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Abstract
In classical experiments, it has been found that a rigid cylinder can roll both on and under an inclined rubber plane with a 
friction force that depends on a power law of velocity, independent of the sign of the normal force. Further, contact area 
increases significantly with velocity with a related power law. We try to model qualitatively these experiments with a numeri-
cal boundary element solution with a standard linear solid and we find for sufficiently large Maugis–Tabor parameter � 
qualitative agreement with experiments. However, friction force increases linearly with velocity at low velocities (like in the 
case with no adhesive hysteresis) and then decays at large speeds. Quantitative agreement with the Persson–Brener theory of 
crack propagation is found for the two power law regimes, but when Maugis–Tabor parameter � is small, the cut-off stress 
in Persson–Brener theory depends on all the other dimensionless parameters of the problem.
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1  Introduction

In a series of experiments using a long rigid cylinder roll-
ing both upon and under inclined viscoelastic rubber sub-
strates, Barquins [1] found that a friction force developed 
that depends on velocity (in his experiments, as a power 
law) and his main findings were that (i) the friction force 
was approximately equal for negative or positive normal 
force and that (ii) it followed a power law of velocity very 
similar to what had been found in peeling experiments. This 
suggested the rolling resistance friction force was due to the 
presence of strong adhesion leading to a peeling force at 
the trailing edge of the contact area where the contact edge 
behaves like an opening crack, while the leading edge is a 
closing crack since the work restituted is much smaller than 
that at the trailing edge. Barquins conducted experiments 
where the rolling velocity was measured as a function of 
the angle � of inclination of the substrate (see Fig. 1) and 
consequently (neglecting dissipation in the bulk of the mate-
rial which is dominant instead at very large normal loads), 

the energy release rate difference is directly related to the 
measured force

where f = mg is the vertical force per unit length (see Fig. 1) 
and fT is the tangential component. Notice that the normal 
load is instead w = f cos � . Here, Gtrailing is the crack propa-
gation energy per unit surface area when the crack moves 
at the speed v and Gleading is the energy restituted when the 
crack is closing.

Barquins [1] in particular found G = kvn where the coeffi-
cient n ≃ 0.55 was close to the 0.6 found in previous peeling 
and detachment from flat or spherical punches experiments 
of the same transparent rubber-like material (polyurethane) 
in contact with glass [2], and indeed, the entire curve for G 
seemed independent of geometrical features.

Later on, Charmet and Barquins [3] have additionally 
found other interesting aspects of this rolling problem, 
namely that

(iii) rolling was possible under negative loads with an 
increase of 50 times of the friction force measured between 
the low and the fast velocities in the experiments. Align-
ing the negative and positive loads, 4 orders of magnitudes 
were varied in speed and about 2 orders of magnitude in 
force, with experiments never showing deviations from this 
power law;

(1)G(v) = Gtrailing − Gleading = f sin � = fT ,
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(iiii) that the contact area half-width size was scaling as 
a = k2v

n∕3 and a tentative explanation was given.
Unfortunately, Barquins did not give a full characteriza-

tion of the viscoelastic modulus of his polyurethane rub-
bers, so we can only make qualitative assessment of his 
experiments, and indeed for simplicity we shall consider 
a standard linear solid for most of our work, although we 
shall make also some discussion about a possible power law 
solid model.

The evidence of these main findings (i–ii–iii–iiii) has 
never been compared with a theoretical/numerical predic-
tion, in the best of the authors’ knowledge, and for this pur-
pose we shall here study the adhesive contact problem of 
a cylinder rolling on a viscoelastic half-plane using a Len-
nard–Jones force separation law and a boundary element 
formulation. We find friction due both to viscoelastic losses 
in the bulk (in the limit case of absence of adhesion, a full 
theory exists [4]) as well as the adhesive contribution due to 
the difference between the enhanced adhesion at the opening 
crack (trailing edge of contact) and the reduced adhesion at 
the closing crack (leading edge of contact). The different 
behaviors of closing or opening viscoelastic cracks are well 
known for semi-infinite cracks [5, 6] for which the size of the 
cohesive zone is much smaller than any other length scale in 

the problem, so one of these theories (the Persson–Brener 
one [6]) will be used to attempt to interpret our results for 
the present problem.

Our analysis will not make specific assumption about the 
range of adhesive forces, for which adhesive problems show 
a transition between long-range (small � ) and short-range 
(large � ) type of adhesion, depending to the Tabor–Maugis 
parameter [7, 8]

where we made reference to the plane strain relaxed elas-
tic modulus of the material, E∗

0
=

E0

1−�2
 where � is the Pois-

son’s ratio and �0 is cohesive (or theoretical strength) stress, 
Δ� surface energy (energy to break the adhesive bonds per 
unit surface area), R is the cylinder radius, while E0 is the 
standard Young’s modulus at low frequencies. In the clas-
sical elastic adhesive problem of spherical geometry, large 
spheres with soft material show large � ( 𝜆 > 5 is gener-
ally sufficient to consider “short-range” adhesion) we can 
apply Linear Elastic Fracture Mechanics of the Griffith 
energy balance approach (JKR limit). On the contrary, for 

(2)� = �0

(
R

Δ�E∗2
0

)1∕3

,

Fig. 1   Barquins’ experiments: a the rigid cylinder rolling above 
or under an inclined viscoelastic rubber substrate; b a sketch of the 
experimental velocities obtained as a function of the inclination 

angle; c the Lennard–Jones adhesion force separation law adopted in 
this numerical work; and d the standard solid material viscoelastic 
model
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small spheres and stiff material, small � makes an energetic 
approach invalid and there is a tendency toward the limit of 
rigid material adhesion. In the present case of rolling cylin-
der, we expect that long-range adhesion will make friction 
mostly dependent on bulk dissipation, while short-range 
adhesion will increase adhesive effects and make the adhe-
sive hysteretic contribution dominant. The adhesive con-
tact in the elastic case for the cylinder has been studied, for 
example, by Johnson and Greenwood [9] and by Wu [10], 
whose notation and also the main algorithm we shall follow, 
extending it to viscoelastic material in steady-state sliding 
by changing the Green function.

For viscoelastic materials, the JKR limit cannot be 
defined and a cohesive model is always needed, because 
at the contact edge (which corresponds to a crack tip), the 
strain rate in a propagating crack is always infinite and there-
fore without a cohesive model we would not see a depend-
ence of crack/contact edge velocity on the applied load, 
contrary to experimental evidence.

The influence of the Tabor–Maugis parameter in viscoe-
lastic contact problems has been shown to be large, because 
typically only large � lead to strong amplification of the pull-
off load and of viscoelastic effects [11, 12], and pull-off loads, 
for example, for a sphere, can be increased due to loading rate 
effect of a factor up to the theoretical limit of 1∕k = E∞∕E0 
(which is often of the order of 103 for rubbers), where E∞ is 
the high-frequency (instantaneous) modulus of the material. 
However, in the rolling problem, the effect of Tabor param-
eter has not been considered so far, particularly to check the 
range of validity of the Persson-Brener theory [6]. We there-
fore describe in detail the model next, we give comprehensive 
results and compare with the experimental results of Barquins.

2 � The Model

We consider a rigid cylinder of radius R in steady rolling 
with its center moving with peripheral velocity v over an 
adhesive viscoelastic half-plane and assume friction is not 
due to shear tractions, but to inclined pressures in the contact 
area as we detail later. We extend the elastic adhesive solu-
tion by Wu [10] for both viscoelasticity and the presence of 
steady-state sliding.

We introduce a Lennard–Jones (LJ) force separation law, 
so that the stress between the two interacting surfaces p(h) is

where h is the local gap between the two surfaces, � is the 
equilibrium distance, Δ� = ��0� is the surface energy, p < 0 
when tensile and � = 9

√
3∕16 ≃ 0.9743.

(3)p(h) = −
8Δ�

3�

[(
�

h

)3

−
(
�

h

)9
]
,

The gap function is

where � is the indentation ( 𝛿 > 0 when rigid cylinder 
approaches the substrate) and the half-plane deflections 
uz(x, v) depend not only on the in-plane coordinate but 
also on the velocity v. We introduce the adhesive length 
parameter

and the dimensionless parameters

Hence, we write a dimensionless gap function and LJ force 
separation law as

The solution of the contact problem is found with the 
described boundary element method similarly to the imple-
mentation in Refs. [13, 14]. In particular, the domain of 
length L is discretized in M uniformly spaced elements of 
size 2b = L∕M , corresponding to N = M interfacial nodes. 
Nodal deflections are obtained using the Green function for 
a constant pressure element of dimension 2b steadily moving 
at velocity v on a half-plane constituted by a linear standard 
viscoelastic material with a single relaxation time, which, in 
dimensionless form, reads [15]

(4)h(x) = −� + � +
x2

2R
+ uz(x, v),

(5)� =

(
R2Δ�

E∗
0

)1∕3

.

(6)
Δ =

�R

�2
; H =

(
h

�
− 1

)
R�

�2
; X =

x

�
;

P =
p

�0
; U =

uzR

�2
; W =

w

(E∗
0
RΔ�2)1∕3

;
.

(7)H = −Δ +
X2

2
+ U(X,V),

(8)P(h) = −
3
√
3

2

�
1

(H + 1)3
−

1

(H + 1)9

�
.

(9)

U(X,V) = −
2�

�
P

{
�

2
D −

k

2

[
(X + B) ln

(
X + B

B

)2

−(X − B) ln
(
X − B

B

)2
]

+
(1 − k)

2

[
2V exp

(
X + B

V

)
Ei
(
−
X + B

V

)

−(X + V + B) ln
(
X + B

B

)2
]

−
(1 − k)

2

[
2V exp

(
X − B

V

)
Ei
(
−
X − B

V

)

−(X + V − B) ln
(
X − B

B

)2
]}



	 Tribology Letters           (2024) 72:50    50   Page 4 of 10

being B = b∕�, V = v�∕� , k = E0∕E∞ , and Ei(⋅) the expo-
nential integral function and D = d∕� an arbitrary chosen 
constant to set the datum point of the displacement field: 
the load versus displacement curves depend on the choice 
of the datum point, but the relation between the load W and 
the gap H(X = 0) , does not. We shall assume D = 0 . Using 
superposition and Eq. (9), we obtain the influence matrix 
[G]nxn and deflections at every node due to an arbitrary pres-
sure distributions are

The problem is highly nonlinear due to the dependence 
of P on the H via the LJ law. Hence, the contact problem 
[(Eqs. (7,10,8)] is solved numerically using an iterative 
Newton–Raphson scheme implemented in the software 
MATLAB.

2.1 � Friction Force

The case of an adhesiveless cylinder rolling over a viscoe-
lastic half-plane has been solved by Persson [4], giving

where g
(

v�

a0
, k
)
 is a function which is detailed in Persson [4] 

and has a bell shape, rising initially linearly with velocity 
and then reaching a maximum of about g

(
v�

a0
, k
)
= 0.5 for 

the common case of k < 0.1 , and a0 is the contact half-width 
at zero speed in the Hertz solution (no adhesion). Friction 
coefficient depends on normal load in general, but near zero 
normal load, it is better to express the frictional force since 
this is nearly independent on normal load, while friction 
coefficient has a singularity near zero load.

In our adhesive case, we solve the problem to obtain the 
load for various approaches Δ and for any given solution, 
we obtain the pressure and the displacements fields in the 
entire domain. The friction force is then given by the inte-
gral (assuming, for example, the case of 𝜃 < 𝜋∕2 when roll-
ing is from left to right and trailing edge is on the left side)

and hence in dimensionless terms

Interestingly, for the same reason that in the adhesiveless 
case (11) �noadh

R

a0
depends on the minimal number of dimen-

(10){U}Nx1 =
(
2�

�

)
[G]NxN{P}Nx1.

(11)�noadh =
a0

R
g

(
v�

a0
, k

)
=

√
4W

�

(
�0

�E∗
0

)
g

(
v�

a0
, k

)
,

(12)fT = −∫ p(x)
du

dx
dx

(13)FT =
fT

(E∗
R
RΔ�2)1∕3

= −

√
�3�

�

R ∫ P(X)
dU

dX
dX.

sionless parameters (two in that case), also in the adhesive 
case

has the advantage that depends only on the four dimension-
less parameters of the problem:

where we introduced the dimensionless speed

where a0 is still the Hertzian (adhesiveless) contact half-
width of the contact. Apart from V0 , the dimensionless fric-
tion force F∗

T
 depends on the Tabor–Maugis parameter � , 

the dimensionless load W, and the ratio between relaxed and 
instantaneous modulus of the material, k = E0∕E∞ . How-
ever, we shall see that at low velocities, at least in the range 
of parameters where the theory of semi-infinite cracks of 
Persson–Brener works in full form, the dependence of the 
friction force is even simpler.

Figure 2 shows the effect of Maugis–Tabor parameter 
on the pressure distribution (a,b) and the quantity −P(X) dU

dX
 

which has to be integrated in (14) to obtain the dimen-
sionless friction force F∗

T
 . As it can be clearly seen, the 

pressure exhibits with much sharper tensile peaks for the 
large � case (short-range adhesion) (Fig. 2a) than for low 
� (long-range adhesion) (Fig. 2b). Moreover, the pressure 
distribution is nearly independent on the sign of the nor-
mal load in the former case (Fig. 2a) than in the latter 
(Fig. 2b) and has a compressive peak near the leading edge 
typical of viscoelastic rolling. Moreover, the pressure is 
nearly symmetrical for large speeds, which is due to the 
fact that at large speeds the material behaves nearly elas-
tically (with high-frequency modulus) and therefore, the 
energy release rate at the two ends of the contact is nearly 
equal, so that we expect friction force to be negligible at 
large speeds. The plots of the quantity −P(X) dU

dX
 permit 

to see where friction comes from. It is clear from Fig. 2c 
that large friction occurs for intermediate speeds (here, 
V0 = 1 ) due to the large contributions from the trailing 
edge, while at the leading edge the quantity is smaller and 
has positive and negative contributions. For large speeds 
(here, V0 = 100 ), it is confirmed that friction will be small 
because it results from integrating a quantity which oscil-
lates and is small anyway. Moving to consider the small 
Maugis–Tabor parameter case (Fig. 2b,d), friction has big-
ger contribution from the middle of the contact area (bulk 
dissipation) than from the edges, since adhesion is small 

(14)F∗
T
= FT

R

a0
= −

√
�

2

�

W1∕2 ∫ P(X)
dU

dX
dX

(15)F∗
T
= F∗

T

(
V0, �,W, k

)
,

(16)V0 =
v�

a0
=

1

2

√
�

W

v�

�
,
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for this case. Moreover, a change in the sign of the normal 
force changes friction significantly.

3 � Friction Force Results and Results Using 
Persson–Brener’s Theory

Figure 3 plots the dimensionless friction force F∗
T
 as a func-

tion of dimensionless velocity V0 =
v�

a0
 with a standard mate-

rial with a typical value of k = E0∕E∞ = 0.001 , with four 
values of Maugis–Tabor parameter � = 0.1, 1, 2, 3 covering 

the transition from the long-range to the short-range adhe-
sion regimes. The curve shows a non-monotonic trend, 
increasing at low speeds, and decreasing at large speeds, 
with a maximum not too far from V0 = 1 . In particular, there 
seem to be two power law regimes for low velocities 
( F∗

T
∝ V1

0
 with blue solid line) and intermediate velocities ( 

F∗
T
∝ V0.5

0
 with red-dashed line). In the range of low veloci-

ties, also the adhesiveless theory of friction due to bulk vis-
coelastic losses alone by Persson [4] predicts a linearity with 
the velocity.

In Fig. 3, the normal load is |W| = 0.1 ( W > 0—black 
solid line, W < 0 black-dashed line) and the curves show 

Fig. 2   The pressure distribution 
(a, b) and the quantity −P(X) dU

dX
 

which has to be integrated in 
(14) to obtain the dimension-
less friction force F∗

T
 . Here, 

trailing edge on the right, and 
we use standard material with 
k = E0∕E∞ = 0.001 and Mau-
gis–Tabor parameter is high 
� = 3 on (a, c) and low � = 0.1 
on (b, d). Notice that dashed 
lines indicate negative normal 
load and solid lines positive 
normal loads. Finally, blue 
line is V0 = 1 and red line is 
V0 = 100 (Color figure online)
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Fig. 3   The dimensionless 
friction force F∗

T
 as a function of 

dimensionless velocity V0 =
v�

a0
 

with standard material with 
k = E0∕E∞ = 0.001 showing 
two power law regimes for low 
velocities ( V1

0
 with blue solid 

line, V0.5

0
 with red-dashed line). 

Here, the normal load is 
|W| = 0.1 ( W > 0—black solid 
line, W < 0 black-dashed line). 
Four values of Maugis–Tabor 
parameter are shown, 
� = 0.1, 1, 2, 3 (Color figure 
online)
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that our numerical results do justify the experimental find-
ing that the friction force is approximately the same for 
rolling above or under the inclined plane (for same inclina-
tion � ), but only if Maugis–Tabor parameter is sufficiently 
high, namely greater than about � = 2 . For lower � (which 
is unlikely to be the case in Barquins’ experiments), there 
is instead a certain discrepancy/dependence on normal load 
sign. Notice that the dimensionless friction force increases 
with the Maugis–Tabor parameter.

These findings motivate us to search for some general 
pattern elaborating from the Persson–Brener theory, as we 
do in the next paragraph.

3.1 � Estimate from the Persson–Brener Model

Considering Eq. 1, classical theories can be used to estimate 
Gtrailing,Gleading . As long as the cohesive zone is not too 
large, and therefore up to velocities close to the maximum 
in the friction force, and considering that it has been shown 
[ 6 ]  t h a t  t o  a  ve r y  g o o d  a p p r ox i m a t i o n , 
Gleading(v) ≃ 1∕Gtrailing(v) , we can use the Persson–Brener 
theory which gives Gtrailing(v) as proportional to the cut-off 
region size c(v) within which the stresses are constant and 
given by cut-off stress �c . Notice that this cut-off stress does 
not correspond to the cohesive strength in our Len-
nard–Jones model, and indeed even in the case of cracks, 
cohesive models do depend on the shape of the cohesive law 
mostly as a shift in the velocity scale [16, 17] and therefore, 
we need to investigate this point fully numerically also with 
respect to the Persson–Brener’s model. The PB model states 
that Gtrailing(v)

Δ�
=

c(v)

c0
 and for a standard material, it leads to the 

following implicit equation for c(v)
c0
,

The difference between trailing and leading energy leads to 
the results in Fig. 4, which can be approximated as

where v0 = c0∕(2��) and the fracture process zone at zero 
speed is defined as

(17)

c(v)

c0
=

⎡
⎢⎢⎣
1 −

�
1 −

E0

E∞

�⎛
⎜⎜⎝

�
1 +

�
c0

c(v)

v

v0

�−2

−

�
c0

c(v)

v

v0

�−1
��−1

.

(18)

fT (v)

Δ𝛾
≃
Gtrailing(v) − 1∕Gtrailing(v)

Δ𝛾

≃

{
v∕v0, v < v0(

v∕v0
)1∕2

, v > v0

which is a very small quantity (actually, being usually even 
less than nanometers this poses some questions on the valid-
ity of the theory since it is smaller than any real feature in 
the material, see Hui et al. [18]). From the PB theory, there-
fore, one could define a new dimensionless friction force in 
terms of the fracture energy, FT ,PB =

fT (v)

Δ�
= FT ,PB

(
VPB

)
 and 

it would then depend only on a single dimensionless param-
eter, the dimensionless velocity VPB = v∕v0 . Therefore, we 
have interest to investigate where it is possible to simply 
adopt PB’s theory in view of the simplicity of the results.

To this scope, we need to investigate the relationship 
between �c and the cohesive stress of our cohesive model �0, 
so let us write it in terms of an unknown prefactor

The simple result in Fig. 4 are highly reminiscent of our 
numerical results in Fig. 3. Indeed, using our dimensionless 
notation (6,16), the PB prediction in the very low velocities 
range can be rewritten as (using the Hertz equation 

a0 =

�
4wR

�E∗
0

=
2√
�
�
√
W )

where notice that since V0 ∝
√

1

W
 [see Eq.(16)], the dimen-

sionless force really depends on normal load, but it is evident 
from the Persson–Brener theory that the dimensional force 
does not.

In the intermediate range of velocities instead

(19)c0 =
E0Δ�

2��2
c

(20)�c = ��0.

(21)F∗
T1

= (2�)2�2�2V0

Fig. 4   The friction force estimated from the Persson–Brener 
theory for a semi-infinite crack, with standard material with 
k = E0∕E∞ = 0.001 , showing two power law regimes at very low and 
intermediate velocities, which explain approximately the results of 
Fig. 3
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The predictions of Eqs. (21,22) are shown in Fig. 3, where it 
is found that with k = E0∕E∞ = 0.001 and � = 0.1, 1, 3 , the 
PB equations work well at low or intermediate velocities, but 
different � are needed depending on � changing of a factor 
about 3, and the linear regime is particularly extensive for 
low � , while it is more reduced for large � . Since large � is 
more likely to correspond to experiments, this may justify 
why the linear regime was not really observed. On the other 
hand, probably the large velocities were also not experimen-
tally available, and hence, only the intermediate power law 
was observed.1

Figure 5 additionally shows that the prefactor � does not 
depend on the normal load for large Maugis–Tabor parameter 
(here, we consider the realistic case of k = E0∕E∞ = 0.001).

Also, Fig. 6 shows that � is nearly independent on normal 
load for large Maugis–Tabor parameter and decays with � 
but remains about constant for 𝜆 > 2.

Finally, Fig. 7 shows that � is nearly independent on 
k = E0∕E∞ for k < 0.1 , which is a quite reasonable range 
as many materials show rather k < 10−3 , showing that in 
conclusion the Persson–Brener estimate is a very good fit of 
our numerical results  for a wide range of conditions, namely 
low to intermediate normal loads, realistic instantaneous to 

(22)F∗
T2

= �
√
2�

��

W1∕4

�
1

�

�1∕4

V
1∕2

0
.

relaxed modulus of material, and realistically high Mau-
gis–Tabor parameters.

4 � Discussion: More Complex Material 
Models

Our model found some qualitative agreement with the 
results of [1–3], particularly as the fracture energy seems to 
increase with a power V0.5 which is close to the V0.55 found in 
rolling experimentally. However, this may be partly a coin-
cidence, and it is unlikely that the rubber used by Barquins 
was really close to a single relaxation time material. Indeed, 
when we check the prediction of the contact area, we find 
greater discrepancies. Figure 8 plots the dimensionless 
contact area 2A as a function of V0for k = 0.001 and nor-
mal load set to pull-off value. Barquins had found a power 
law A ∼ V

n∕3

0
= V

0.55∕3

0
 but here we find a much weaker 

10-1 100 101
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100

101
=0.1
=1
=2
=3

Fig. 5   The prefactor � linking the peak of cohesive force in our Len-
nard–Jones cohesive model with the Persson–Brener cut-off stress as 
a function of dimensionless normal load W, with k = E0∕E∞ = 0.001 
and � = 0.1, 1, 3 showing different � are needed only for low � (Color 
figure online)
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Fig. 6   The prefactor � linking the peak of cohesive force in our Len-
nard–Jones cohesive model with the Persson–Brener cut-off stress as 
a function of Maugis–Tabor parameter � showing convergence for 
large � (Color figure online)
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Fig. 7   The prefactor � as a function of 1∕k for W = 0.1 and various � 
(Color figure online)

1  As in the experiments we are modeling there was no evidence of 
the decaying branch of the friction force, we did not put effort into 
modeling this, which may require additional effort of theories, see 
Persson [19, 20] which is based on limiting the dissipation zone of 
the Persson–Brener theory based on the size of the contact area or 
Carbone et al. [21] which surprisingly seems not to contain reference 
to the cohesive strength of the adhesion law.
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dependence A ∼ V
1∕30

0
 in the range where we do observe the 

power law at intermediate velocities. Notice that the choice 
of setting the normal load equal to the pull-off load should 
not affect the results in the range of large � since we are in 
a regime where the normal load is low and the contact area 
size is mainly governed by adhesive forces, which increase 
for low to intermediate velocities.

In view of these discrepancies and limitation in our 
model, it would not be too difficult to extend the study to 
a material with various relaxation times,2 but since unfor-
tunately, we do not know precisely the full characterization 
of the transparent polyurethane rubber Barquins was using 
in his experiments, this would be not very useful. We can 
provide a discussion considering a power law material in the 
following paragraph.

4.1 � Power Law Materials

To investigate the role of material constants in the case of 
a more realistic rubber, Persson–Brener suggest power law 
materials with spectral density function

in 𝜏1 < 𝜏 < 𝜏2 and zero otherwise, which leads to a com-
plex viscoelastic modulus E(�) which PB say increases as 
�1−s (0 < s < 1) . More precisely, S(s) is defined from the 
relationship

(23)S(�) = S0�
−s

where B() is the Euler beta function.
This results in PB theory leads to a fracture energy

where b(�) = 2�v�∕c.
PB suggest that most rubbers would have a large spec-

trum band, i.e., large ratio between �1 and �2 and s = 0.6 
approximately so that their full theory leads approximately 
to G

Δ�
∼ vn with

meaning n =
1−0.6

2−0.6
= 0.29 . This would not improve our fit 

of the Barquins–Maugis polyurethane, since their experi-
mental results with tape peeling, and detachment of flat or 
spherical punches all suggested n = 0.6 and also the roll-
ing experiment shows n = 0.55 . It would seem therefore 

(24)

1

E(�)
=

1

E∞

+ ∫
∞

0

d�
S(�)

1 − i��

=
1

E∞

+ S0 ∫
�2

�1

d�
�−s

1 − i��

,

(25)
=

1

E∞

+ S0
(−i)1−s

�1−s

(
B

(
−

i

��2
, s, 0

)
− B

(
−

i

��1
, s, 0

)),

(26)

G(v)

Δ�
=
c(v)

c0
=

[
1 − E0 ∫

∞

0

d�S(�)

(√
1 + b(�)−2 − b(�)−1

)]−1,

(27)n =
1 − s

2 − s
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1/30

Fig. 8   The dimensionless contact area 2A as a function of V0for 
k = 0.001 and normal load set to pull-off value (Color figure online)

Fig. 9   The friction force estimated from the Persson–Brener theory 
for a power law material having �1 = 10−6s and �2 = 1s (entangle-
ment time), E0∕E∞ = 0.001 , and showing s = 0, 0.25, 0.5, 0.75 (solid 
black, blue, red, and green lines), where the three dashed black lines 
are indicating the equations fT∕Δ� = 10v∕v0, 4

(
v∕v0

)1∕2
,
(
v∕v0

)1∕4 , 
respectively (Color figure online)

2  An interesting comparison between the theory and experiments of 
rolling friction for a very detailed viscoelastic material model without 
adhesive effects is done in [22]
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that we would need to use s = 0 to reproduce the power 
law of [1–3] with a power law material. However, this 
would really not change results much with respect to the 
standard material used so far in our paper. Indeed we have 
estimated for v0 = a0∕

(
2��2

)
 the results of Fig.9, showing 

s = 0, 0.25, 0.5, 0.75 (solid black, blue, red, and green lines), 
where the three dashed black lines are indicating the equa-
tions ft∕Δ� = 10v∕v0, 4

(
v∕v0

)1∕2
,
(
v∕v0

)1∕4 , respectively. 
In other words, it seems the power law material with s = 0 
would only change results by a prefactor and hence, the 
agreement with experiments remains similar.

5 � Conclusion

We have solved numerically the problem of rolling a rigid 
cylinder upon or under a rubber (viscoelastic) plane and 
compared the results with experimental findings by Barquins 
and his group with a simplified material model (standard 
linear solid). For sufficiently large Maugis–Tabor param-
eters � , qualitative agreement was found for intermediate 
speeds in the friction force, although the contact area seems 
to increase less than in the experiments. With the help of the 
Persson–Brener theory of crack propagation, we have found 
quantitative prediction for the regime at low or intermediate 
velocities for large Maugis–Tabor parameter. In particular, 
the very low velocities show a linear dependence of the fric-
tion force on speed for both the bulk dissipation compo-
nent and the adhesive hysteresis one. At low Maugis–Tabor 
parameters, the Persson–Brener model continues to be valid 
for the low to intermediate velocity range, although this may 
be only apparent since as we said the bulk hysteresis compo-
nent is also linear with speed. Indeed, for low Maugis–Tabor 
parameters, the prefactor relating the cohesive strength to the 
cut-off stress of their theory depends on the other dimension-
less parameters of the problem, making the theory less use-
ful. It would seem that experimentally, only the intermediate 
regime was measured.
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