Skip to main content
Log in

Polyacrylic Acid as a Lubricant and a Complement to 1,2,4-Triazole for Copper Chemical Mechanical Polishing

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Chemical mechanical polishing (CMP) has been used to achieve local and global planarization for fabricating copper interconnects. Corrosion inhibitors in slurries are critical to realizing planarization. This study used polyacrylic acid (PAA) as a lubricant and a complement to 1,2,4-triazole for copper CMP. It is revealed that in the presence of a primary corrosion inhibitor of 1,2,4-triazole, adding a relatively low content of PAA can lead to an ultra-smooth copper surface with 1 nm surface roughness Sa, which is conducive to planarization. A relatively uniform surface film of approximately 1.9 nm is formed. The surface film mainly contains Cu–PAA, Cu-1,2,4-triazole, and copper oxides. Moreover, microscopic atomic force microscopy experiments in liquid were conducted to simulate CMP. After adding PAA, the interfacial friction between the probe and the copper surface significantly decreases to 27%, indicating that the adsorbed PAA can serve as an effective lubricant, presumably due to electrostatic repulsion. In addition, after adding PAA to the 1,2,4-triazole solution, the surface film becomes thicker and denser, suggesting that PAA can complement 1,2,4-triazole to construct a relatively compact passivating film. Therefore, the copper surface quality improves. The findings provide mechanistic insight into the unrecognized role of polymers in copper CMP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Havemann, R.H., Hutchby, J.A.: High-performance interconnects: an integration overview. Proc. IEEE 89(5), 586–601 (2001)

    Article  CAS  Google Scholar 

  2. Lee, D., Lee, H., Jeong, H.: Slurry components in metal chemical mechanical planarization (CMP) process: a review. Int. J. Precis. Eng. Manuf. 17(12), 1751–1762 (2016)

    Article  Google Scholar 

  3. Li, Y.: Microelectronic Applications of Chemical Mechanical Planarization. Wiley, Hoboken (2007)

    Book  Google Scholar 

  4. Li, Y., Gong, M., Ramji, K., Li, Y.: Role of Cu−benzotriazole nanoparticles in passivation film formation. J. Phys. Chem. C 113(42), 18003–18013 (2009)

    Article  CAS  Google Scholar 

  5. Jiang, L., Lan, Y., He, Y., Li, Y., Li, Y., Luo, J.: 1,2,4-Triazole as a corrosion inhibitor in copper chemical mechanical polishing. Thin Solid Films 556, 395–404 (2014)

    Article  CAS  Google Scholar 

  6. Zhou, J., Niu, X., Wang, Z., Cui, Y., Wang, J., Yang, C., Huo, Z., Wang, R.: Roles and mechanism analysis of chitosan as a green additive in low-tech node copper film chemical mechanical polishing. Colloids Surf. A 586, 124293 (2020)

    Article  CAS  Google Scholar 

  7. Zhang, Z., Cui, J., Zhang, J., Liu, D., Yu, Z., Guo, D.: Environment friendly chemical mechanical polishing of copper. Appl. Surf. Sci. 467–468, 5–11 (2019)

    Article  Google Scholar 

  8. Yang, G., Wang, H., Wang, N., Sun, R., Wong, C.-P.: Integrated electrochemical analysis of polyvinyl pyrrolidone (PVP) as the inhibitor for copper chemical mechanical planarization (Cu-CMP). J. Alloys Compd. 770, 175–182 (2019)

    Article  CAS  Google Scholar 

  9. Chou, H., Kim, W., Noh, J., Lee, I.: A study on the impact of polymer additives in bulk copper slurry on copper CMP. In: 2007 International Conference on Planarization/CMP Technology (ICPT), October 25–27, pp. 1–6. VDE, Dresden (2007)

  10. Chen, K.-W., Wang, Y.L.: Study of non-preston phenomena induced from the passivated additives in copper CMP. J. Electrochem. Soc. 154(1), H41 (2007)

    Article  CAS  Google Scholar 

  11. Jang, S., Song, J., Amalnerkar, D., Qin, H., Kim, T.: Effect of secondary inhibitors on material removal rate and nano-roughness of Cu chemical mechanical planarization. Mater. Express 6(5), 383–393 (2016)

    Article  CAS  Google Scholar 

  12. Tamilmani, S., Huang, W., Raghavan, S., Small, R.: Potential-pH diagrams of interest to chemical mechanical planarization of copper. J. Electrochem. Soc. 149(12), G638–G642 (2002)

    Article  CAS  Google Scholar 

  13. Wu, Y., Jiang, L., Qian, L.: Achieving smooth PZT surface via chemical mechanical polishing with ethylenediamine dihydrochloride. Ceram. Int. 48(13), 18891–18898 (2022)

    Article  CAS  Google Scholar 

  14. Stewart, K.L., Keleher, J.J., Gewirth, A.A.: Relationship between molecular structure and removal rates during chemical mechanical planarization: comparison of benzotriazole and 1,2,4-triazole. J. Electrochem. Soc. 155(10), D625 (2008)

    Article  CAS  Google Scholar 

  15. Arkhipushkin, I.A., Agafonkina, M.O., Kazansky, L.P., Kuznetsov, Y.I., Shikhaliev, K.S.: Characterization of adsorption of 5-carboxy-3-amino-1,2,4-triazole towards copper corrosion prevention in neutral media. Electrochim. Acta 308, 392–399 (2019)

    Article  CAS  Google Scholar 

  16. Mínguez-Bacho, I., Courté, M., Shi, C., Fichou, D.: Controlling the nanomorphology of thin conformal Cu2S overlayers grown on Cu2O compact layers and nanowires. Mater. Lett. 159, 47–50 (2015)

    Article  Google Scholar 

  17. Song, G., Liu, S., Xia, C., Song, L., Yang, T., Li, Q.: Synthesis and application of Cu(OH)2 nanowires on nanoporous copper prepared by dealloying Ti50Cu50 and Ti25Zr25Cu50 amorphous alloys. Mater. Charact. 178, 111258 (2021)

    Article  CAS  Google Scholar 

  18. Jiang, D., Zhang, Y., Li, X.: Synergistic effects of CuO and Au nanodomains on Cu2O cubes for improving photocatalytic activity and stability. Chin. J. Catal. 40(1), 105–113 (2019)

    Article  CAS  Google Scholar 

  19. McIntyre, N.S., Cook, M.G.: X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal. Chem. 47(13), 2208–2213 (1975)

    Article  CAS  Google Scholar 

  20. Schnieders, H., Ozcan, O., Grundmeier, G.: Self-localization of mixed organophosphonic acid and organothiol monolayers on patterned Al–Cu substrates. Appl. Surf. Sci. 287, 397–403 (2013)

    Article  CAS  Google Scholar 

  21. Oh, S., Shin, C., Kwak, D., Kim, E., Kim, J., Bae, C., Kim, T.: Effect of ionic strength on amorphous carbon during chemical mechanical planarization. Diam. Relat. Mater. 127, 109124 (2022)

    Article  CAS  Google Scholar 

  22. Sharma, C., Kaur, M., Choudhary, A., Sharma, S., Paul, S.: Nitrogen doped carbon-silica based Cu(0) nanometal catalyst enriched with well-defined N-moieties: synthesis and application in one-pot synthesis of 1,4-disubstituted-1,2,3-triazoles. Catal. Lett. 150(1), 82–94 (2020)

    Article  CAS  Google Scholar 

  23. Liu, G., Xiao, J., Liu, J., Qu, X., Liu, Q., Zeng, H., Yang, X., Xie, L., Zhong, H., Liu, Q., Xu, Z.: In situ probing the self-assembly of 3-hexyl-4-amino-1,2,4-triazole-5-thione on chalcopyrite surfaces. Colloids Surf. A 511, 285–293 (2016)

    Article  CAS  Google Scholar 

  24. Park, H., Kim, S.E.: Two-step plasma treatment on copper surface for low-temperature Cu thermo-compression bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 10(2), 332–338 (2020)

    Article  CAS  Google Scholar 

  25. Seal, S., Kuiry, S.C., Heinmen, B.: Effect of glycine and hydrogen peroxide on chemical–mechanical planarization of copper. Thin Solid Films 423(2), 243–251 (2003)

    Article  CAS  Google Scholar 

  26. Chen, X., Wang, X., Fang, D.: A review on C1s XPS-spectra for some kinds of carbon materials. Fullerenes Nanotubes Carbon Nanostruct. 28(12), 1048–1058 (2020)

    Article  CAS  Google Scholar 

  27. Yin, D., Wang, Q., Zhang, S., Tan, B., Yang, F., Wang, R., Sun, X., Liu, M.: Effect of EDTA-based alkaline cleaning solution on TAZ removal in post CMP cleaning of copper interconnection. Mater. Res. Bull. 137, 111202 (2021)

    Article  CAS  Google Scholar 

  28. Chen, L., Wen, J., Zhang, P., Yu, B., Chen, C., Ma, T., Lu, X., Kim, S.H., Qian, L.: Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions. Nat. Commun. 9(1), 1542 (2018)

    Article  Google Scholar 

  29. Lim, M.S., Perry, S.S., Galloway, H.C., Koeck, D.C.: Microscopic studies of friction and wear at the benzotriazole/copper interface. Tribol. Lett. 14(4), 261–268 (2003)

    Article  CAS  Google Scholar 

  30. Tocha, E., Schönherr, H., Vancso, G.J.: Quantitative nanotribology by AFM: a novel universal calibration platform. Langmuir 22(5), 2340–2350 (2006)

    Article  CAS  Google Scholar 

  31. Paul, E., Kaufman, F., Brusic, V., Zhang, J., Sun, F., Vacassy, R.: A model of copper CMP. J. Electrochem. Soc. 152(4), G322 (2005)

    Article  CAS  Google Scholar 

  32. Lewandowski, B.R., Lytle, D.A., Garno, J.C.: Nanoscale investigation of the impact of pH and orthophosphate on the corrosion of copper surfaces in water. Langmuir 26(18), 14671–14679 (2010)

    Article  CAS  Google Scholar 

  33. Xu, G., Liang, H., Zhao, J., Li, Y.: Investigation of copper removal mechanisms during CMP. J. Electrochem. Soc. 151(10), G688 (2004)

    Article  CAS  Google Scholar 

  34. Deen, K.M., Mehrjoo, N., Asselin, E.: Thermo-kinetic diagrams: the Cu–H2O–acetate and the Cu-H2O systems. J. Electroanal. Chem. 895, 115467 (2021)

    Article  CAS  Google Scholar 

  35. Hu, Y.Z., Gutmann, R.J., Chow, T.P.: Silicon nitride chemical mechanical polishing mechanisms. J. Electrochem. Soc. 145(11), 3919 (1998)

    Article  CAS  Google Scholar 

  36. Scales, P.J., Grieser, F., Healy, T.W., White, L.R., Chan, D.Y.C.: Electrokinetics of the silica-solution interface: a flat plate streaming potential study. Langmuir 8(3), 965–974 (1992)

    Article  CAS  Google Scholar 

  37. Gong, J., Iwasaki, Y., Osada, Y., Kurihara, K., Hamai, Y.: Friction of gels. 3. Friction on solid surfaces. J. Phys. Chem. B 103(29), 6001–6006 (1999)

    Article  CAS  Google Scholar 

  38. Wu, Y., Wei, Q., Cai, M., Zhou, F.: Interfacial friction control. Adv. Mater. Interfaces 2(2), 1400392 (2015)

    Article  Google Scholar 

  39. Gu, B., Mehlhorn, T.L., Liang, L., McCarthy, J.F.: Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption. Geochim. Cosmochim. Acta 60(11), 1943–1950 (1996)

    Article  CAS  Google Scholar 

  40. Shaikh, J.S., Pawar, R.C., Tarwal, N.L., Patil, D.S., Patil, P.S.: Supercapacitor behavior of CuO–PAA hybrid films: Effect of PAA concentration. J. Alloys Compd. 509(25), 7168–7174 (2011)

    Article  CAS  Google Scholar 

  41. Seo, J., Vegi, S.S.R.K.H., Ranaweera, C.K., Baradanahalli, N.K., Han, J.-H., Koli, D., Babu, S.V.: Formation of cobalt-BTA complexes and their removal from various surfaces relevant to cobalt interconnect applications. ECS J. Solid State Sci. Technol. 8(5), 3009–3017 (2019)

    Article  Google Scholar 

  42. Bandyopadhyay, P., Ghosh, A.K.: pH-controlled “off−on−off” switch based on Cu2+-mediated pyrene fluorescence in a PAA−SDS Micelle aggregated supramolecular system. J. Phys. Chem. B 113(41), 13462–13464 (2009)

    Article  CAS  Google Scholar 

  43. Pan, Y., Lu, X., Pan, G., Liu, Y., Luo, J.: Performance of sodium dodecyl sulfate in slurry with glycine and hydrogen peroxide for copper-chemical mechanical polishing. J. Electrochem. Soc. 157(12), H1082 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the National Natural Science Foundation of China (51975488 and 51991373), National Key R&D Program of China (2020YFA0711001), and Fundamental Research Funds for the Central Universities (2682021CG011). Furthermore, we would like to thank the Analytical & Testing Center of Sichuan University for XPS work and we would be grateful to Shuguang Yan for his help of XPS analysis.

Funding

Funding was provided by National Natural Science Foundation of China (Grant nos. 51975488, 51991373), National Key Research and Development Program of China (Grant no. 2020YFA0711001), Fundamental Research Funds for the Central Universities (Grant no. 2682021CG011).

Author information

Authors and Affiliations

Authors

Contributions

LJ: Conceptualization, Formal analysis, Funding acquisition, Resources, Writing—original draft, Writing—review and editing. QL: Formal analysis, Investigation, Writing—original draft. YC: Formal analysis, Investigation. YW: Investigation. MS: Investigation. LQ: Funding acquisition, Resources.

Corresponding author

Correspondence to Liang Jiang.

Ethics declarations

Competing interests

The authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Li, Q., Chen, Y. et al. Polyacrylic Acid as a Lubricant and a Complement to 1,2,4-Triazole for Copper Chemical Mechanical Polishing. Tribol Lett 71, 62 (2023). https://doi.org/10.1007/s11249-023-01732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01732-5

Keywords

Navigation