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Abstract
We show that the detachment of a flat punch from a viscoelastic substrate has a relatively simple behaviour, framed between 
the Kendall’s elastic solution at the relaxed modulus and at the instantaneous modulus, and the cohesive strength limit. 
We find hardly any dependence of the pull-off force on the details of the loading process, including maximum indentation 
at preload and loading rate, resulting much simpler than the case of a spherical punch. Pull-off force peaks at the highest 
speeds of unloading, when energy dissipation is negligible, which seems to be in contrast with what suggested by the theo-
ries originated by de Gennes of viscoelastic semi-infinite crack propagation which associated enhanced work of adhesion 
to dissipation.
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1  Introduction

Over the last two decades, there has been a tremendous inter-
est in soft adhesive interfaces in various areas of technology, 
and in particular, those based on the van der Waals forces, 
which have been largely inspired by nature. Bio-inspired 
technologies are a growing area in robotics and grasping/
pick-and-place manipulation [1, 2], since they show several 
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advantages such as high adhesive strength competitive to 
suction devices, more sustainable technology, recyclability, 
absence of residues [3], adaptability [4] and less energy con-
sumption with respect to classical solutions [5]. Examples of 
application in several emerging technologies are described 
in [6], in robotics [7, 8] and in pick-and-place manipulation, 
also in space [9, 10].

In hard materials, van der Waals adhesive forces are 
destroyed very easily by roughness, and Dahlquist postu-
lated, based on experiments on pressure sensitive adhesives 
(PSA), that the elastic modulus for them should be less than 
about 0.3 MPa [11] for sufficient adhesion. Soft materials 
are thus widely adopted in engineering, and those are often 
viscoelastic, which is pushing the research in the area of 
viscoelastic crack growth in soft media like polymers or 
biological materials [12, 13]. Early extensive measure-
ments mostly with peeling setups [14–19] found that the 
peeling load increased very significantly with peeling speed. 
Since work of adhesion is equal to load for an elastic peeling 
problem according to the Rivlin classical solution for the 
typical 90◦ peeling conditions [20] for which the force per 
unit lenght of elastic peeling is exactly the work of adhe-
sion, measuring the force in a viscoelastic tape generated the 
concept of “apparent work of adhesion Δ� ” obtained as the 
product of the adiabatic value Δ�0 and a function of crack 
velocity V of the contact/crack line and temperature, often 
in the form of a power law

where Vref =
(
kan

T

)−1 and k, n are constants with 0 < n < 1 
and aT is the Williams–Landel–Ferry (WLF) shift factor to 
translate viscoelastic modulus results at various tempera-
tures T [21]. The Williams–Landel–Ferry equation (or WLF 
equation) permits time-temperature superposition by the fol-
lowing formula

 where T is the temperature, Tr is a reference temperature 
chosen to construct the compliance master curve and C1,C2 
are empirical constants adjusted to fit the values of the 
superposition parameter aT . In other words, measurements 
at different temperatures permit to obtain a wide range of 
frequency estimate of the complex modulus of viscoelastic 
material which would otherwise not be obtained in a single 
experiment with a restricted range of frequencies via

Equation (1) is known as the Gent–Schultz “empiri-
cal law” [15], and is widely adopted even to different 

(1)
Δ�(V)

Δ�0
= 1 +

(
V

Vref

)n

,

(2)log10 aT = −
C1

(
T − Tr

)

C2 +
(
T − Tr

) ,

(3)E(�, T) = E
(
aT�, Tr

)
.

geometries, although the constants may depend on geom-
etry (in peeling itself, there is certainly an effect of the 
angle of peeling). Notice that in this form there is no indi-
cation about the maximum enhancement, although the 
connection to the WLF factor indicates a link with elastic 
modulus whose increase has clear limits. However, peel-
ing experiments such as Gent and Petrich [16] showed a 
maximum in peel force followed by a decrease in an unsta-
ble regime and stick–slip. It is remarkable that peeling 
experiments are still not entirely understood: in a peeling 
geometry of a viscoelastic tape it would seem that speed-
dependence of the load of typical 90◦ angles would be 
precluded in a rate-independent cohesive stress model (see 
a detailed recent study in [22]) like the present model or 
the Knauss–Schapery or de Gennes–Persson–Brener theo-
ries we are discussing in the present paper, yet it is clearly 
observed. The case of viscoelastic peeling seems to require 
rate-dependence in the cohesive (or the cut-off) stress.

From a more fundamental perspective, the need of 
Cohesive Zone Model (CZM) formulations to describe 
the crack propagation in viscoelastic media was evident 
in the 1970s [23–27]. Knauss–Schapery showed that when 
the stress field is well defined by an “applied” stress inten-
sity factor KA , the speed of propagation was defined by a 
generalized Irwin equation which for pure mode I reads

where the linear viscoelastic creep compliance C(t) replaces 
the elastic compliance ( 

(
1 − �2

)
∕E in plane strain, 1/E in 

plane stress, where E is Young’s modulus and � is Poisson’s 
ratio) in the very similar Linear Elastic Fracture Mechanics 
(LEFM) critical equivalent condition, and tb is an effective 
time of relaxation in the cohesive zone. This equation is 
valid for any geometry, provided the cohesive zone length b 
is small with respect to other length scales in the problem. 
In other words, in this model the “true” work of adhesion 
is rate-independent, and yet it results in load enhancement.

An alternative approach returns to the concept of the 
“apparent work of adhesion” and stems from the seminal 
work by de Gennes [28] who attributed it to dissipation 
possibly very far ahead from the crack tip in the so-called 
“liquid” zone—a concept which Persson and Brener [29] 
elaborated in more quantitative terms, still for semi-infinite 
cracks. Despite the different approaches, both dissipation-
based and CZM-based theories provide similar results for 
semi-infinite cracks and obtain the same maximum tough-
ness enhancement [30]

(4)Δ�0 = C
(
tb

)
K

2
A
,,

(5)
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Δ�0
=
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being E0 and E∞ the so-called relaxed and instantaneous 
modulus of the viscoelastic material, if we interpret as 
“apparent work of adhesion”

The question is less clear for any finite size body [31, 32], 
for which de Gennes postulated dissipation is restricted in 
space and so should reach a maximum and then decay with 
speed [28]. This was intended to perhaps explain the well-
known Gent and Petrich [16] results for peeling experiments 
which we have mentioned. However, while in peeling exper-
iments load and work of adhesion seem to be identical (at 
least in elastic case), this cannot be generalized to generate 
the confusion in the literature between “load” enhancement 
and “work of adhesion” enhancement, in turn apparently 
due to viscoelastic dissipation. Is increase of load necessar-
ily linked to viscoelastic dissipation? Certainly this is not 
evident from the Irwin equation of Schapery (Eq. 4), which 
in the limit of very low or very fast speed gives rubbery or 
glassy elastic materials, and yet provides the enhancement.

For example, in [34] the authors study a double cantilever 
beam (DCB) specimen under a vertical force at constant 
distance from the crack tip (recalling a linearized version 
of the peeling problem) finding the maximum dissipation 
at intermediate crack propagation speed, but a monotonic 
increase of the load with speed. Viceversa, in the case where 
the distance is permitted to increase without limit, like when 
applying a concentrated moment to a DCB in a fixed point 
while the crack travels, dissipation seems to increase with 
load like in de Gennes’ theory [32]. In the case of indenta-
tion of a half-space by a punch, we may expect that the finite 
radius of the punch may play a role. Indeed, while stresses 
in a semi-infinite crack decay with distance from crack tip 
as r−1∕2 , those far from the punch in the infinite half-space 
decay like r−2 from the resultant force hence much faster. 
So, although at high speed of crack propagation there must 
be still a “liquid” region of transition from glassy to rub-
bery state, this region may dissipate less than the analogous 
case of the semi-infinite crack. It should be mentioned that 
Knauss [27] tested and studied theoretically already some of 
the effects of finite thickness in the pure shear geometry test, 
and also did not find a peak in load with crack speeds, which 
are not really explained by the dissipation limitations at the 
basis of de Gennes and Persson’s finite size theories. We 
shall therefore investigate in details how load-enhancement 
varies with speed in a finite size contact, and if this is related 
to viscoelastic dissipation.

Recently, a few studies have been devoted to the Hertzian 
geometry finding complex dependences on preload and load-
ing rate (and not only unloading rate) [35–39]. Surprisingly, 

(6)Δ�(V) =
K2
A

E0

.

less attention has been paid to the apparently simpler prob-
lem of the flat punch geometry, apparently also because in 
practise it requires special care for avoiding misalignments 
in an experimental setup. Here, by adopting the Boundary 
Element Method (BEM) we therefore explore numerically 
this problem with the support of extension of classical theo-
ries for the elastic case derived by Maugis [19] (see also 
[40]) to the viscoelastic case.

2 � The Mechanical Model

The adhesive behaviour of an axisymmetric rigid flat punch 
of radius a in frictionless contact with a viscoelastic half-
space is studied. For the linear viscoelastic material, the 
standard model is assumed, constituted by a spring placed in 
series with an element constituted by a dashpot and a spring 
in parallel (Fig. 1). The viscoelastic material has the relaxed 
Young’s modulus E0 , instantaneous modulus E∞,1 and the 
relaxation time � . The flat punch interacts with the viscoelas-
tic substrate via a Lennard–Jones 3–9 force-separation law

where � is the traction ( 𝜎 > 0, when tensile), h is the gap and 
h0 the equilibrium distance (the maximum tensile stress 
�0 =

16Δ�

9
√
3h0

 takes place at separation h = 31∕6h0 ). The gap 

function is written as

(7)�(h) =
8Δ�

3h0

[(
h0

h

)3

−

(
h0

h

)9
]
,,

Fig. 1   Schematic representation of the problem considered. An 
axisymmetric flat punch of radius a indents a linear viscoleastic half-
space. A standard material is assumed with two elastic moduli E0 
and E∞ and a single relaxation time � . The vertical displacement of 
the half-space uz and the indentation � are positive when the punch 
indents the halfspce. ac is the radius of the ligament of the crack, and 
is time dependent. The punch and the substrate interact through a 
Lennard–Jones (LJ) force-separation law

1  This notation stems from frequency dependence notation of the 
complex modulus E(�) so that E0 = E(0) is the relaxed modulus. 
Other authors use the notation that E0 is the instantaneous modulus as 
obtained at time t = 0 in a relaxation test.
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where r is the radial coordinate, 𝛿 > 0 when the flat punch 
approaches the viscoelastic half-space, uz(r) is the deflec-
tion of the viscoelastic half-space, which will depend on 
the loading history.

For elastic axisymmetric problems [18, 41]

where 1∕E∗ =
((
1 − �2

1

)
∕E1 +

(
1 − �2

2

)
∕E2

)
 is the compos-

ite elastic modulus of the two bodies in contact, �(s) is the 
pressure distribution (the minus sign account for the fact that 
we considered compressive tractions as negative), G(r, s) is 
the kernel function

and K(k) is the complete elliptic integral of the first kind 
of modulus k . Hence, by using the elastic–viscoelastic cor-
respondence principle in the form of Boltzmann integrals 
[42], the normal displacements of the viscoelastic half-space 
uz(r, t) at time t, at location r depend on the pressure history 
as

where c(t) is the dimensionless creep compliance function, 
which for a standard linear viscoelastic solid is

where k = E0∕E∞.
Equation (11), discretized in time and space, is solved to 

provide the adhesive solution sought. The numerical scheme 
is alike that in Ref. [18, 41, 44] except for accounting the vis-
coelastic behaviour of the half-space. The radial domain is 
discretized with N equally spaced elements, so that we have 
M = N + 1 nodes where Eq. (11) is solved. From one node 
to the other a linear variation of the normal traction �(s) is 
assumed, which is usually referred as “the method of the over-
lapping triangles” [45], and a sequential continuation algo-
rithm is adopted in time, so that the solution uz

(
r, ti

)
 at time ti 

is used as a guess for the next time-step ti+1 = ti + Δt , where 
the time increment Δt is kept fixed during the simulations. 
More details of the numerical implementation have been given 
in [44].

(8)h(r) = −� + h0 + uz(r),,

(9)uz(r) = −
1

E∗∫ �(s)G(r, s)sds,,

(10)G(r, s) =

⎧⎪⎨⎪⎩

4

𝜋r
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r

�
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4

𝜋s
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�
r

s

�
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,

(11)uz(r, t) =
−1

E∗
0
∫

t

∫
−∞

c(t − �)
d�(s, �)

d�
G(r, s)sd�ds,,

(12)c(t) = E
∗
0
C(t) =

[
1 + (k − 1) exp

(
−
t

�

)]
,,

3 � From LEFM to Uniform Debonding 
Behaviour

The contact of a rigid flat punch can be considered as an exter-
nal crack that propagates at the interface under the action of 
a tensile load. If one assumes the punch to be rigid and the 
substrate elastic, neglecting friction, Maugis [19] shows

where G is the energy release rate, P is the normal load and 
KI = P∕

√
4�a3 is the mode-I stress intensity factor. Impos-

ing the Griffith energy balance G = Δ� [19, 46] one finds 
the peeling force to be

where E∗ = E∕
(
1 − �2

)
. Correspondingly the pull-off stress 

�̂po = max
(
�̂
)
 is

which scales with the punch radius as a−1∕2 , a well-known 
result of linear elastic fracture mechanics (LEFM). Clearly, 
�po cannot be larger then the theoretical strength of the inter-
face �0 . Hence, we define a lengthscale

and only for a punch of radius a ≫ a0 one expects LEFM 
based model to be accurate [46], while for a ≪ a0 the cohe-
sive limit is asymptotically obtained, where �po → �0.

If the half-space is viscoelastic, we can consider it to behave 
as an elastic half-space in the limit of very slow and very fast 
unloading rate. In the latter case one obtains two different 
lengthscales 

{
a0, a1

}
 which refer respectively to the slow and 

fast unloading limits (see also Ciavarella [47] for the analogous 
case of “short cracks”). Recalling k = E0∕E∞ < 1 , and using 
â0 = a0∕h0 and �̂po = �po∕�0 one gets in dimensionless form

(13)G =
K2
I

2E∗
=

P2

8�a3E∗
,,

(14)P =
√
8�E∗Δ�a3,

(15)�po =

√
8E∗Δ�

�a
,

(16)a0 =
8E∗Δ�

��2
0

,

(17)

⎧⎪⎨⎪⎩

�𝜎po =

�
9
√
3

2𝜋�aΣ0

< 1

�a0 =
9
√
3

2𝜋Σ0

, slow limit

(18)

⎧⎪⎨⎪⎩

�𝜎po =

�
9
√
3

2𝜋�aΣ0k
< 1

�a1 =
9
√
3

2𝜋kΣ0

, fast limit,
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where Σ0 = �0∕E
∗
0
.

4 � Numerical Results

We conducted a wide campaign of numerical investigations, 
whose results are reported in this section in dimensionless 
form, so that the following quantities have been defined

while �̂po = max
(
�̂
)
 is the pull-off stress. Unless differently 

stated, we used in our simulations N = 200, Σ0 = 0.05 and 
k = 0.1 . First, let us consider the case of a punch of radius 
â∕â0 = 2.02 that is unloaded from a fully relaxed viscoelas-
tic substrate starting from �̂0 = �̂

(̂
t0 = 0

)
= 1 at different 

unloading rates r̂ = r�∕h0 = [0.13, 3.16, 5.01, 7.94, 12.59] , 
so that �̂

(̂
t
)
= �̂0 − r̂

(̂
t − t̂0

)
 . Experimentally, this coincides 

with (i) indenting the viscoelastic substrate up to a pre-
scribed indentation depth, (ii) waiting for a long dwell time 
so that the substrate fully relaxes, then (iii) unloading with 
a given (constant) displacement rate. The normalized 
unloading curves are shown in Fig. 2 in terms of mean nor-
mal stress versus remote indentation. As expected for a vis-
coelastic contact problem, the unloading rate strongly influ-
ences the unloading trajectory. For fast unloading, the 
substrate is stiff, hence a high load 

(
KI ∝ P

)
 is required for 

the crack to advance. The two linear limit behaviour on 
unloading in Fig. 2 correspond to instantaneous and relaxed 
moduli, respectively. Clearly, pull-off stress increases with 
rate of unloading, but the dependence is non monotonic for 
t h e  w o r k  o f  s e p a r a t i o n  p e r  u n i t  a r e a 
ŵsep =

wsep

��0h0
= − ∫ −∞

�̂P=0
�̂d�̂  which is proportional to the area 

underneath the unloading curves ( � = 9
√
3∕16 , �̂P=0 is the 

indentation depth when the mean stress (or the load) 
vanishes).

The response of a viscoelastic material is in general 
“history-dependent”, as from the hereditary integral in Eq. 
(11). Curves in Fig. 2 were obtained unloading the flat 
punch from a fully relaxed substrate. To investigate the 
effect of the loading history, we run several numerical 
simulations, with different loading protocols, but fixing 
the unloading rate at r̂ = 10 . The simulations were con-
ducted in displacement control and for �̂

(̂
t
)
 we assumed a 

trapezoidal function, whose key parameters are defined in 
the inset of Fig.  3a. We introduce the dwell time 
t̂dwell = t̂2 − t̂1 , the loading rate r̂load =

(
�̂load − �̂0

)
∕̂t1 and 

the unloading rate r̂ =
(
�̂load − �̂unload

)
∕
(̂
t3 − t̂2

)
 . Results 

in Fig. 3a and b for each unloading curve correspond to 

(19)
â = a

h0
; �̂ = �

�0
; P̂ = P

�a2�0
;

�̂ = �
h0

; t̂ = t
�
,
,

the parameters in Table 1. We considered the cases when 
the punch is unloaded: (i) after very slow loading from a 
fully relaxed substrate (blue curves, (1,4)), (ii) after very 
rapid loading so that the substrate appears elastic with 
E(t = 0) = E∞ (black curves, (2,5)), (iii) after indenting the 
substrate at a constant loading rate r̂load = 5 (red curves, 
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Fig. 2   Unloading curves for Σ0 = 0.05 , k = 0.1 , punch of 
radius â∕â0 = 2.02 , unloaded from a fully relaxed viscoelas-
tic substrate starting from �̂0 = 1 at different unloading rates 
r̂ = [0.13, 3.16, 5.01, 7.94, 12.59]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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(b)

(4)
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Fig. 3   a Unloading curves for Σ0 = 0.05 , k = 0.1 , punch of 
radius â∕â0 = 2.02 , unloaded from a fully relaxed viscoelas-
tic substrate starting from �̂0 = 1 at different unloading rates 
r̂ = [0.13, 3.16, 5.01, 7.94, 12.59] . b The same curves shown in a are 
reported here after shifting the horizontal axis by �̂P=0 , which is the 
indentation depth at which the normal stress vanishes during unload-
ing
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(3,6)). Notice that for the curves (1, 2, 4, 5) the loading 
phase is not shown. The maximum indentation depth �̂load 
was fixed equal to �̂load = 1 for the curves (1, 2, 3) (solid 
lines) and �̂load = 2 for the curves [4, 5, 6] (dashed lines). 
Despite the very different unloading trajectories, one 
notices that a key quantity such as the pull-off stress 
(Fig. 3a, b) is almost unaffected by the loading history. 
Figure 3b shows the same curves reported in Fig. 3a after 
shifting the horizontal axis by �̂P=0 , which is the indenta-
tion depth at which the normal load vanishes during 
unloading, so that one can better appreciate the slight 
changes in the unloading trajectories. In the rest of the 
paper, unless differently stated, we will assume 
�̂0 = �̂load = 1 and t̂dwell = 0.

Table 1   Set of parameters that defines the loading protocol of the 
curves shown in Fig. 3a and b.

Curve �̂0 �̂load r̂load r̂ t̂dwell

(1) Blue solid 1 1 Very slow 10 0
(2) Black solid 1 1 Very fast 10 0
(3) Red solid 0 1 5 10 0
(4) Blue dashed 2 2 Very slow 10 0
(5) Black dashed 2 2 Very fast 10 0
(6) Red dashed 0 2 5 10 0

Notice that for all the simulations the unloading rate is fixed at r̂ = 10 
and t̂dwell = 0 for all the simulations.

Having assessed that the loading history does not influ-
ence the pull-off stress �̂po , in Fig. 4 we investigated the 

variation of �̂po as a function of the normalized punch 
radius for four unloading rates r̂ = [0.1, 1, 10, 100] (respec-
tively black diamonds, green circles, red squares and pink 
triangles) and starting from a fully relaxed substrate. For 
�a∕�a0 ≪ 1 the cohesive limit is reached, where the pull-off 
stress is independent on both the loading rate and the punch 
radius and it approaches the theoretical value �̂po = 1 . For 
�a∕�a0 ≫ 1 the curves follow the square root scaling imposed 
by LEFM, the pull-off stress increases with the unloading 
rate and the pull-off data remain bounded by the “slow” and 
“fast” limits dictated by the Kendall [46] solution (Eqs. 17, 
18), respectively blue dashed and solid black lines. Notice 
that numerically we had to accomodate a small cohesive 
zone before we find the maximum force which sligthly 
reduced the peak force from the theoretical Kendall limit 
(see Fig. 4).

10-2 10-1 100 101 102
10-1

100

Fig. 4   Normalized pull-off stress as a function of the normal-
ized contact radius for Σ0 = 0.05 , k = 0.1 . Unloading starts from 
�̂0 = �̂load = 1 from a fully relaxed substrate and is performed at a 
constant unloading rate r̂ = [0.1, 1, 10, 100] , respectively black dia-
monds, green circles, red squares and purple triangles. The LEFM 
limits for slow and fast unloading rate are shown, respectively, as blue 
dashed and black solid lines. Filled (empty) stars show the results 
obtained unloading an elastic substrate with E = E0 ( E = E∞ ) (Color 
figure online)
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1

(a)

100 101 102 103 104 105

100

101

(b)

Fig. 5   a Normalized pull-off stress as a function of the normal-
ized unloading rate. b Normalized effective work of adhesion as 
a function of the crack velocity at pull-off V̂c . In b solid lines refer 
to Persson and Brener theory [29] as extended for finite size sys-
tems by Persson [43] slightly simplified by Ciavarella and Papan-
gelo (Eq. (17) in [31]), but with a shift on the crack velocity. The 
same colour corresponds to the same ratio â∕â0 . The grey solid line 
refers to Persson and Brener theory for infinite systems (see Eq. 
(14) in Ref. [31]). In both panels Σ0 = 0.05 , k = 0.1 , �̂0 = �̂load = 1 , 
â∕â0 = [0.36, 1, 2.02, 35.84] respectively blue squares, purple dia-
monds, red circles, green triangles. Filled symbols are used for data 
obtained unloading the punch form a fully relaxed substrate, while 
empty symbols refer to data obtained after very fast loading (Color 
figure online)
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The variation of the pull-off stress as a function of the 
crack speed at pull-off V̂c = Vc�∕h0 is shown in Fig. 5a, for 
four different punch radii â∕â0 = [0.36, 1.00, 2.02, 35.84] 
(respectively blue, purple, red and green curves) unloading 
either after a very slow loading phase (filled symbols, when 
unloading starts E ≃ E0 ) or after a very fast loading phase 
(empty symbols, when unloading starts E ≃ E∞ ) and for 
Σ0 = 0.05 , k = 0.1 , �̂load = 1 . As suggested in Fig. 3, the pull-
off stress is not affected by the loading history, moreover for 
small radii (blue curve) a change of 3 orders of magnitude 
of the unloading rate resulted in a variation of the pull-off 
stress by only a 10%, as we are near the cohesive strength 
limit. Notice that we did not find an appreciable dependence 
of the pull-off stress on �̂load (not shown).

The same data shown in Fig. 5a are also reported in 
Fig. 5b, this time plotted as a normalized effective work of 
adhesion Δ̂�eff = Δ�eff∕Δ� versus the crack speed at pull-off 
V̂c , being Δ�eff = P2

po
∕8�E∗

0
a3
c
 , or, in dimensionless form 

Δ̂�eff =
2�

9
√
3
�̂2
po
â(

â

âc
)3Σ0 . The numerical results are compared 

with the prediction of Persson and Brener theory [29] as 
extended for finite size systems (where finite size is implied 
by the difference between the size of crack ligament ac and 
the finite punch radius a) by Persson [43] slightly simplified 
by Ciavarella and Papangelo (Eq. (17) in Ref. [31]). Notice 
that in order to have a reasonable agreement with the numer-
ical results, we had to use a shift factor on the crack velocity 
definition2 [31, 33]. The same colour corresponds to the 
same ratio â∕â0 , while the grey curve is the reference to an 
infinite size system. The numerical results show that the 
effective work of adhesion increases monotonically with the 
crack speed in all cases. In particular, for large systems 
â∕â0 = 35.84 LEFM holds, hence for slow crack velocity 
Δ̂�eff ≃ 1 , while at high velocity, we obtained an enhance-
ment close to E∞∕E0 . For smaller radii, finite size effects 
come at play, but Δ̂�eff still increases monotonically with the 
crack speed. Moreover, for small radii, the normalized effec-
tive work of adhesion can be smaller than unity. This should 
not surprise as, even for a purely elastic problem, the pull-off 
stress is less than that expected from LEFM for small radii 
due to the transition towards the cohesive limit region which 
is equivalent to a reduced work of adhesion. In general, 
while we can say that there is a quantitative agreement with 
dissipation-based theories for large radii, the results contrast 
both quantitatively and qualitatively for finite size, and in 
particular, there is no evidence of a maximum of load at 
intermediate speeds.

A key quantity to investigate is the work of separation 
ŵsep , as it gives an estimate of the energy that is dissipated 
during the unloading phase. We obtained this quantity as a 
function of the normalized unloading rate for �̂0 = �̂load = 1 , 
â∕â0 = [0.36, 2.02, 35.84] respectively blue squares, red cir-
cles and green triangles (Fig. 6). Filled symbols refer to the 
case when the punch is unloaded after a very slow loading, 
while empty symbols refer to data obtained unloading after a 
very fast loading phase. The inset shows the work of separa-
tion as a function of the crack speed.

Notice that, contrary to the case of the pull-off stress 
and as suggested by Fig. 3, the work of separation shows a 
weak dependence on the loading rate, limited to small punch 
radius 

(
â∕â0 = 0.36

)
 and intermediate unloading rates. For 

the case â∕â0 = 2.02 , and unloading from a fully relaxed 
substrate, several values of �̂0 = �̂load = [1, 2, 3] were tested, 
whose results are shown as red circles with the circle dimen-
sion increasing with �̂load . For intermediate rates, we find a 
slight dependence of ŵsep on �̂load , which makes the picture a 
bit more elaborate than what happens for the pull-off stress. 
Importantly, while the pull-off stress increases monotoni-
cally with respect to the unloading rate, independently on the 
loading history, the work of separation retains a bell shape. 
Notice that for small punch radii 

(
�a∕�a0 ≪ 1

)
 the elastic limit 

at high and low velocity is ŵsep = 1 , as we have a progressive 
detachment of the interface with uniform stress up to very 
large displacements, while in the LEFM region 

(
�a∕�a0 ≫ 1

)
 

the elastic limit at high and low velocity is ŵsep = 2 , because 
there is essentially a linear load–displacement curve up to 

10-1 100 101 102
100

101

100 105
100

101

Fig. 6   Normalized work of separation as a function of the nor-
malized unloading rate for Σ0 = 0.05 , k = 0.1 , �̂0 = �̂load = 1 , 
â∕â0 = [0.36, 2.02, 35.84] respectively blue squares, red circles, 
green triangles. Filled symbols refer to the case when unloading 
starts after very slow loading, while empty symbols refer to pull-off 
data obtained after very fast loading. For the case â∕â0 = 2.02 and 
unloading from fully relaxed substrate we tested several values of 
�̂0 = �̂load = [1, 2, 3] (the circle dimension increases with �̂load ). In the 
inset the work of separation is shown as a function of the crack veloc-
ity (only the data referring to �̂0 = �̂load = 1 are shown) (Color figure 
online)

2  In Eq. (17) of Ref. [31] we used as a reference velocity 
v0,new = 2�2v0 , being v0 =

Δ�E∗
0

(2��0)
2�

.
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the “brittle” rupture at the Kendall load and it can be easily 
shown that the gives ŵsep = 2 , so that some strain energy 
must be released at the point of fracture. Hence, the prob-
lems are in all respects elastic both at very low and very 
high speeds, and dissipation is not the cause of the load 
enhancement at fast unloading, contrary to the classical de 
Gennes picture. The load increases of the ratio instantaneous 
to relaxed moduli, but the remote displacement decreases by 
the same ratio, hence the resulting area integral is the same 
at very low unloading rates, and at very high ones.

5 � Extension of Maugis Cohesive Zone Model

In this section, we attempt a generalization of the elastic 
cohesive model of Maugis [19] (see also the work of Tang 
and Hui [40]) to the case of viscoelasticity. The problem of 
unloading a rigid axisymmetric flat punch from an elastic 
half-space of composite elastic modulus E∗ has been stud-
ied using a Dugdale cohesive law [19, 40] which showed 
that the peeling force P is related to the radius of the liga-
ment of the crack ac as follows

where we recall a is the punch radius, while ac is the 
radius of the ligament of the crack which is a function of 
time, hence the cohesive stresses may exist in the annulus 
ac ≤ r ≤ a . The pull-off occurs when the separation at the 
crack mouth r = a reaches the Critical Opening Distance 
(COD) hc in the Dugdale force-separation law, as any smaller 
radius would lead to a smaller force. Considering the crack 
profile this condition translates into [40]

where equating the surface energy Δ� in a LJ force-separa-
tion law with that of a Dugdale model and having the same 
theoretical strength �0 , gives hc = �h0 ≃ 0.974h0 . Solving 
Eq. (21) for ac one determines the critical radius of the liga-
ment of the crack at pull-off and substituting into Eq. (20) 
the pull-off force is obtained. In the dimensionless formula-
tion introduced before the equation for the normal stress is 
unaffected by the modulus

while the condition for the COD is modified for a viscoe-
lastic half-space, by substituting the inverse of the elastic 

(20)P = 2ac�0

[√
a2 − a2

c
+

a2

ac
cos−1

ac

a

]
,

(21)hc =
4�0
�E∗

[
ac − a +

√
a2 − a2

c
cos−1

ac

a

]
,

(22)�̂ =
2

�

âc

â

⎡⎢⎢⎣

�
1 −

�
âc

â

�2

+
â

âc

cos−1
âc

â

⎤⎥⎥⎦
,

modulus with an effective compliance ceff
(̂
tb

)
= E∗

0
C
(
tb

)
 , 

with tb a characteristic time

In analogy with the suggestion of Schapery, we define 
tb ≃ b∕V  being b the width of the cohesive zone and V the 
crack velocity.3 For semi-infinite crack, and a Dugdale cohe-
sive stress law, Schapery found

where we assumed, during propagation, the mode-I SIF is 
given by KI = P∕

√
4�a3

c
 . In the numerical simulation, we 

used a standard linear viscoelastic material, hence

At every time-step we determined the crack position 
based on the location of the maximum adhesive stress at the 
interface, hence we estimated Vc , the crack velocity at pull-
off, and used this value in the Cohesive Zone Model (CZM, 
Eqs. 25, 23, 22) to determine the theoretical pull-off stress 
which was then compared with that obtained numerically in 
Fig. 7 for a set of punch radii â∕â0 = [0.36, 2.02, 3.58, 35.84] 
(respectively blue squares, red circles, black stars, green tri-
angles) unloading from a fully relaxed substrate (filled sym-
bols, E ≃ E0 when unloading starts) or from a not-relaxed 
substrate (empty symbols, E ≃ E∞ when unloading starts). 
Although small discrepancies appear with respect to the 
numerical data, the CZM provides a fairly good estimate 
of the pull-off stress, with deviations not larger than a 10% 
between numerical and theoretical data.

As with semi-infinite crack theories, we have described 
the model as a function of the crack speed, which, in an 
adhesive experiment, is unlikely to be constant and has to 
be measured in numerical/real experiments, where gener-
ally the remote displacement rate is imposed. The relation 
between the external unloading rate r̂  with the crack speed 
at pull-off V̂c is shown in Fig. 8 for the same data as in Fig. 7. 
For small punch radii (blue squares) the behaviour is almost 
linear and a small deviation can be seen only around r̂ ≈ 2 , 
while for �a∕�a0 > 1 we clearly found two linear regimes and 

(23)

4Σ0

�
ceff

�̂
tb

�⎡⎢⎢⎣
âc − â + â

�
1 −

�
âc

â

�2

cos−1
âc

â

⎤
⎥⎥⎦
−

9
√
3

16
= 0.

(24)b =
�

8

(
KI

�0

)2

=
�2

32

(
�

�0

)2(
a

ac

)4

ac,

(25)ceff

(̂
tb

)
= 1 + (k − 1) exp

[
−
�2

96

�̂2âc

V̂

(
â

âc

)4
]
.

3  Schapery uses tb = b∕3V  , for a constant stress (Dugdale) model.
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a transition zone between the two linear dashed lines shown 
in Fig. 8, which perhaps may be used to roughly estimate the 
crack speed as a function of the loading rate.

6 � Conclusions

In this work, we have studied the adhesive behaviour of a 
circular rigid flat punch that is placed in contact with a 
viscoelastic half-space. We showed that depending on the 
punch radius there exists a transition from a cohesive limit, 
where debonding happens at a uniform stress equal to the 
theoretical strength of the interface, to a regime that is 
governed by classical LEFM concepts, extended to the 
viscoelastic case. Our study has focussed on two key quan-
tities, such as the pull-off stress and the work of separa-
tion. We found that the pull-off stress is a monotonically 

increasing quantity of the unloading rate and is almost 
independent on the contact history. This is markedly dif-
ferent from the case of a Hertzian indenter which has been 
extensively studied [36–38] and showed a strong influence 
on the preload. Indeed, we suggest here that the depend-
ence on the loading history of the pull-off stress is geom-
etry dependent. In our numerical simulations we also 
measured the work of separation wsep as the energy per unit 
area that is dissipated to separate the contact. Indeed, in 
an attempt to interpret the maximum of load (and resulting 
instability) in the peeling experiments of Gent and Petrich 
[16], de Gennes [28] proposed a theory of viscoelastic 
semi-infinite crack propagation based on dissipation away 
from the crack tip reaching a maximum at intermediate 
speeds. We found that wsep has indeed a maximum at inter-
mediate crack speed, but this does not correspond to a 
maximum of the load and hence dissipated energy cannot 
be directly used to determine the debonding load. Notice 
that in our geometry, where the flat punch is rigid, the 
stress intensity factor KI doesn’t need any geometrical cor-
rection factor as for example introduced in [48] as it is 
always equal to KI = P∕

√
4�a3

c
 where ac is initially the 

punch radius but then becomes the current size of the liga-
ment of the crack. Hence our numerical results cannot be 
explained by a “corrected” Persson–Brener theory for infi-
nite systems as suggested by Violano et al. [48] for a finite 
viscoelastic plate geometry. Finally, we have proposed a 
cohesive zone model for debonding of a flat punch from a 
viscoelastic substrate, stemming from the elastic theory by 
Maugis [19] (see also [40]), which proved to be reasonably 
good in terms of pull-off stress prediction. Unfortunately, 
in general we cannot impose externally the crack speed, 
but the remote displacement rate, and hence the theory 
only interprets data but is not predictive.
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Fig. 7   The pull-off stress obtained with BEM numerical simulations 
is compared with that predicted by the CZM (Eqs. 22, 23, 25) for the 
following set of parameters Σ0 = 0.05 , k = 0.1 , �̂0 = �̂load = 1 and 
â∕â0 = [0.36, 2.02, 3.58, 35.84] , respectively blue squares, red circles, 
black stars, green triangles. Filled (Empty) symbols refer to the case 
when unloading starts from a relaxed (unrelaxed) substrate (Color fig-
ure online)
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Fig. 8   Crack propagation velocity at pull-off V̂c as a function of the 
unloading rate r̂  for the same data as in Fig. 7, (the same symbols are 
used)
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