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Abstract
The threshold condition for leakage inception is of great interest to many engineering applications, and it is essential for 
seal design. In the current study, the leakage threshold is studied by means of a numerical method for a mechanical contact 
problem between an elastic bi-sinusoidal surface and a rigid flat surface. The coalesce process of the contact patches is 
first investigated, and a generalized form of solution for the relation between the contact area ratio and the average applied 
pressure is acquired. The current study shows that the critical value of the average applied pressure and the corresponding 
contact area required to close the percolation path can be represented as a power law of a shape parameter, if the effect of the 
hydrostatic load from the pressurized fluid is ignored. With contact patches merged under a constant applied load, the contact 
breakup process is investigated with elevated sealed fluid pressure condition, and it is shown that the leakage threshold is 
a function of the excess pressure, which is defined as a ratio between the average applied pressure and the critical pressure 
under dry contact conditions.
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Sb  Critical solid–solid contact area when pf = pb
S0  Area of the solution domain
pf   Sealed fluid pressure
Δ  Geometry parameter of the initial gap g0(x, y)
�  Side length of the square solution domain
�  Material Poisson ratio
�  Shape parameter of the initial gap g0(x, y)
p  Surface traction (surface stress orthogonal to the 

contact interface)
p0  Average applied pressure at vertical direction
psaddle  Surface traction at the saddle point
p∗
0
  Critical pressure of dry contact

pb  Critical pressure of leakage
pes  Normalized excess pressure defined in Eq. (9)
Pt  Total load at the vertical direction
ps  Pressure scaling factor
E  Material young’s modulus
g0  Initial gap between the contacting surfaces
gx  The x-component of g0
gy  The y-component of g0
lcx  Half-width of the rectangular contact strip for gx
lcy  Half-width of the rectangular contact strip for gy
p∗
x
  Pressure scaling factor for p̄x

p∗
y
  Pressure scaling factor for p̄y

�  Partition function for the curve Eq. (3)
�  Error tolerance of p0
C  Coefficient for Eq. (6)
c0,1,2,3  Fitting coefficients for C
�x,y  Curvature of g0(x, y) at the two crest positions

1 Introduction

As a machine element that blocks the fluid flow, the seal 
achieves its function by compressing two surfaces together 
and closing the percolation paths between the high- and 
low-pressure sides. The contact patches are formed when 
two surfaces are pressed against each other. The initially 
isolated contact patches for rough surfaces can merge under 
increased contact load. The fluid leakage is stopped when 
the connected contact patches isolate the percolation paths 
between the high- and the low-pressure sides. Since the 
geometry connectivity of the contact patches decides the 
transition point of the leakage, it is of great interest to study 
the coalescence and breakup process of the contact patches.

The early contact mechanics models for the rough sur-
faces, such as the Greenwood–Williamson model [1] and 
the Greenwood–Tripp model [2, 3], assumed that the contact 
between the micro asperities could be decomposed into a 
group of Hertzian-like contacts and the deformation of each 
asperity is independent of each other. Since then, both exper-
iments and simulations [4, 5] have shown that even for a 
simple contact problem between an elastic bi-sinusoidal and 

a rigid flat surface, the deformation of the contact patches 
is not independent of each other, suggesting that the contact 
patch interaction needs to be considered for the correct con-
tact area, hence, also for the percolation threshold. Elastic 
contact mechanics accounting for the interaction between 
contact patches has been developed [6, 7]. It has also been 
utilized to study the percolation threshold for both the iso-
tropic fractal rough surface and the anisotropic rough sur-
face [8–10]. The contact area ratio at the leakage threshold 
predicted by both contact mechanics theory and numerical 
simulations [11–16] is smaller than the value predicted by 
the bond-percolation theory [17] and the bearing area model 
[2, 3], because the long-range elastic coupling between con-
tact patches is ignored in the latter two.

Previous research on the leakage threshold of random 
rough surfaces usually builds on the assumption that the 
fluid pressure is much smaller than the contact pressure, 
and that the solid deformation generated by the fluid pres-
sure is negligible. This assumption allows one to decouple 
the solid contact problem from the fluid leakage problem, 
and the leakage threshold is determined by the geometry 
connectivity of the deformed elastic surfaces without the 
fluid load. There are two situations where the fluid pres-
sure is not negligible. First, the fluid can be trapped between 
the surface roughness due to the coalescing of the contact 
patches caused by a increase load. If the trapped fluid is 
further squeezed by the solid surfaces, its internal pressure 
will increase due to the volume decrease, thus providing 
additional load carrying capacity, and preventing further 
contact between the solid surfaces. Kuznetsov [18, 19] stud-
ied the contact problem with fluid entraps in the valleys of 
a sinusoidal profile. His solution shows that the increased 
total load can be balanced by the compressed fluid pres-
sure with a constant solid–solid contact length. The experi-
mental findings in [20] have also confirmed that the fluid 
entrapped between a bi-sinusoidal and a flat surface prevents 
the further close-up of the gap between them after the adja-
cent contact patches touch each other. The further increase 
of the average applied pressure mainly contributes to the 
deformation near the saddle point, with little variation on 
the solid–solid contact areas, and the trapped fluid does not 
leak with its increased hydrostatic pressure [21].

Another situation where the fluid pressure must be con-
sidered is when the sealed fluid pressure is comparable 
with the contact load. It is not a rare case, especially near 
the boundaries of the contact zones adjacent to the high-
pressure side [22]. If there is no leakage, the pressurized 
fluid from the high-pressure side fills the gap between the 
contacting surfaces with uniform hydrostatic pressure. The 
hydrostatic fluid pressure will deform the contacting sur-
faces and change contact pressure distribution [23]. When 
the fluid is pressurized from the high-pressure side of an 
initially sealed system, leakage is observed when the sealed 
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fluid pressure pf equals the maximum contact pressure [24]. 
The leakage threshold under this condition is governed by 
the initial geometries of the contact surfaces, the loading 
condition, and the sealed fluid pressure.

The contact mechanics problem between an elastic bi-
sinusoidal and a rigid flat surface is probably the most sim-
ple one that may be used to show the coalescence of the con-
tact patches and the disappearance of the percolation path. 
Hence, it serves as an important model problem involving 
the mechanics governing the leakage threshold, which has 
also been studied in the previous works [4, 5, 12], without 
considering the fluid load. In this work, we will revisit this 
problem and extend it to include the effect of the sealed fluid 
pressure at the high-pressure side. The main research objec-
tive here is to investigate the variability of leakage inception 
with the sealed fluid pressure in initially sealed contacts.

2  Problem Setup

The present study is devoted to the linear elastic contact 
problem between a non-planar smooth surface in contact 
with a rigid flat surface. The elastic surface has a initial bi-
sinusoidal shape, i.e.,

with (x, y) ∈ [−�∕2, �∕2]2 , and � is the side length of the 
square solution domain. The geometry parameter Δ is cho-
sen as Δ = 0.01� in the current study to satisfy the small 
slope requirement of the half-space approximation, while it 
is noteworthy that the solution in the current study is inde-
pendent from Δ∕� when normalized with Δ∕� [25]. The 
shape parameter � controls the initial gap size at the sad-
dle point (x, y) = (0, 0) , and the gap equals �Δ under zero 
loading condition. The initial geometry g0(x, y) reduces to 
a 1D cosine profile when � = 0 . When � = 2 , the geometry 
depicted in Eq. (1) is the bi-sinusoidal geometry studied 
in [4, 5, 12] under a rotation and a translation operation. 
In the current study, the shape parameter � is chosen as 
� = 0.1, 0.2, 0.3, 0.4 and 0.5 , as shown in Fig. 1.

(1)g0(x, y) = Δ(1 − cos(2�x∕�) + 0.5�(1 + cos(2�y∕�))),

The non-planar smooth surface g0(x, y) is brought into 
contact with a rigid flat surface under the total load Pt , and 
the average applied pressure is p0 = Pt∕S0 , with S0 = �2 the 
area of the solution domain. The solid–solid contact problem 
is first studied with the DCD-FFT method [26] (which is a 
modification of the DC-FFT method with duplicated pad-
ding), in which the periodic boundary condition is applied 
at y = ±0.5� . With the percolation path being sealed by 
the coalescence of the two contact patches under constant 
total load condition, the sealed fluid is filled in from the 
high-pressure side x = −0.5� with its pressure equaling pf . 
Under the elevated pf condition, the sealed fluid opens up 
the solid–solid contacts between the surfaces, allowing for 
the fluid front to move forward to the point that the percola-
tion path is revealed once more, and the leakage is onset. 
The value of the sealed fluid pressure when the high- and 
low-pressure sides are first connected is defined as the criti-
cal pressure of leakage pb , and the critical solid–solid con-
tact area when pf = pb is denoted as Sb . It is worth to men-
tion that the Sb defined in the current study is not the same 
as the critical area defined in the studies of [5, 12], in which 
the deformation of contacting surfaces by the sealed fluid 
pressure is ignored. The critical contact area under the dry 
condition is defined as S∗ in the current study and the cor-
responding average applied pressure when the solid–solid 
contact area S equals S∗ is defined as the critical pressure of 
dry contact, with the notation as p∗

0
.

The values of p∗
0
 are acquired by conducting the con-

tact mechanics simulation under various p0 conditions, and 
checking the geometry connectivity of the high- and low-
pressure sides with a connected component labeling algo-
rithm [23, 27]. A binary connectivity identifier is defined 
as 1 when the high- and low-pressure sides are connected, 
and 0 otherwise. A bisection method is utilized to narrow 
down the range of the average applied pressure p0 based 
on the connectivity identifier, and the simulation is stopped 
when the range of p0 is smaller than a specified tolerance 
� = 10−3p0 , and the critical pressure of dry contact is taken 
as the lower endpoint of the range of p0.

The critical pressure of leakage pb is acquired with a 
boundary element method developed in [23]. The method 

Fig. 1  The initial shape of the elastic bi-sinusoidal surface, mathematically described in Eq. (1), with the shape parameter � = 0.1 in (a), � = 0.2 
in (b), � = 0.3 in (c), � = 0.4 in (d), and � = 0.5 in (e)
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is a further development of FFT-accelerated method [28] 
including the hydrostatic load at the contact interface. The 
mesh size is chosen as 1024 by 1024. The contact plane 
geometry tolerance is set to 10−5Δ , and the total load toler-
ance is set to 10−9p0 for both the dry contact and the cases 
with the hydrostatic load.

It is worth to emphasize that the periodic boundary con-
dition is only applied at the y direction in the DCD-FFT 
method. It differentiates the current study from the previous 
studies on the bi-sinusoidal surface [4, 5, 12], in which the 
periodic boundary condition is applied to both the x and y 
directions. The y–only periodic boundary condition leads 
to contact pressure concentration when the contact patches 
touch the corner of the solution domain due to the flat punch 
effect, and the contact pressure at the corner is unbounded 
with large value of shape parameter � . So � is set to be 
� ∈ (0.0, 0.5] in the current study to avoid the contact pres-
sure singularity under high loading conditions.

3  Results and Discussions

The merging of the two contact patches occurs continu-
ously for non-adhesive solids, without considering the sur-
face deformation by the sealed fluid pressure [12]. Both the 
critical pressure p∗

0
 and the critical area S∗ under dry con-

tact conditions depend on the shape of the merging contact 
patches. In this section, the critical quantities p∗

0
 and S∗ are 

first studied for the initial geometries depicted in Eq. (1) 
and Fig. 1, followed by the analysis of the critical quantities 
pb and Sb with hydrostatic load in consideration. The adhe-
sion force between the contacting surfaces is ignored in the 
simulation, and the surface tension of the fluid is neglected. 
The surface stress orthogonal to the contact interface p is 
referred to as surface traction in the discussion below, fol-
lowing the naming convention in [29]. The surface traction 
p is the contact pressure under dry contact conditions. For 

the cases with hydrostatic load, the surface traction p equals 
the fluid pressure in the fluid-filled regions, and it is the 
contact pressure at the solid–solid contact regions. Both the 
force and pressure in the current study are normalized with 
a pressure scale factor ps,

where E is the Young’s modulus of the elastic surface, and 
� is its Poisson ratio.

3.1  Critical Quantities Under the Dry Contact 
Condition

Figure 2 shows the surface traction distribution p∕ps under 
dry contact conditions  for the initial geometry g0(x, y) 
depicted in Eq. (1), with the shape parameter � = 0.3 . 
The average applied pressure is p0 = 0.012ps in Fig. 2a, 
p0 = 0.016ps in Fig. 2b, and p0 = 0.020ps in Fig. 2c. At the 

(2)ps =
2�E

1 − �2
Δ

�
,

Fig. 2  The surface traction distribution p/ps under dry contact conditions  for the cases of p0∕ps = 0.012 in (a), p0∕ps = 0.016 in (b) and 
p0∕ps = 0.020 in (c). The shape parameter is � = 0.3 and the white regions represent the areas with surface traction equaling zero

Fig. 3  The relationship between the average applied pressure and the 
contact area ratio under dry contact conditions
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beginning of the contact, the surfaces first touch at the crest 
positions (x, y) = (0,±0.5�) , and the shape of the contact 
patches can be approximated as two semiellipses. Johnson 
et al. [4] and Xu et al. [25] have shown that there exists a 
2/3 power law between the contact area ratio S∕S0 and the 
average applied pressure p0 if the contact patches are sem-
iellipses. The contact area ratio deviates from the 2/3 power 
law with higher p0 , and it increases as a concave function of 
the average applied pressure. There is an inflection interval 
when p0 → p∗

0
 , in which the contact area ratio becomes a 

convex function of the average applied pressure, as shown 
in Fig. 3. This inflection interval is firstly discovered by 
Yastrebov et al. [5] for the isotropic bi-sinusoidal surface, 
and being confirmed by Xu et al. [25] for the anisotropic bi-
sinusoidal surfaces. The contact area ratio transits back to 

the concave function of the average applied pressure after p0 
passes p∗

0
 , and the two contact patches merge together into 

a dumbbell shape. The size of the dumbbell contact patch, 
as shown in Fig. 2c, is further increased with elevated p0.

The relationship between the contact area ratio S∕S0 and 
average applied pressure p0∕ps , as shown in Fig. 3, can be 
fitted into an equation:

see Appendix A, where � = �(p0;�) is a partitioning 
function. The partitioning function � (obtained by fitting 
Eq. (3) to the numerical simulation results shown in Fig. 

(3)
S

S0
=

2

�

⎛
⎜⎜⎝
arcsin

�
(1 − �)

�
p0

pS

�
+ arcsin

��
2�

�

p0

ps

�⎞
⎟⎟⎠
,

Fig. 4  The partition function � obtained by fitting Eq. (3) to the 
numerical simulation results shown in Fig. 3

Fig. 5  The critical pressure (left) and critical contact area (right) under dry contact conditions, as function of the shape parameter � . The dots are 
from simulation and the dashed lines are the power laws Eq. (5)

Fig. 6  The relationship between the contact area ratio S and the aver-
age applied pressure p0 under the dry contact conditions, with S nor-
malized with S∗ and p0 normalized with p∗

0
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(3)) is illustrated in Fig. 4. Since the maximum value of 
� is 0.041 under the current simulation conditions, and 
p0∕ps ∈ [0, 0.05] , Eq. (3) can be approximated as

The critical pressure and the critical contact area under 
dry condition are represented as a function of the geometry 
parameter � in Fig. 5. They can be fitted in to the power 
laws of � , which read

The power laws Eq. (5) give zero critical pressure and criti-
cal contact area ratio under dry contact condition when 
� = 0 , this is coinciding with the 1D cosine contact prob-
lem, for which there is no percolation paths connecting the 
high- and low-pressure sides when the loading equals zero.

Substituting the power laws Eq. (5) into Eq. (4) gives

(4)
S

S0
≈

2

�

(
1 +

√
2�

�

)√
p0

ps
.

(5)

p∗
0

ps
= 0.076�1.292,

S∗

S0
= 0.215�0.622.

The coefficient C can be fitted as

with

The fitting coefficients c0 to c3 are independent from the 
shape parameter � , as shown in Fig. 6 for p0∕p∗0 ∈ (0, 2.0] . 
The fitting Eq. (6) agrees well with the simulation results 
when p0 is closed to p∗

0
 , and the average and the maximum 

relative error of Eq. (6) are shown in Table 1 for differ-
ent ranges of p0∕p∗0 . While Eq. (6) gives a poor estimation 
for the solid–solid contact area S when p0 → 0 , the relative 
error decreases with increased applied load, and the maxi-
mum error is less than 2.5% when p0∕p∗0 > 0.5.

Equation (6), with the universal coefficients c0 to c3 in Eq. 
(8), suggests that the relationship between the contact area 
and the average applied pressure, when scaling with their 
critical values under the dry conditions, is weakly dependent 
on the initial gap shapes. Utilizing Eq. (6) can significantly 
simplify the computation of the solid–solid contact area at 
different loading conditions, and it is of a nature to scale 
the surface traction p with p∗

0
 . However, further analysis 

has shown that the surface traction p∕p∗
0
 at the saddle point 

(x, y) = (0, 0) , after the percolation path is closed, depends 
on the shape parameter � (Fig. 7). Since the saddle point has 
the minimum non-zero surface traction after the percolation 
path closes, its value is closed relative to the hydrostatic 
pressure required to open up contact. Therefore, the critical 
pressure of leakage pb still depends on the initial gap shape.

3.2  Critical Quantities with Hydrostatic Load

Figure 8 shows the surface traction distribution p∕ps for the 
initial geometry g0(x, y) depicted in Eq. (1), with the shape 
parameter � = 0.4 . The average applied load is p0 = 0.04ps 
in Fig. 8a–c, and the percolation path between the high- and 
low-pressure sides is disconnected under the dry contact 
condition. The sealed fluid enters from the low-pressure side 
x = −0.5� with its pressure equaling pf , and the value of pf 
is pf∕p0 = 2.5 × 10−5 in Fig. 8a, pf∕p0 = 0.285 in Fig. 8b, 
and pf∕p0 = 0.6125 in Fig. 8c. The fluid from the high-pres-
sure side filled the gaps between the two contacting surfaces 

(6)

S

S∗
≈

2.564

�
�0.024

(
1 +

√
2�

�

)√
p0

p∗
0

=

√
C
p0

p∗
0

.

(7)C = c0 + c1 arctan

(
c2
p0

p∗
0

+ c3

)
,

(8)
c0 = 0.943, c1 = 0.263, c2 = 3.107, and c3 = −2.838.

Table 1  The relative error of Eq. (6)

Relative error of Eq. (6) Average (%) Maximum (%)

p0∕p
∗
0
∈ (0, 0.5] 40.1 319

p0∕p
∗
0
∈ [0.5, 1.5] 0.41 2.22

p0∕p
∗
0
∈ (1.5, 10] 0.62 1.20

Fig. 7  The surface traction at the saddle point
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before being blocked by the contact patch. The surface trac-
tion distribution in the contact patch and the sealed fluid 
pressure together determined the fluid front before the con-
tact is open, and the fluid front of the sealed fluid proceeds to 
the low-pressure side with increased pf . Since the total load 
Pt is constant in Fig. 8a–c, the maximum solid–solid contact 
pressure decreases with increased pf , and the contact area 
S is decreased at the same time due to the proceeding of the 
sealed fluid. The loss of the solid–solid contact happens at 
both the high- and low-pressure sides, because of the global 
response of the elastic displacement with the surface traction 
distribution [23]. The contact patch has a dumbbell shape 
which is symmetric with x = 0 when pf = 0 , but loses the 
symmetry when the sealed fluid pressure increases, because 
the hydrostatic pressure is only applied at the high-pres-
sure side. Since the neck position of the connected contact 
patches ( y = 0 ) has the smallest surface traction, the contact 
length at y = 0 shrinks the fastest with increased pf , and the 

contact is open along with it when the sealed fluid pressure 
reaches the critical pressure of leakage pb.

In the current study, the critical pressure of leakage pb 
is defined as the value of the sealed fluid pressure when the 
high- and low-pressure sides are first connected, so it can 
only be uniquely determined when p0 > p∗

0
 . A normalized 

excess pressure pes is defined as

and the critical pressure of leakage pb is represented as 
the function of pes for pes ≥ 0 , as shown in Fig. 9a. When 
pes = 0 , the two contact patches touch each other only at the 
saddle point (x, y) = (0, 0) , any infinitesimal fluid pressure 
can open up the contact and pb ≈ 0 . The ratio between pb 
and the average applied pressure p0 firstly increases with 
pes , and slightly decreases with further growth of pes . The 

(9)pes =
p0

p∗
0

− 1,

Fig. 8  The surface traction distribution p∕ps for pf∕p0 = 2.5 × 10−5 
in (a), pf∕p0 = 0.285 in (b), and pf∕p0 = 0.6125 in (c). The average 

applied pressure is p0∕ps = 0.04 , and the shape parameter for the ini-
tial gap is � = 0.4 . The white regions represent the areas with surface 
traction equaling zero

Fig. 9  The critical pressure (a) and the critical contact area of leakage (b), as the function of the excess pressure defined in Eq. (9)
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decrease of pb∕p0 with the average applied pressure p0 is 
consistent with the line contact problem studied in [30]. 
However, the critical pressure of leakage pb is always larger 
than the average applied pressure p0 in the line contact prob-
lem, because the sealed fluid pressure must be increased to 
the level that all the contact area disappears to reveal the 
percolation path between the high- and low-pressure sides. 
On the other hand, the sealed fluid only needs to open up the 
contact at the saddle point to create leakage for the geom-
etries Eq. (1), so the critical pressure of leakage pb can be 
smaller than p0 in the current study. Another consequence 
of the existence of the saddle point is that the solid–solid 
contact area does not need to decrease to zero to initial-
ize the leakage. The critical contact area Sb , which is the 
solid–solid contact area when the hydrostatic load opens the 
contact, is non-zero as depicted in Fig. 9b. The critical con-
tact area Sb equals S∗ when pes = 0 for all geometries, since 
any infinitesimal fluid pressure increases will lead to contact 
open at the saddle point when p0 = p∗

0
 . When p0 > p∗

0
 , the 

solid–solid contact area S is larger than S∗ , and it decreases 
with the increasing sealed fluid pressure pf . The remaining 
solid–solid contact area when the contact is opened is gener-
ally higher than S∗ in the current study, and it increases with 
the shape parameter � . The curvatures of g0(x, y) at the two 
crest positions ( (x = 0, y = ±0.5�) ) are

and �y increases with � . The higher curvature of the initial 
gap results in lager maximum contact pressure and steeper 
contact pressure distribution under the same total load con-
dition, and the fluid front is harder to proceed with elevated 
hydrostatic pressure [30].

(10)�x =
4�2Δ

�2
, �y = 0.5�

4�2Δ

�2
,

The critical pressure of leakage pb illustrated in Fig. 9a is 
fitted into an empirical relationship:

The relative error generated by Eq. (11) is 0.86% in average 
and maximize at 3.45%.

To further the understanding of the critical pressure ratio 
pb∕p0 , a dimensionless parameter Λ is introduced as the 
critical pressure factor as follows [30]:

with Sf the flooded area at the high-pressure side when the 
sealed fluid pressure pf = 0 and the average applied pressure 
p0 > p∗

0
 . Due to the symmetry of the current problem under 

the dry contact condition, the Sf can be written as

The critical pressure factor Λ is plotted against the excess 
pressure pes in Fig. 10, and it is fitted into an empirical rela-
tionship, viz.

The fitting coefficients in Eq. (14) are independent from the 
shape parameter � . Substituting Eq. (14) into Eq. (12) allows 
one to calculate the critical pressure ratio pb∕p0 with S and 
pes , which are quantities available from the dry contact sim-
ulation. The relative error of pb∕p0 generated from Eq. (14) 
is 1.48% in average, when comparing with the simulation 
results, and the maximum relative error is 4.61%.

4  Conclusions

A contact problem between a geometrically anisotropic bi-
sinusoidal surface and a rigid flat surface is revisited in the 
current paper. The critical pressure and the critical solid–solid 
contact area are of main research interest since they are closely 
related to the leakage inception. The critical quantities are first 
studied without considering the hydrostatic load of the pres-
surized fluid. The relationship between the solid–solid contact 
area and the average applied load acquired from the current 
study qualitatively agrees with the previous studies from other 
researchers, and the detailed transition regime of the contact 
area is also observed. Instead of studying the asymptotic solu-
tion of this contact problem, a generalized form of solution 
Eq. (3) is constructed based on Westergaard’s solution of the 
1D cosine contact. By introducing a partition function �(p0;�) , 

(11)
pb

p0
= 2

(
1 −

1

1 + pes

)1.266

− 0.143�0.805pes
0.935

.

(12)Λ =

(
Sf + S

S0

)
pb

p0
,

(13)
Sf

S0
=

1

2

(
1 −

S

S0

)
.

(14)Λ =
(
tanh(1.283p

0.315

es
)
)5.14

.

Fig. 10  The critical pressure factor, as the function of the excess pres-
sure
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Eq. (3) can fit the contact area with high accuracy for a wide 
range of shapes and loading conditions. Moreover, it is found 
that the relationship between the contact area and the average 
applied pressure, when normalized with their critical quanti-
ties, is independent of the shape parameter.

The critical pressure and critical contact area for leakage 
are further studied by first applying a load to close the saddle 
point, and then filling the contact interface with fluid from 
the high-pressure side. The contact is lost due to increased 
sealed fluid pressure, and it was discovered that the sealed fluid 
pressure required to open up the contact and the remaining 
solid–solid contact area before the revealing of the percola-
tion path can be represented as a function of excess pressure, 
which is defined as the difference between the applied pres-
sure and the critical pressure under dry contact conditions. 
On top of that, a dimensionless parameter, called the critical 
pressure factor, is defined based on the previous studies from 
the same authors. It is shown that the critical pressure factor, 
when represented as a function of the excess pressure, is inde-
pendent from the shape of the initial geometries. Utilizing the 
critical factor allows one to acquire the critical pressure for 

leakage using the quantities from the dry contact simulations, 
which are well studied and easily accessible from the previous 
research.

Appendix A. The relation 
between the contact area ratio 
and the average applied pressure under dry 
contact condition

The contact area S is a continuous function of the average 
applied pressure p0 for non-adhesive elastic contact [12], and 
it depends on the geometries of the contact surfaces. Hence, 
the ratio of the contact area to the nominal area can be for-
mulated as

where (the continuous function) f (p0;�) should satisfy that:

(A.1)
S

S0
= f (p0;�),

(A.2)f (0;�) = 0,

Fig. 11  Top row: the initial elastic surface g0(x, y) with the shape 
parameter � = 0.5 (a), the surface gx(x) depicted in eq. (A.4) (b), 
and the surface gy(y) depicted in eq. (A.5), with � = 0.5 (c). Bottom 
row: the schematic view of the contact region for the initial geom-

etry depicted in (a)-(c) contacts with a flat rigid surface. The contact 
region is colored in red, and the initial elastic surface is g0(x, y) in (d), 
gx(x, y) in (e) and gy(x, y) in (f)
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for any value of � (the shape parameter that controls the 
initial gap size at the saddle point (x, y) = (0, 0) ) because the 
contact area is zero when there is no applied load.

In the current problem, the initial gap g0(x, y) in eq. (1) 
can be written as:

with

and

When � → 0 , g(x, y) → gx(x) , the contact area S is a rectan-
gular strip of shape 2lcx × � , as shown in Fig. 11 (e). The 
values of lcx , according to the 1D Westergaard’s solution 
[31], is:

with

Therefore,

When � → ∞ , g(x, y) ≈ gy(y) , and the contact area S is a 
rectangular strip of shape 2� × lcy as shown in Fig. 11 (f). 
The values of lcy , according to the 1D Westergaard’s solu-
tion [31], is:

with

(A.3)g0(x, y) = gx(x) + gy(y),

(A.4)gx(x) = Δ(1 − cos(2�x∕�)),

(A.5)gy(y) = 0.5�Δ(1 + cos(2�y∕�)).

(A.6)lcx =
�

�
arcsin

√
p0

p∗
x

,

(A.7)p∗
x
=

�E

1 − �2
Δ

�
=

ps

2
.

(A.8)S

S0

||||�=0
= f (p0;0) =

2

�
arcsin

√
2p0

ps
.

(A.9)lcy =
�

�
arcsin

√
p0

p∗
y

,

Therefore,

It is assumed that when � ∈ (0,∞) , the relation between 
contact area and average applied pressure eq. (A.1) can be 
reconstructed through function composition:

The factor 1
2
 is applied in eq. (A.12) to normalize the con-

tact area ratio, which is always less or equal to one. For the 
reconstruction to satisfy eq. (A.8) and eq. (A.11), one must 
have: 

 Because the small values of p0 in the current study, the 
function f can be approximated linearly, and eqs. (A.13a) 
and (A.13b) can be written as: 

 One way to satisfy both eqs. (A.14a) and (A.14b) is by 
choosing f1 and f2 so that

which can be achieved by introducing a partitioning func-
tion � and letting

By substituting eq. (A.16) into eq. (A.12), and then using eq. 
(A.8) and eq. (A.11) gives:

(A.10)p∗
y
=

�E

1 − �2
0.5�Δ

�
= 0.25�ps.

(A.11)S

S0

||||�→∞

= f (p0;∞) =
2

�
arcsin

√
4p0

�ps
.

(A.12)f (p0;�) =
1

2
(f (f1(p0;�)p0;0) + f (f2(p0;�)p0;∞)).

(A.13a)f (f1(p0;0)p0;0) = 2f (p0;0), f2(p0;0) = 0,

(A.13b)f1(p0;∞) = 0, f (f2(p0;∞)p0;∞) = 2f (p0;∞).

(A.14a)f1(p0;0) = 2, f2(p0;0) = 0,

(A.14b)f1(p0;∞) = 0, f2(p0;∞) = 2.

(A.15)f1(p0;�) + f2(p0;�) = 2,

(A.16)f2(p0;�) = 2�(p0;�), f1(p0, �) = 2 − 2�(p0;�).

(A.17)

S

S0
= f (p0;�) =

1

�

⎛
⎜⎜⎝
arcsin

�
(2 − 2�)

�
2p0

ps

�
+ arcsin

��
8�

�

p0

ps

�⎞⎟⎟⎠

≈
2

�

⎛⎜⎜⎝
arcsin

�
(1 − �)

�
p0

ps

�
+ arcsin

��
2�

�

p0

ps

�⎞⎟⎟⎠
.
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It is worth mentioning that eq. (A.12) is not the only way to 
reconstruct f (p0;�) , e.g.,

with 

 also satisfies eq. (A.8) and eq. (A.11). However, the numeri-
cal experiment shows that the fitting equation based on eq. 
(A.18) gives a poor result with the current simulation data.
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