Skip to main content
Log in

Genetic diversity and population structure of Tibetan sheep breeds determined by whole genome resequencing

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Tibetan sheep is one of primitive Chinese sheep breeds, which achieved the divergence about 2500 years ago in Qinghai plateau region. According to different geographic conditions, especially altitudes, Tibetan sheep evolved into different breeds. In this study, we performed whole genome resequencing of 5 representative Tibetan sheep breeds. Comparative genomic analysis showed that they can be divided into different clades with a close genetic relationship. However, some genes with common selective regions were enriched for hypoxic adaptability in different breeds living at higher altitude, including GHR, BMP15, and CPLANE1. Furthermore, breed-specific selective regions about physical characteristics, especially wool growth, were found in genes such as BSND, USP24, NCAPG, and LCORL. This study could contribute to our understanding about trait formation and offer a reference for breeding of Tibetan sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdoli, R., S.Z. Mirhoseini, N. Ghavi Hossein-Zadeh, P. Zamani, and C. Gondro, 2018 Genome-wide association study to identify genomic regions affecting prolificacy in Lori-Bakhtiari sheep. Anim Genet 49 (5):488-491.

    Article  CAS  Google Scholar 

  • Alexander, D.H., J. Novembre, and K. Lange, 2009 Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19 (9):1655-1664.

    Article  CAS  Google Scholar 

  • Axelsson, E., A. Ratnakumar, M.L. Arendt, K. Maqbool, M.T. Webster et al., 2013 The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495 (7441):360-364.

    Article  CAS  Google Scholar 

  • Danecek, P., A. Auton, G. Abecasis, C.A. Albers, E. Banks et al., 2011 The variant call format and VCFtools. Bioinformatics 27 (15):2156-2158.

    Article  CAS  Google Scholar 

  • de Pablos, A.L., V. Garcia-Nieto, J.C. Lopez-Menchero, E. Ramos-Trujillo, H. Gonzalez-Acosta et al., 2014 Severe manifestation of Bartter syndrome Type IV caused by a novel insertion mutation in the BSND gene. Clin Nephrol 81 (5):363-368.

    Article  Google Scholar 

  • Diniz, G.B., and J.C. Bittencourt, 2019 The Melanin-Concentrating Hormone (MCH) System: A Tale of Two Peptides. Front Neurosci 13:1280.

    Article  Google Scholar 

  • Dolebo, A.T., N. Khayatzadeh, A. Melesse, D. Wragg, M. Rekik et al., 2019 Genome-wide scans identify known and novel regions associated with prolificacy and reproduction traits in a sub-Saharan African indigenous sheep (Ovis aries). Mamm Genome 30 (11-12):339-352.

    Article  CAS  Google Scholar 

  • Du, L., 2011 Animal genetic resources in China (in Chinese): China Agriculture Press.

  • Han, Y.C., Y.G. Sun, and Q. Li, 2016 Growth hormone polymorphisms and growth traits in Chinese Tibetan sheep Ovis aries. Genet Mol Res 15 (3).

  • Harris, M.A., J. Clark, A. Ireland, J. Lomax, M. Ashburner et al., 2004 The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32 (Database issue):D258-261.

    CAS  PubMed  Google Scholar 

  • Hong, H., K. Joo, S.M. Park, J. Seo, M.H. Kim et al., 2019 Extraciliary roles of the ciliopathy protein JBTS17 in mitosis and neurogenesis. Ann Neurol 86 (1):99-115.

    CAS  PubMed  Google Scholar 

  • Horikoshi, M., H. Yaghootkar, D.O. Mook-Kanamori, U. Sovio, H.R. Taal et al., 2013 New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet 45 (1):76-82.

    Article  CAS  Google Scholar 

  • Hu, X.J., J. Yang, X.L. Xie, F.H. Lv, Y.H. Cao et al., 2019 The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai-Tibetan Plateau. Mol Biol Evol 36 (2):283-303.

    Article  CAS  Google Scholar 

  • Ji, Y., W.R. Li, F.H. Lv, S.G. He, S.L. Tian et al., 2016 Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments. Mol Biol Evol (10): 2576-2592.

    Google Scholar 

  • Jiao, X., B.T. Sherman, W. Huang, R. Stephens da, M.W. Baseler et al., 2012 DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28 (13):1805-1806.

    Article  CAS  Google Scholar 

  • Jing, X., W. Wang, A. Degen, Y. Guo, and R. Long, 2019 Tibetan sheep have a high capacity to absorb and to regulate metabolism of SCFA in the rumen epithelium to adapt to low energy intake. Brit J Nutr 123 (7): 721-736.

    Article  Google Scholar 

  • Junier, T., and E.M. Zdobnov, 2010 The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26 (13):1669-1670.

    Article  CAS  Google Scholar 

  • Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25 (14):1754-1760.

    Article  CAS  Google Scholar 

  • Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., 2009 The Sequence Alignment/Map format and SAMtools. Bioinformatics 25 (16):2078-2079.

    Article  Google Scholar 

  • Liu, J., X. Ding, Y. Zeng, Y. Yue, X. Guo et al., 2016 Genetic Diversity and Phylogenetic Evolution of Tibetan Sheep Based on mtDNA D-Loop Sequences. PLoS One 11 (7):e0159308.

    Article  Google Scholar 

  • Liu, J.B., J. Guo, F. Wang, Y.-j. Yue, W.-l. Zhang et al., 2015 Carcass and meat quality characteristics of Oula lambs in China. Small Ruminant Res 123 (2-3):251-259.

    Article  Google Scholar 

  • Liu, K., Y. Li, B. Yu, F. Wang, T. Mi et al., 2018 Silencing non-SMC chromosome-associated polypeptide G inhibits proliferation and induces apoptosis in hepatocellular carcinoma cells. Can J Physiol Pharmacol 96 (12):1246-1254.

    Article  CAS  Google Scholar 

  • Ma, Z.J.W., Y. P. Wei; Zhong, J. C.; Chen, Z. H.; Lu, H.; Tong, Z. B., 2007 Sequence characterization of the 5′ ′-Flanking region of the GHR gene in Tibetan sheep. HEREDITAS (Beijing) (08):61-69.

    Google Scholar 

  • McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., 2010 The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20 (9):1297-1303.

    Article  CAS  Google Scholar 

  • Muller, M., R. Graf, K. Kashofer, S. Macher, A. Wolfler et al., 2019 Detection of AML-specific TP53 mutations in bone marrow-derived mesenchymal stromal cells cultured under hypoxia conditions. Ann Hematol 98 (8):2019-2020.

    Article  Google Scholar 

  • Murphy, L.A., and K.D. Sarge, 2008 Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis. Biochem Biophys Res Commun 377 (3):1007-1011.

    Article  CAS  Google Scholar 

  • Niu, L., X. Chen, P. Xiao, Q. Zhao, J. Zhou et al., 2016 Detecting signatures of selection within the Tibetan sheep mitochondrial genome. Mitochondrial DNA A DNA Mapp Seq Anal 28 (6):801-809.

    PubMed  Google Scholar 

  • Nomura, N., M. Tajima, N. Sugawara, T. Morimoto, Y. Kondo et al., 2011 Generation and analyses of R8L barttin knockin mouse. Am J Physiol Ren Physiol 301 (2):F297-307.

    Article  CAS  Google Scholar 

  • Plotree, D., and D. Plotgram, 1989 PHYLIP-phylogeny inference package (version 3.2). Cladistics 5 (163):6.

  • Price, A.L., N.J. Patterson, R.M. Plenge, M.E. Weinblatt, N.A. Shadick et al., 2006 Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38 (8):904-909.

    Article  CAS  Google Scholar 

  • Qiu, Q., G. Zhang, T. Ma, W. Qian, J. Wang et al., 2012 The yak genome and adaptation to life at high altitude. Nat Genet 44 (8):946-949.

    Article  CAS  Google Scholar 

  • Rong, C., M. Yan, B. Zhen-Zhong, Y. Ying-Zhong, L. Dian-Xiang et al., 2012 Cardiac adaptive mechanisms of Tibetan antelope (Pantholops hodgsonii) at high altitudes. Am J Vet Res 73 (6):809-813.

    Article  Google Scholar 

  • Russell, D.W., and J. Sambrook, 2001 Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Srour, M., J. Schwartzentruber, F.F. Hamdan, L.H. Ospina, L. Patry et al., 2012 Mutations in C5ORF42 cause Joubert syndrome in the French Canadian population. Am J Hum Genet 90 (4):693-700.

    Article  CAS  Google Scholar 

  • Vilella, A.J., A. Blanco-Garcia, S. Hutter, and J. Rozas, 2005 VariScan: Analysis of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics 21 (11):2791-2793.

    Article  CAS  Google Scholar 

  • Wang, K., M. Li, and H. Hakonarson, 2010 ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38 (16):e164.

    Article  Google Scholar 

  • Wei, C., H. Wang, G. Liu, F. Zhao, J.W. Kijas et al., 2016 Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci Rep 6:26770.

    Article  CAS  Google Scholar 

  • Zhang, F., and Z. Jiang, 2006 Mitochondrial phylogeography and genetic diversity of Tibetan gazelle (Procapra picticaudata): implications for conservation. Mol Phylogenet Evol 41 (2):313-321.

    Article  CAS  Google Scholar 

  • Zhang, Z., 2009 Geography of Qinghai Province (in Chinese): Science Press.

  • Zhao, Y.X., J. Yang, F.H. Lv, X.J. Hu, X.L. Xie et al., 2017 Genomic Reconstruction of the History of Native Sheep Reveals the Peopling Patterns of Nomads and the Expansion of Early Pastoralism in East Asia. Mol Biol Evol 34 (9):2380-2395.

    Article  CAS  Google Scholar 

Download references

Funding

This study is funded by the Natural Science Foundation of Qinghai Province (2017-ZJ-915Q and 2017-NK-114). GJ is supported by Youth Innovation Promotion Association CAS. HF is supported by Qinghai “1000 Talents” programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Xue Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics statements

All experiments in this study were handled in accordance with the requirements of Animal Ethic and Welfare Committee of Northwest Institute of Plateau Biology, Chinese Academy of Sciences.

Additional information

Guest Editor: Shiela Chavez

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PNG 3829 kb)

High resolution image (TIF 105 kb)

ESM 2

(PNG 3829 kb)

High resolution image (TIF 75 kb)

ESM 3

(XLSX 13 kb)

ESM 4

(XLSX 10 kb)

ESM 5

(XLSX 32 kb)

ESM 6

(XLSX 77 kb)

ESM 7

(XLSX 21 kb)

ESM 8

(XLSX 22 kb)

ESM 9

(XLSX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LL., Ma, SK., Peng, W. et al. Genetic diversity and population structure of Tibetan sheep breeds determined by whole genome resequencing. Trop Anim Health Prod 53, 174 (2021). https://doi.org/10.1007/s11250-021-02605-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-021-02605-6

Keywords

Navigation