaby 2020).

Semen samples were collected using an artificial vagina 
(4°C) of the rams twice weekly for 2 months. Immediately 
after collection, the semen samples were transferred to the 
laboratory at 37°C for examination and processing. For 
exclusion of the rams’ variations, the obtained ejaculates 
were pooled after assessment of the mass motility. Semen 
samples had mass motility scores (1–5) over 4 were pooled. 
Semen quality parameters including sperm progressive 
motility (%) and sperm cell concentration (109 cell/ml; 
modified Neubauer hemocytometer) were examined in the 
pooled samples for dilution rate calculation. The inclusion 
criteria for fitting the samples for further freezing procedures 
were (1) progressive motility ≥ 75% and (2) sperm cell con-
centration ≥ 2.7 × 109 sperm cell/ml.

Pooled samples were allotted into 4 equal parts; each part 
was diluted 1:5 (v/v) with a Tris-citrate-glucose extender. 
The used freezing extender was composed of Tris (hydroxyl 
methyl amino methane; 3.634 g), glucose (0.5 g), citric acid 
(1.99 g), egg yolk (15 ml), glycerol (7 ml), streptomycin 
sulfate (100 mg), and penicillin G sodium (100.000 IU) with 
the addition of glass bi-distilled water till 100 ml as a final 
volume (Evans and Maxwell 1987). MLME at concentra-
tions of 0.48 mg, 0.56 mg, and 0.64 mg was added to each 
ml of the diluent (El-Seadawy et al. 2017) or without MLME 
supplementation (control). Both supplemented and control 
diluted spermatozoa were cooled for 2 h at 5°C, equilibrated 
for 15 min at 5°C, manually packed in 0.25 ml plastic French 
straws, and sealed ultrasonically (cryosealer, Minitube, Ger-
many). After that, the straws were evenly distributed on a 
tray at 6.5 cm above the liquid nitrogen for 10 min and then 
immersed deeply into liquid nitrogen for long storage. Fro-
zen straws were thawed by emerging two straws represent-
ing each treatment in a water bath adjusted at 40°C for 30 s 
(Salamon and Maxwell 2000).

Page 3 of 11    344



Tropical Animal Health and Production (2022) 54:344

1 3

Evaluation of post‑thaw sperm total and progressive 
motility

Thawed spermatozoa were subjectively assessed imme-
diately after thawing for total motility (magnification: 
100×) and progressive motility (magnification: 400×) and 
expressed in percent (0–100) by using a heated stage (37 
°C) optical microscope (Olympus BH-2, Olympos Optical 
Co. Ltd., Japan). The rectilinear forward motility was con-
sidered only, whereas other types of local motilities were 
excluded. The sperm motility assessment was based on 5 
different microscopic fields/slides in duplicate smears for 
validity assurance.

Sperm viability and total abnormalities assessment

Alive sperm percentage was examined by using the supra-
vital eosin-nigrosin staining method (Evans and Maxwell 
1987). Each sample was stained by mixing a 4 µl of frozen-
thawed semen with 20 µl of the stain (1.67 g eosin, 5 g 
nigrosin, and 2.9 g sodium citrate dihydrate/100 ml distilled 
water) on a pre-warmed (37 °C) glass slide. In at least 5 
different microscopic fields, a sum of 200 spermatozoa was 
examined randomly, for the sperm’s ability to stain refusal, 
using a bright-field microscope (magnification: 1000× oil 
immersion). Structurally intact sperm appeared whitish (not 
stained), whereas deteriorated sperm (those with damaged 
plasma membrane) stained and appeared red. Sperm cell 
abnormalities including head defects, cytoplasmic droplets, 
coiled tails, and mid-piece deformities were evaluated in 
the same slide used for sperm viability evaluation in at least 
5 different microscopic fields (magnification: 1000× oil 
immersion). The total sperm abnormalities were expressed 
as a percentage (0–100). The examinations were routinely 
performed in duplicate smears for more precise assessment.

Membrane functional integrity

Hypo-osmotic swelling test (HOST) was used for sperm 
osmotic resistance assessment; intact viable sperm showed 
more resilience toward the hypo-osmotic solution and 
appeared swollen with curled tail (Revell and Mrode 1994). 
Briefly, a tiny drop (40 μl) of thawed semen sample was 
mixed with 400 μl of hypo-osmotic solution (0.9-g fructose 
plus 0.49 g sodium citrate per 100 ml of distilled water, 100 
mOsm/kg). The mixture was incubated at 37°C for 45 min. 
A tiny drop of the mixture (5 µl) was hanging on a micro-
scope slide, coverslipped, and was immediately examined 
by a bright-field microscope (400× magnification). Sper-
matozoa with functional plasma membranes appeared swol-
len with coiled tails, while inactive spermatozoa remained 
unchanged. Sums of 200 spermatozoa in duplicate smears 
were examined in five different microscopic fields. The 

number of sperm that appeared swollen with coiled tails 
was recorded.

Acrosome integrity

The intactness of the sperm acrosome was examined using 
a patent-specific stain (Spermac) according to a previous 
study (Ghallab et al. 2019). In brief, air-dried sperm smears 
were fixed in formalin (10%) for 10 min. The staining pro-
cedures were performed via passage of the fixed slides into 
the stain solutions (A, B, and C) for 1 min each at room 
temperature and then let to air dry. The air-dried slides were 
assessed using an oil immersion lens (1000× magnification). 
As routinely performed, duplicate smears were prepared, and 
a total of 200 spermatozoa were examined, and the sperm 
cells with intact acrosomes were calculated and expressed 
in percent (0–100).

Biochemical evaluation

After thawing the straws and separating the supernatant, 
commercial kits were used to measure lipid peroxide prod-
uct (malondialdehyde (MDA) nmol/ml) (Fathi et al. 2021), 
nitric oxide (NO) (umol/l), glutathione peroxidase (GPx) 
(mU/ml), superoxide dismutase (SOD) (U/ml), ascorbic 
acid (AA) (mg/l), zinc (Zn) (μg/dl), copper (Cu) (μg/dl), 
and total cholesterol (TC) (mg/dl) (Biodiagnostics, Tahreer 
St., Dokki, Giza, Egypt). Lactate dehydrogenase (LDH) 
(U/l) and alkaline phosphatase (ALP) (IU/l) (MG, Science, 
and Technology Center “STC”) were tested colorimetrically 
utilizing a spectrophotometer, with a sensitivity of 1U/100 
ml and a 0.56% and 1.1% intra- and inter-test precision, 
respectively

Statistical analysis

The obtained data were expressed as mean ± SEM. The 
effects of different concentrations of the MLME added to 
the semen diluent on the semen parameters were tested using 
a one-way analysis of variance (ANOVA). Duncan’s multi-
ple range test was used to differentiate between significant 
means at P<0.05. Pearson’s correlation coefficient was also 
processed. All the statistical analyses were performed using 
IBM-SPSS/PC version 20.0 (2016).

Results

MLME has a total phenolic content of 19.78 mg GAE/g 
extract. The total flavonoid concentration of the extract is 
11.94 mg CE/g. MOLE antiradical activity against ABTS 
is 53.47 mM TE/g, while MOLE antiradical activity against 
DPPH is 34.37 mM TE/g. Using FRAP method, the reducing 
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power was determined to be 64.59 mM TE/g/g. HPLC 
analysis was used to compare the results to 24 standardized 
metabolites (Table 1, Fig. 1).

Rutin (8.278 mg), rosmarinic acid (1.364 mg), and 
pyrogallol are the most effective chemicals in each gram 
of the MLME extract (1.104 mg). P-Hydroxybenzoic acid 
(0.671 mg), hesperidin (0.545 mg), caffeic acid (0.218 mg), 
apeginin-7-glucoside (0.214 mg), myricetin (0.190 mg), and 
naringenin (0.190 mg) are some of the other substances with 
smaller levels (0.187 mg). Vanillic acid (0.039 mg), kaemp-
ferol (0.037 mg), chlorogenic acid (0.036 mg), and cinnamic 
acid (0.033 mg) were all detected in trace amounts (Fig. 2).

The data describing the effect of MLME on the post-
thaw sperm quality parameters are presented in Table 2. 
Marked increases (P = 0.0001) were noted in the post-thaw 
MLME supplemented spermatozoa (0.56 and 64 mg/ml) 
in the perspective of STM (45.23 0.72 and 55.22± 0.98, 

Table 1   HPLC analysis of polyphenolic compound MLME

Compound Retention time 
(min)

Concentration 
(µg/g extract)

Pyrogallol 4.90 1104.16
Rutin 36.18 8278.57
P-Hydroxybenzoic acid 15.22 671.18
Naringenin 38.07 186.80
Chlorogenic acid 20.28 36.06
Caffeic acid 21.08 218.44
Hesperidin 38.60 544.57
Cinnamic acid 41.52 32.95
Vanillic acid 24.82 39.28
Apeginin-7-glucoside 38.96 214.01
Myricetin 40.24 190.40
Kaempferol 46.22 37.31
Rosmarinic acid 40.95 1364.81

Fig. 1   HPLC chromatograms of standard metabolites showing signal 
from diode array detector at a wavelength of 280 nm. Peak 1, pyro-
gallol; 2, gallic acid; 3, protocatechuic acid; 4, P-hydroxybenzoic 
acid; 5, catechin; 6, chlorogenic acid; 7, caffeic acid; 8, syringic 

acid; 9, vanillic acid; 10, scopolamine; 11, ferulic acid; 12, sinapic 
acid; 13, rutin; 14, p-coumaric acid; 15, naringenin; 16, hesperidin; 
17, apeginin-7-glucoside; 18, myricetin; 19, rosmarinic acid; 20, cin-
namic acid; 21, quercetin; 22, apigenin; 23, kaempferol; 24, chrysin

Fig. 2   HPLC chromatograms 
of moringa leaf extract showing 
signal from diode array detector 
at a wavelength of 280 nm. Peak 
1, pyrogallol; 2, P-hydroxyben-
zoic acid; 3, chlorogenic acid; 4, 
caffeic acid; 5, vanillic acid; 6, 
rutin; 7, naringenin; 8, hesperi-
din; 9, apeginin-7-glucoside; 
10, myricetin; 11, rosmarinic 
acid; 12, cinnamic acid; 13, 
kaempferol
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respectively), SPM (35.32± 0.99 and 45.41± 0.70, respec-
tively), V (49.22± 0.71 and 60.01± 1.05, respectively), 
MFI (70.24± 0.88 and 75.23± 0.77, respectively), and AI 
(66.34± 0.83 and 73.13 ±0.72, respectively) compared to 
0.48 mg/ml group (35.10± 0.81, 25.08± 0.81, 38.44± 0.69, 
61.22± 0.76, and 62.03± 0.81, respectively) and control 
group (40.03 ± 0.68, 30.33± 0.62, 40.645± 0.76, 65.32± 
0.79, and 62.03b± 0.81, respectively). Post-thaw AM was 
significantly decreased in MLME-treated spermatozoa espe-
cially at concentrations of 0.56 and 0.64 mg/ml (26.34± 0.69 
and 21.34± 0.72, respectively) in relation to 0.48 mg/ml and 
control groups (35.37± 0.46 and 30.42± 0.89, respectively). 
Lipid peroxide products were reduced (P=0.03) in all dilu-
ents enhanced with MLME (malondialdehyde (MDA)). 
When 0.48mg/ml was added to semen diluents (Table 3), 
the lowest MDA (4.31±0.17 μmol/ml) was detected com-
pared to the control (6.67±1.03 μmol/ml). When 0.64 mg 
MLME was added (Table 3), the lowest nitric oxide (NO) 
values (P=0.012) were observed, although the other two 
concentrations did not differ from the control. The activity 
of superoxide dismutase (SOD) increased (P=0.0001) in all 

three MLME concentrations, with the highest activity shown 
when 0.56mg MLME (7125±423 U/ml) was used and the 
lowest activity seen when 0.64mg MLME (4250±192 U/
ml) was used. In all semen diluents supplemented with 
MLME concentrations, zinc concentrations increased thrice 
(P=0.0001) (Table 3).

The addition of 0.48 mg MLME to semen diluents 
contained the highest (P=0.006) copper concentrations 
(934.95±146.01 μg/dl). Total cholesterol (TC) (P=0.0001) 
and LDL (P=0.004) had decreased in all MLME concentra-
tions added to semen extenders. LDH increased (P=0.0001) 
in all semen diluents supplemented with MLME with the 
maximum increase (6990±192 U/ml) was noticed when 
0.56 mg MLME was added (Table 3). Alkaline phosphatase 
activity did not vary after adding the three moringa concen-
trations (Table 3). Zinc (Zn) (μg/dl) tended to correlate posi-
tively with STM % (r=0.27; P=0.066) and negatively with 
AM % (r= −0.32; P<0.08), correlated with V % (r=0.37; 
P=0.045), MFI % (r=0.39; P<0.034) (Table 4). SOD cor-
related negatively with STM % (r=−0.37; I=0.047), SPM 
% (r=−0.43; P=0.019), and MFI % (r=−0.42; P=0.022), 

Table 2   Sperm total motility percentages (STM %), sperm progres-
sive motility percentages (SPM %), sperm viability percentages (V 
%), abnormal morphology (AM %), membrane functional integrity 

percentages (MFI %), and acrosome integrity percentages (AI %) of 
frozen-thawed ram semen supplemented with Moringa. Data are pre-
sented as mean ± standard error of mean (SEM)

Means with different superscripts (a, b, c, d) in the same row are significantly different at P < 0.05
n = 16

Frozen-thawed semen characteristics 0.0 mg/ml 0.48 mg/ml 0.56 mg/ml 0.64 mg/ml P value

Sperm total motility (STM %) 40.03b ± 0.68 35.10a ± 0.81 45.23c ± 0.72 55.22d ± 0.98 0.0001
Sperm progressive motility (SPM %) 30.33b ± 0.62 25.08a ± 0.81 35.32c ± 0.99 45.41d ± 0.70 0.0001
Viability (V %) 43.25b ± 0.76 38.44a ± 0.69 49.22c ± 0.71 60.01d ± 1.05 0.0001
Abnormal morphology (AM%) 30.42c ± 0.89 35.37d ± 0.46 26.34b ± 0.69 21.34a ± 0.72 0.0001
Membrane functional integrity (MFI %) 65.32b ± 0.79 61.22a ± 0.76 70.24c ± 0.88 75.23d ± 0.77 0.0001
Acrosome integrity (AI %) 62.03b ± 0.81 57.42a ± 0.91 66.34c ± 0.83 73.13d ± 0.72 0.0001

Table 3   Seminal plasma 
lipid peroxide products as 
malondialdehyde (MDA), 
nitric oxide (NO), ascorbic acid 
(AA), glutathione peroxidase 
(GPx), superoxide dismutase 
(SOD), zinc(Zn), copper (CU), 
total cholesterol (TC), low-
density lipoproteins (LDL), 
lactate dehydrogenase (LDH), 
and alkaline phosphatase 
(ALP). Data are presented as 
mean ± standard error of mean 
(SEM)

Means with different superscripts (a, b, c, d) are significantly different at P < 0.05, non-significant (NS) 
(n = 16)

Variables 0.0 mg/ml 0.48 mg/ml 0.56 mg/ml 0.64 mg/ml P value

MDA μmol/ml 6.67b ± 1.03 4.31a ± 0.17 5.01a ± 0.30 4.96a ± 0.21 0.03
NO μmol/L 50.00b ± 2.78 47.36b ± .39 48.29b ± 0.55 43.01a ± 0.65 0.012
AA g/L 824.37a ± 14.97 891.61b ± 11.39 846.79a ± 21.45 869.06ab ± 8.81 0.017
GPx mU/ml 82.14ab ± 11.21 47.55a ± 2.44 97.27bc ± 13.07 138.34c ± 27.15 0.003
SOD U/ml 2625a ± 244 4750b ± 297 7125c ± 423 4250b ± 192 0.0001
Zn μg/dl 94.41a ± 0.31 277.85b ± 0.98 285.71b ± 1.70 296.48c ± 5.21 0.0001
Cu μg/dl 540.25a ± 52.5 934.95b ± 146.01 440.47a ± 72.7 605.79a ± 99.88 0.006
TC mg/dl 160.67b ± 10.02 117.87a ± 5.06 127.07a ± 2.91 113.20a ± 2.14 0.0001
LDL mg/dl 117.29b ± 9.35 94.99a ± 6.33 93.35a ± 4.25 84.56a ± 2.44 0.004
LDH U/L 4857a ± 104 5686b ± 81 6990c ± 443 5918b ± 75 0.0001
ALP IU/L 137.98ab ± 0.79 136.06a ± 0.57 137.76ab ± 4.01 149.75b ± 7.78 NS
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and AI % (r=−0.43; P=0.016) tended to correlate with V% 
(r=−0.34; P=0.063). ALP correlated with STM % (r=0.57; 
P=0.001), SPM % (r=0.48; P=0.007), MFI % (r=0.41; 
P=0.023), and AI MFI (r=0.42; P=0.02) but correlated neg-
atively with V% (r=−0.56; P=0.001) and AM % (r=−0.49; 
P=0.006).

Discussion

Semen extenders must be added with antioxidants to 
combat the reactive oxygen species (ROS) that is cre-
ated during semen cryopreservation processing to acquire 
the excessive fertilizing capacity of post-thaw semen 
(Capucho et al. 2012; Rosato and Iaffaldano 2011; Fadl 
et  al. 2022a). ROS depletes ATP, resulting in inade-
quate axoneme phosphorylation and lipid peroxidation, 
both of which reduce motility and survival (Bansal and 
Bilaspuri 2010; El-Sherbiny et al. 2022a). Antioxidants, 
vitamins, amino acids, and minerals are all located in 
moringa leaves (Khalafalla et al. 2010). Moringa car-
ries antioxidants consisting of phenols, f lavonoids, 
proanthocyanidins, flavonols, diet C, diet E, carotene, 
zinc, and selenium (Vergara-Jimenez et al. 2019). The 
phenolic content material of MLME on this examina-
tion is like others (Sreelatha and Padma 2009; Atawodi 
et al. 2010). The methanolic extract of our M. oleifera 
leaves decreased DPPH radicals much less than that of 
Sreelatha and Padma (2009). This decline is probably 
attributed to the polarity of the solvents and the plant’s 
geographic location (Sreelatha and Padma 2009). The typ-
ical polyphenolic concentration of MLME correlates with 
its antioxidant activity (Vieira et al. 2009) as antioxidant 
power is concentration-dependent (Siddhuraju and Becker 
2003). In addition, the phenolic compounds in MLME 
are strong electron donors, and they may be able to stop 

the radical chain reaction by converting free radicals to 
stable products (Lobo et al. 2010). The present results 
showed that the addition of 0.56 and 0.64 mg MLME/
ml Tris extender had appreciably maintained the rams’ 
post-thaw semen quality (motility, viability, membrane, 
and acrosome integrity, and diminished sperm abnormal-
ity). In agreement with our results, feeding 5% of freshly 
air-dried MOLE for 84 days improved the motility and 
viability of rabbit semen, SOD, and reduced MDA, but 
did not affect GPX (Jimoh et al. 2021). Similarly, male 
rabbits supplemented orally with 1.5 ml of water con-
taining 50, 100, and 150 mg/kg BW ethanolic extract of 
MOLE confirmed the marked progress in sperm motil-
ity, viability, membrane, and acrosome integrities (El-
Desoky et al. 2017). Rabbits supplemented orally 1.5-ml 
water containing 50, 100, and 150 mg/Kg BW showed 
an improvement in the sperm motility, viability, mem-
brane, and acrosome integrities that was associated with 
low abnormal morphology % (El-Desoky et al. 2017). 
Moreover, when adding MLME from 0.4 to 4.0 mg/5ml 
rabbit semen extender that chilled for 72 h, it was found 
that the best concentration that maintained the highest 
sperm motility from 2 to 72 h was 2.0 mg (El-Seadawy 
et al. 2017). The gradual improvement in post-thaw sperm 
motility and viability observed in the current study with 
increasing MLME concentrations from 0.48, 0.56, to 
0.64 was reversed when 0.5, 5.0, and 10.0 moringa seed 
methanolic extracts were added to ram semen (Carrera-
Chávez et al. 2020) indicating that the improvement in 
post-thaw semen is concentration-dependent as >0.56 and 
>0.65 mg are more preferable and higher concentrations 
that were associated with lowered post-thaw antioxidant 
capacity and sperm membrane damage (Carrera-Chávez 
et al. 2020). However, in Barki rams, the increasing mor-
inga leaf extract from 60 to 600 µg in the semen extend-
ers could increase post-thaw sperm motility and viability 
but from 900 and 1200 µg/ml could reduce them to val-
ues lower than control, indicating that this improvement 
is dose dependent (Shokry et al. 2021). In contrary, the 
oral supplementation of Barki rams MOLE for 64 days 
did not alter sperm motility, viability, abnormal sperm, 
membrane functional integrity, and DNA fragmentation 
(Shokry et al. 2020). The addition of 100 and 500 µg/ml 
water extract of moringa leaves to soya-lecithin semen 
extender at 5 °C for 48 h declined sperm motility and via-
bility with no change in the abnormal sperm, but the addi-
tion of 1000 µg/ml resulted in the same results of control 
(El-Harairy et al. 2016) indicating that the components of 
semen extender interact with the components of moringa 
extract and produce toxic compounds to sperm. In cat-
tle, the post-thaw sperm motility and viability of semen 
extenders supplemented with 10 % and 2 0MOLE were 
improved, but higher concentrations from 30 to 50% did 

Table 4   Pearson correlation coefficient between post-thaw semen 
characteristics with copper (Cu), total cholesterol (TC), low-density 
lipoproteins (LDL), nitric oxide (NO), alkaline phosphatase (ALP), 
ascorbic acid (AA), superoxide dismutase (SOD), glutathione peroxi-
dase (GPx), and lactate dehydrogenase (LDH)

**  Significant at P < 0.01, * significant at P < 0.05, # tended to be sig-
nificant at P > 0.05

Semen parameters MDA Zinc Cu ALP SOD

Total motility % 0.21 0.34#  − 0.24 0.57**  − 0.37*
Progressive motility% 0.20 0.27  − 0.22 0.48**  − 0.43*
Live sperm% 0.18 0.37*  − 0.26  − 0.56**  − 0.34#

Abnormal morphol-
ogy %

 − 0.18  − 0.32# 0.21  − 0.49** 0.29

HOST 0.14 0.39*  − 0.27 0.41*  − 0.42*
Acrosome 0.20 0.31  − 0.26 0.42*  − 0.43*
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not, whereas the addition of 20–40% moringa increased 
the abnormal sperm and did not improve the functional 
membrane integrity (El-Sheshtawy and El-Nattat 2020) 
indicating that certain concentrations of moringa could 
improve post-thaw sperm motility and viability.

A significant lower in MDA and increase in SOD activity 
were discovered in the three concentrations of MLME of the 
current study which is like the addition of ten concentrations 
to chilled rabbit semen for 72 h (El-Seadawy et al. 2017). 
The testicular SOD increased and MDA when cryptorchid 
and non-cryptorchid rats were treated with ethanolic extract 
of MOLE (Afolabi et al. 2013). The significant decrease 
in the MDA and the increased SOD levels observed herein 
were noticed also when 300 and 600 µg/MOLE were added 
to Barki rams’ semen (Shokry et al. 2021). In contrast, to 
control non-treated rams, oral supplementation of rams 
with MOEE for 64 days raised SOD and decreased MDA 
in fresh seminal plasma and post-thaw semen (Shokry et al. 
2020). In line with our findings, feeding male rabbits 5 % 
MOLE for 84 days decreased MDA while increasing SOD 
(Jimoh et al. 2021). NO is an oxygen-free radical molecule 
(Daghash et al. 2022) that shares in the regulation of sper-
matogenesis, sperm motility, and maturation (Abdelnaby 
et al. 2021; Abdelnaby et al. 2022; El-Sherbiny et al. 2022b). 
In agreement with our results, a low NO level plays an essen-
tial role in sperm motility (Du Plessis et al. 2010), but an 
increased level of NO decreases sperm motility and viability 
(Badade et al. 2011). The low levels of NO could participate 
in many physiological functions, but the higher ones could 
lead to much pathological damage to cells (Gholinezhad 
et al. 2020). So, NO oxidative actions may be regulated here 
through increasing superoxide with increasing MLME con-
centration that maintained high sperm motility and viability.

Supporting our findings, copper in high levels is toxic to 
spermatozoa and reduces both motility and viability (Kna-
zicka et al. 2012). In other species, elevated copper concen-
trations reduced oxidative processes and glycolysis that in 
turn caused immobility and reduced viability (Pesch et al. 
2006; Abdelnaby et al. 2022). The highest concentrations 
of zinc estimated in the semen extender supplemented with 
0.64mg/ml MLME and their association with the highest 
semen quality with the lowest abnormal sperm percentage 
could be referred to its involvement in sperm maturation 
and correlation with an increased oxygen input and motility 
(Baldauf et al. 2003; Henkel et al. 2003; Fadl et al. 2022b, 
c). The concentration of MLME supplemented to rams’ 
semen in the current study showed different changes in the 
AA, GPx, and ALP, where the highest concentration indi-
cated high AA, the highest GPx, and ALP, but the lowest 
one showed minimum GPx with the highest AA and did not 
change ALP. In contrast, to control non-treated rams, oral 
supplementation of rams with MOEE for 64 days increased 
seminal plasma AA, GPx, and ALP after the treatment but 

increased GPx, dropped ALP, and did not change AA in 
the post-thaw semen (Shokry et al. 2020). The significant 
increase of ascorbic acid in the post-thaw semen extenders 
supplemented with 0.48mg/ml with a slight insignificant 
increase when 0.56 and 0.64 mg/ml MLME was added in 
the current study was also noticed when 300 and 600 µg/
ml of moringa leaf extract were added to Barki ram semen 
(Shokry et al. 2021). In contrast to our results where MLME 
did not increase the concentrations of ALP in the post-thaw 
semen extenders, it declined it when 300 and 600 µg/ml 
of moringa leaf extract were added to Barki ram semen 
(Shokry et al. 2021). The significant increase in GPx con-
centrations when 0.64mg MLME was included is in under-
standing with  including 300 and 600 µg/ml of moringa 
leaf extricate to Barki rams’ semen extenders (Shokry et al. 
2021).

The increased LDH in the three MLME concentrations 
added to Tris-based extenders and the comparison to the 
control one and the presence of very weak non-significant 
correlations with post-thaw semen parameters encountered 
in the current study agree with the non-significant increase 
of LDH by supplementing aqueous extract of moringa 
leaves to soya-lecithin-based semen extenders to Rahm-
ani rams and chilling it for 48 h at 5°C (El-Harairy et al. 
2016). This increase in LDH does not support the hypoth-
esis that the metabolism of spermatozoa in an anaerobic 
condition depletes sperm energy and results in a signifi-
cant negative correlation with pathomorphology of sperm 
as this may refer to the association of increased sperm 
metabolism with poor sperm characteristics depending on 
certain LDH isomer (Pesch et al. 2006). In sheep, LDH is 
predominantly localized in spermatozoa, and its leakage 
has been correlated with cell membrane damage. Though 
the increased LDH in the post-thaw semen showed no cor-
relation with spermatozoa motility, viability, MFI, and AI, 
LDH leakage was observed at all stages of cryopreserva-
tion. LDH leakage therefore could be used as a marker 
of membrane damage both during pre-freeze and post-
thaw incubations (Dhami and Kodagali 1990; Stéphenne 
et al. 2010). The increase of LDH in post-thaw semen may 
be attributed to the prevalent LDH leakage during cool-
ing, freezing, and post-thaw incubation of spermatozoa 
that could be used as marker enzyme in the development 
of semen processing (Upreti et al. 1996,). The highest 
MLME concentration in the current study showed the 
lowest MDA, NO, high SOD, and GPx activity that was 
associated with the highest sperm characteristics and zinc 
which referred to the high content of rutin (quercetin-
3-rhamnosyl glucoside) as it has a potent reducing power 
against the lipid peroxidation that exhibit strong DPPH, 
hydroxyl radical, and superoxide radical scavenging activ-
ity (Moretti et al. 2012; Moyo et al. 2012; Afolabi et al. 
2013; Sadek 2014; Abarikwu et al. 2016).
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Conclusion

MLME obtained several antioxidant properties. Supple-
menting rams’ semen with MLME (0.64 mg/ml semen 
diluent) improved all post-thaw semen characteristics and 
biochemicals. The highest copper and lowest zinc levels in 
MLME (0.48 mg/ml extender) deteriorated the post-thaw 
semen quality, prompting us to suggest the addition of 0.64 
mg MLME to rams’ Tris-based semen extender.
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