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Abstract
Most EHL numerical calculation methods considering both starved and flooded conditions, employ a fixed multiple of the 
Hertzian radius for the normalization of the computational domain. These methods are often used to investigate the influ-
ence of the lubricant supply on friction etc., but the solutions obtained might be numerically starved. The present numerical 
calculation method utilizes an optimized normalization of the computational domain to ensure that the solutions obtained are 
not numerically starved. With this normalization method, the computational domain can be appropriately meshed, regardless 
of the variability in the inlet length due to changes in the operating conditions. This method can, therefore, be used to obtain 
accurate EHL film thickness and pressure data over a wide range of operating conditions.

Keywords  Tribology · Fully-coupled finite element approach · Elastohydrodynamic lubrication · Starvation

Abbreviations
a	� Hertzian radius (m)
b′	� Inlet distance (m)
ci	� Elements of the stiffness matrix, i = 1, 2, 3 

(–)
E′	� Reduced elastic modulus (Pa)
Ei, �i	� Young’s modulus (Pa) and Poisson ratio (–) 

of body i
Eeq, veq	� Equivalent young’s modulus (Nm−2) and 

Poisson ratio (–)
Eeq	� Dimensionless equivalent Young’s modulus
h	� Oil film thickness (m)
H	� Dimensionless representation using a multi-

ple of inlet distance b′
h00	� Rigid body separation (m)
H00	� Rigid body separation dimensionless 

representation
L,M	� Moes’ dimensionless parameters
h
Moes

	� Moes’ dimensionless oil film thickness
h̃Moes
min

(M, L)	� Moes’ approximate expression of dimen-
sionless minimum oil film thickness

p,P	� Pressure (Pa), and its dimensionless repre-
sentation= p∕p

�

h
 (–)

p
′

h
	� Modified Hertzian contact pressure (Pa)

R′	� Reduced radius of curvature (m)
Sf 	� Inlet distance, fully flooded inlet distance 

(m)
U1,U2	� Velocity of surface (m/s)
Ue	� Mean entrainment velocity (m/s)
u, v	� Displacement in the x - and y-direction (m)
u, v	� Dimensionless displacement in the x - and y

-direction.
v�Ω, v�Ω	� Total displacement in the y-direction, and its 

dimensionless representation
w	� Load applied per unit width (N/m)
X, Y 	� Dimensionless space coordinates
x, y	� Space coordinates (m)
�	� Pressure-viscosity coefficient (Pa−1)
�	� Dimensionless pressure-viscosity coefficient
�0	� Lubricant’s viscosity at zero pressure (Pa s)
�	� Dimensionless lubricant’s viscosity, = �∕�0
�0	� Lubricant’s density at zero pressure (kg/m3)
�	� Dimensionless lubricant’s density, = �∕�0
p0	� Roelands’ reference pressure of the pressure-

viscosity relationship
P0	� p0∕p�h
pr	� Dowson and Higginson’s reference pressure 

of the pressure-density relationship
Pr	� pr∕p�h
�n	� Normal stress (Pa)
�t	� Tangential stress (Pa)
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1  Introduction

Many moving machine assemblies involve rolling-sliding 
parts, such as cam mechanisms, rolling bearings, gears, 
etc. and these typically operate under elastohydrodynamic 
lubrication (EHL) conditions. There are numerous exam-
ples of investigations of lubricant film formation and fric-
tion in the interfaces between the rolling-sliding parts. 
Most studies have been focused on high-load, low-speed 
conditions, but actual components also encounter low-
load, high-speed conditions. Since severe wear and flaking 
may occur on the rolling-sliding surfaces due to insuffi-
cient oil film thickness, controlling the oil film thickness 
distribution is necessary for reliable performance over a 
wide range of operating conditions.

Johnson [1] divided the lubrication regimes in EHL into 
four parts. These regimes are the piezo viscous rigid (PR), 
the isoviscous rigid (IR), the piezo viscous elastic (PE), 
and the isoviscous elastic (IE). The analysis method to 
calculate oil film thickness for IR was described by Mar-
tin  [2], PR by Grubin [3], PE by Dowson and Higgin-
son [4], and IE by Herrebrugh [5]. Moes [6, 7] suggested 
a minimum film thickness formula that could be used over 
a wide range of operating conditions, which is an approxi-
mation formula including the transition regions PE, PR, 
IE, and IR. This approximation formula was curve-fitted 
with asymptotic lines for obtaining the minimum oil film 
thickness in PE, PR, IE, and IR regimes. For the transition 
regions between PE and PR, IE, and IR, the numerical 
calculation of the oil film thickness, does in many cases, 
experience convergence issues, which leads to inaccurate 
predictions.

Regarding numerical computation methods for EHL line 
contacts, Lubrecht [8], Venner [9], and Venner et al. [10] 
introduced a multigrid method based on a Gauss–Seidel 
solver for the Reynolds equation, applicable to the iso-
thermal line contact problem. Venner [9] pointed out that 
“in some lowly loaded situations a larger inlet region was 
needed in order to avoid numerically starved lubrication”. 
Furthermore, the numerical computation method for the 
transition regions between IE and IR was not described in 
detail. Alakhramsing et al. [11], Habchi et al. [12, 13], and 
Hultqvist [14], investigated the effect of oil film thickness 
on friction based on a full-system finite element approach. 
They focused on high-load, low-speed conditions, under 
fully flooded lubrication. To this end, they applied the 
Hertzian radius as the normalization for the IE and PE 
regions, and the reduced radius of curvature for the IR 
and PR regions.

As Venner [8] concluded, “numerically starved lubrica-
tion” under lower load in the case of an inappropriate inlet 
distance, causes the divergence of the numerical results. 

This issue is a primary factor in the transition regions 
between the PE, IE regions, and the PR, IR regions, that 
causes instabilities in the numerical solution procedure.

Regarding the starved- and fully flooded conditions in 
EHL, Wedeven et al. [15] experimentally investigated the 
occurrence of starvation. Later, Hamrock et al. [16] sug-
gested a simple expression of a computational inlet distance 
required to obtain a fully flooded simulation for EHL point 
contacts operating in the PE region. By means of this meas-
ure of the inlet distance, they also presented an approxima-
tive expression to estimate the oil film thickness for both 
starved and fully flooded EHL contacts operating within the 
PE region. For continued work devoted to EHL and starva-
tion effects in the PE region, see [17–21]. Examples of work 
considering starved and fully flooded conditions in the IR 
region are the ones by Anandan [22, 23] and Biboulet [24], 
where the reduced radius of curvature was employed as a 
normalization of the computational domain that they used 
to numerically calculate the oil film thickness.

In this paper, an expression of the inlet distance that 
ensures fully-flooded conditions is employed to normalize 
the computational domain. The numerical EHL line con-
tact calculation model, for isothermal conditions, is imple-
mented in a fully-coupled finite element-based approach. By 
means of the present normalization method, the correspond-
ing computational domain can be appropriately meshed, 
regardless of the variability of the inlet length, to accom-
modate changes in the operating conditions. This method 
can, therefore, be used to obtain accurate EHL film thickness 
and pressure data over a wide range of operating conditions, 
including the transition regions between PE, PR, IE, and IR.

2 � The EHL Line Contact Model

This section presents the numerical EHL line contact model 
that incorporates an optimized inlet computational domain, 
which provides solutions that are not numerically starved.

2.1 � Inlet Computation Domain Optimization

Let us first revisit the experimental research results by Wede-
ven et al. [15], who investigated starvation in ball bearings, 
by means of optical analysis.

Figure 1 shows a cross-section of the contact geometry 
with particular emphasis on the inlet zone of the contact. 
The length of the inlet zone is crucial for the numerical com-
putation of oil film thickness and pressure, since a too short 
inlet computational domain may lead to numerically starved 
conditions. This is, for instance, a big issue when simulat-
ing the conditions that are typical for the iso-viscous rigid 
(IR) regime. The numerically starved condition induces a 
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reduction of oil pressure and converged solutions cannot be 
obtained.

Wedeven et al. [15] presented an expression for the inlet 
zone length Sf  required to obtain fully flooded conditions, 
i.e.

where

is the Hertzian radius, R�−1 = R−1
1

+ R−1
2

 the reduced radius 
of curvature, h0 the central film thickness, and

where E′ is the reduced elastic modulus, and Ei and vi are 
Young’s modulus and the Poisson ratio of bodies i = 1 and 
2 , respectively.

They also discovered that the onset of starvation occurs if 
the ratio of hb∕h0 of the oil film thickness at the inlet bound-
ary hb = h

(
xb
)
 to the central oil film thickness h0 = h(0) falls 

below 9.
As previously mentioned, most EHL numerical calcula-

tion methods use a multiple of the Hertzian radius a to define 
the length of the computational domain. This may, however, 
lead to numerical starvation if the resulting inlet zone does 
not encompass the inlet distance Sf  , as defined in [15]. This 
issue becomes a complication when performing calculations 
over a large range of operating conditions, which is often 
required when simulating an actual application, as it leads 

(1)Sf = 3.52

(
R�2h2

0

a

) 1

3

,

(2)a =

√
8R�w

�E
�
,

(3)2

E
�
=

1 − �2
1

E1

+
1 − �2

2

E2

,

to less accurate oil film thickness and pressure estimates. If 
we can correctly adjust the inlet distance Sf  for fully flooded 
conditions independent of numerical calculation engineers’ 
technique, e.g. adjustment of required mesh size along with 
the inlet distance, the numerical calculation method can be 
used universally.

2.2 � Governing Equations

In this section, the theoretical foundation of the fully-cou-
pled finite element approach, in which the Reynolds equa-
tion and the equations governing linear elasticity are solved 
simultaneously, is presented. For line contacts, the Reynolds 
equation governing stationary flow is given by:

where � is the oil density, �0 the oil viscosity, h the oil film 
thickness, p the oil film pressure, Ue =

(
U1 + U

2

)
∕2 the 

mean entrainment speed and where � is a penalty term, see 
also [14]. The computational domain is defined by [xb, xo] , 
where xb is the location where h = hb and xo is specified to 
ensure that it is larger than the point where the film ruptures 
and cavitation occur. The fluid–structure interaction in the 
EHL contact is manifested by the appearance of the total 
vertical displacement v�Ω of the boundaries of the deforming 
solids’ �Ω , in the oil film thickness equation, i.e.

where h00 is a measure of rigid body separation. This param-
eter is determined via force balance in the y-direction, i.e.

where w is the applied load per unit width. For a schematic 
illustration of the EHL line contact using present nomen-
clature, see Fig. 2.

(4)
d

dx

(
𝜌h3

12𝜂

dp

dx

)
= Ue

d(𝜌h)

dx
+ 𝜃 in xb < x < xo,

(5)h = h00 +
x2

2R�
− v�Ω

(6)∫
xo

xb

p(x)dx − w = 0,

Thrust bearing

Inlet 
zone

Outlet 
zone

ℎ

Ball
Oil ℎ0

1

Fig. 1   Cross-section of contact geometry, where h0 is the central 
film thickness, h

b
 the film thickness at lubricant inlet boundary, a the 

Hertzian radius, S
f
 the definition of a fully flooded inlet introduced 

in [15], b′ the optimal inlet distance defined herein, and U
i
 , are the 

velocities of the bearing surfaces (Color figure online)

Fig. 2   Schematic illustration of the EHL line contact model, where 
R
′ , h(x) , U1 , U2 are the reduced radius of curvature, oil film thickness, 

and velocities of the surfaces, respectively
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The system of equations governing the mechanics of the 
linear elastic body is

where u and v are the displacements in the x - and y-direc-
tion, respectively, and ci, i = 1, 2, 3 , are the equivalent com-
ponents of the stiffness matrix given by

where Eeq and �eq are the equivalent Young’s modulus and 
the equivalent Poisson's ratio of the contacting bodies, 
respectively. These are defined as in [25], i.e.,

As an approximate equation of the pressure-viscosity 
relationship, Roelands’ equation is used. This equation can 
be expressed as,

where p0 = 1.9608 × 10
8 Pa and � is the Pressure-viscosity 

coefficient. To describe the density’s variation with pres-
sure, Dowson and Higginson’s relationship is adopted here. 
That is,

where pr = 5.9 × 10
8 Pa and �0 is lubricant’s density at zero 

pressure. This value for pr and the value 1.34 for the asymp-
tote at infinite pressure are used to enable comparison with 
frequently available results, but it should be noticed that a 
much closer fit may be obtained by fitting to experimental 
data for a specific lubricant, see e.g. [26]. At high load con-
ditions, the oil pressure distribution has fluctuations. This 
instability can be avoided with the Galerkin least-squares 
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p
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,
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= ln

(
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(13)�(p) = �0
pr + 1.34p

pr + p
.

finite element method (GLS). For details, the reader is 
referred to [12].

2.3 � Dimensionless Model

In this section, the dimensionless model of the elastohydrody-
namic governing equations is introduced. In order to compare 
the results with the conventional model, the final calcula-
tion results in terms of minimum oil film thickness will be 
expressed in Moes's dimensionless parameters ( M, L ). How-
ever, a special non-dimensional model for numerical calcu-
lation is desired to avoid numerical starvation. A system of 
dimensionless equations based on b′ should be expressed by 
two dimensionless parameters including b′ . The dimensionless 
parameters of Habchi's model were modified with b′ , where 
the Hertzian radius a is used as the reference length. This way 
is reasonable that Habchi’s model governing equation can stay 
original formulas and only the dimensionless parameters are 
modified.

To ensure fully-flooded conditions, the computational 
domain for the EHL line contact model employed in the pre-
sent analysis is normalized with the inlet distance a + Sf  , 
instead of the Hertzian radius a . Moreover, since the minimum 
oil film thickness occurs at the center of the contact in the IR 
and PR regions, h0 in Eq. (1) was replaced by Moes’ approxi-
mate expression of the dimensionless minimum oil film thick-
ness, h̃Moes

min
(M, L) , presented in [7], and thus:

Based on this we define the formula for the inlet distance 
b

′ as

As previously mentioned, the majority of the studies 
devoted to numerical calculations of EHL contacts are using 
a multiple of the Hertzian radius a to define the computational 
domain. The computational domain in the present approach 
is normalized by using an optimized definition of the inlet 
distance, i.e. b′ , and the following normalization to transform 
the system of equations into the dimensionless form has been 
used:

(14)R�h0
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≈

𝜋

8
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M
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ensuring that the number of dimensionless parameters (in 
the dimensionless system of equations) is minimized. In this 
case, the dimensionless representation of the Reynolds equa-
tion becomes

where � is given by

At the same time, the dimensionless film thickness 
equation becomes

where H00 is the dimensionless rigid-body displacement and 
v�Ω the dimensionless total displacement of the solid’s upper 
surface in the vertical direction.

The dimensionless form of the force balance equation 
can be described as,

and, in dimensionless form, the system of equations for the 
elastic displacements is given by,

where c1, c2 , and c3 are defined in Sect. 2.1. Notice that for 
the dimensionless representation Eq. (22), Eeq in Eq. (9) has 
been redefined and is now given by
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𝜕ū

𝜕Y
+

𝜕v̄

𝜕X

))
−

𝜕

𝜕Y

(
c2

𝜕ū
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In dimensionless form, Roelands’ equation can be defined as

where P0 = p0∕p
�

h
 . Notice that for the dimensionless rep-

resentation Eq. (24), �(P) in Eq. (11) has been defined p′

h
 . 

The dimensionless Dowson and Higginson relationship can 
be expressed as

where Pr = pr∕p
�

h
 . Notice that for the dimensionless rep-

resentation Eq. (26), �(P) in Eq. (13) has been defined p′

h
.

In the case of a line contact, a 2D computational 
domain can be used for the linear elasticity equations, by 
assuming plane strain condition in the z-direction. The 
non-dimensional size of the computational domain ΩD is 
taken as 60 × 60, based on the study by Habchi et al. [12], 
which revealed that this is sufficiently large to cap-
ture the stresses and displacements with adequate accu-
racy. A graphical illustration of ΩD and its boundary 
�ΩD = �ΩE ∪ �ΩW ∪ �ΩS ∪ �ΩN is given in Fig. 3, where 
ΩC ⊂ 𝜕ΩN.

The dimensionless computational domain ΩC for the EHL 
contact problem [where the Reynolds’ Eq. (18) and the film 
thickness Eq. (20) are defined], which is part of the upper 
boundary of ΩD , is also depicted in Fig. 3. As illustrated in 
the insert to the right, the EHL contact spans the inlet region 
−4.5 < X < −1.5 , the central region −1.5 < X < 1.5, and the 
outlet region 1.5 < X < 2.5 . The same dimensionless domain 
was also used by Hultqvist [14], but in contrast to the present 
work where the inlet zone length b′ is used to transform the 

(23)Eeq =
Eeq

p
�

h

b�

R�
.

(24)�(P) = exp

(
�P0

z
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(
1 +

P
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)z])
,

(25)z = ln
(
�0
)
+ 9.67,

(26)�(P) =
Pr + 1.34P

Pr + P
.

Fig. 3   Graphical illustra-
tion of the computational 
domain ΩD for the elastic 
body, including the boundaries 
�ΩD = �ΩE ∪ �ΩW ∪ �ΩS ∪ �ΩN , 
where ΩC ⊂ 𝜕ΩN . The latter 
represents the computational 
domain for the EHL line contact 
(Color figure online)
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equations into dimensionless form, Hultqvist used the Hert-
zian radius a . As will be shown in the results section, this 
choice of the dimensionless computational domain renders 
a fully-flooded condition in the inlet region, thus numerical 
starvation is effectively avoided.

The boundary conditions are defined by

where �n and �t are the normal- and tangential stress, 
respectively.

3 � Results and Discussion

This section describes the results produced using the 
numerical calculation model in Sect. 2. For verification 
of this numerical analysis, we confirmed the convergence 
of the numerical calculation model, oil pressure distribu-
tion, and oil film thickness distribution. We can describe 
Moes’ dimensionless load parameter M and dimensionless 

(27)

⎧⎪⎨⎪⎩

�n = −Pand �t = 0, onΩC

�n = 0, �t = 0, on �ΩD ⧵ΩC

U = V = 0, on �ΩS

materials parameter L [7], by using the present dimension-
less model parameters � , �,

and the relation between the present representation between 
the dimensionless film thickness H and the one presented by 
Moes in [7], i.e. h

Moes
 , reads

Values of M and L cover the IR-, IE-, PR-, and PE- lubri-
cation regions, see Fig. 4 for a graphical illustration. Cal-
culations are conducted with L = 1, 2.5, 5, and 10 , for 20 
different values of M spanning the range [0.1, 200] going 
from 200 to 0.1, e.g. 20 corresponding to M = 200 and 1 
corresponding to M = 0.1.
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(
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H

Fig. 4   Overview of the numeri-
cal computation conditions in 
this study and the four different 
lubrication regions (Color figure 
online)
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3.1 � Convergence

In this section, we describe how the mesh convergence of the 
current model was investigated in terms of accuracy. Regard-
ing the accuracy of the elastic deformation along the bound-
ary ΩC , Habchi et al. [12] showed that could be computed 
with adequate accuracy even on a rather coarse mesh of the 
elastic body with a computational domain ΩD . This result 
was confirmed herein by comparing the results obtained on 
a normal and an extremely coarse mesh for ΩD , when the 
maximum mesh size of ΩC was specified as 0.00066, 0.001, 
and 0.00325. The normal and extremely coarse meshes when 

the maximum mesh size in ΩC was specified as 0.001 are 
depicted in Fig. 5.

Table 1 shows the number of boundary elements NC and 
the number of domain elements ND , of the extremely coarse 
mesh, corresponding to the three maximum boundary ele-
ment sizes 0.00066, 0.001, and 0.00325.

The corresponding three extremely coarse domain meshes 
are shown in Fig. 6. As the maximum element size only 
affects the mesh of the upper boundary along the EHL con-
tact, ΩC , the change in the depth direction in the mesh of 
ΩD is marginal.

The resulting oil film pressure distributions from an 
investigation of the accuracy of the representation of the 
pressure spike for (L,M) = (10, 200), obtained with three 
domain meshes corresponding to the maximum element 
size of ΩC ; 32,864, 21,638, and 7258, are depicted in Fig. 7. 
The right side presents a magnification of the pressure spike 
region, and a convergent trend in the location of the pres-
sure spike can be observed. The location and magnitude of 
the pressure spike are both almost the same with 21,638 

ΩD

ΩC

ΩD

ΩC

Fig. 5   The normal- (left) and extremely coarse (right) meshes 
employed to discretize ΩD , when the maximum mesh size of ΩC is 
0.001. The corresponding number of �ΩD boundary elements are 
3182 and 3116 for the normal and the extremely coarse mesh, respec-

tively. The corresponding number of ΩD domain elements are 48,346 
and 21,638, for the normal and the extremely coarse mesh, respec-
tively (Color figure online)

Table 1   Number of boundary elements ( N
C
 ) and number of domain 

elements ( N
D
 ), corresponding to the non-dimensional maximum 

boundary element sizes on the first row

Maximum boundary element size (–) 0.00066 0.001 0.00325
Number of boundary elements ( NC) 4595 3093 1013
Number of domain elements (ND) 32,864 21,638 7258

Ω

Ω

Ω

Ω

Ω

Ω

Fig. 6   Domain meshes with 32,864, 21,638 and 7258 number of elements, corresponding to the maximum boundary element sizes 0.00066 
(left), 0.001 (middle), but also depicted in Fig. 5 (right), and, 0.00325 (right) (Color figure online)
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domain elements as with 32,864 domain elements. How-
ever, the mesh with 32,864 domain elements introduces an 
undesirable oscillation in the location of the pressure spike. 
Moreover, the mesh with 7258 domain elements seems not 
well enough to converge in the location of the pressure spike. 
Therefore, the mesh with 21,638 seems well enough to con-
verge in the location of the pressure spike. This suggests 
that the mesh with 21,638 domain elements renders the best 
possible prediction, given the solver settings used. For this 
reason, this mesh is also employed when obtaining the ref-
erence solutions used in the comparison presented below.

The dimensionless minimum oil film thickness h
Moes

min
 

obtained using the meshes with ND = 7258 and ND = 21638 
elements, as well as the relative difference between them 
(using the solution at the finer mesh as reference) are shown 
in Table 2. The average computing time for ND = 7258 and 
ND = 21638 elements on an intel(R) core(TM) i7-8700 CPU 
was 23 s and 1 m 13 s, respectively. The calculation con-
ditions were chosen using representative values of Moes’ 
dimensionless parameters M and L for each of the IR, PR, 

PE, and IE regions. The reason to focus on the minimum 
oil film thickness is that it is a key parameter in the expres-
sion of the inlet distance (15) which is investigated herein. 
As shown in Table 2, the dimensionless minimum oil film 
thickness decreases when the number of boundary elements 
NC (used to discretize the domain for the EHL line contact) 
decreases. It is, however, reassuring that the maximum rela-
tive error of the dimensionless minimum oil film thickness 
h
Moes

min
 is less than 0.28% (in the case L = 10 and M = 200 

representing the PE region) with the coarser mesh having 
7258 domain elements.

Table 3, presents the dimensionless maximum oil pressure 
Pmax , and for the PE region the pressure spike Ps , obtained 
using the meshes with ND = 7258 and ND = 21638 elements, 
as well as the relative difference between them (using the 
solution at the finer mesh as reference). As the table shows, 
the dimensionless maximum oil pressure Pmax and the pres-
sure spike Ps decrease along with the decrease of boundary 
elements number on the EHL contact line ΩC . It also shows 
that, the maximum relative difference of the dimensionless 
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Fig. 7   Oil pressure distribution for three meshes, with the number of domain elements corresponding to the maximum element size of ΩC ; 
32,864, 21,638, and 7258. On the right, is a magnification of the pressure spike region (Color figure online)

Table 2   Results for the 
dimensionless minimum oil film 
thickness h

Moes

min

Calculation conditions Number of boundary elements ( NC) 1013 3093
Number of domain elements (ND) 7258 21,638

L = 10 , M = 200 (PE)
h
Moes

min
2.824 2.832

Relative difference  < 0.28% –
L = 1 , M = 200 (IE)

h
Moes

min
0.9534 0.9554

Relative difference  < 0.21% –
L = 10 , M = 0.73 (PR)

h
Moes

min
5.730 5.729

Relative difference  < 0.017% –
L = 10 , M = 0.1 (IR)

h
Moes

min
25.157 25.156

Relative difference  < 0.0040% –
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maximum oil pressure Pmax , for (L,M) = (10, 200) (PE), is 
less than 0.5%, for the mesh with 7258 domain elements. For 
(L,M) = (10, 0.73) (PR), and (L,M) = (10, 0.1) (IR), the rela-
tive difference of the dimensionless maximum oil pressure 
ΔPmax∕Pmax is less than 0.03%. These relative differences are 
very small, but it is worth noticing that the results presented 
herein were obtained from the mesh with 21,638 domain 
elements, to ensure an adequate representation of the oil 
pressure distribution.

3.2 � Oil Pressure Distribution

In this section, the oil pressure distributions are shown for 
the computation domain to confirm the flooded conditions. 
As a verification, we confirmed both ends of the oil pres-
sure distribution. If the oil pressure at the boundaries of 
the contact is zero, regardless of various inlet distances, the 
present numerical calculation method is shown to ensure the 
flooded condition.

The dimensionless oil pressure distribution on the com-
putation domain is shown in Figs. 8, 9, 10, 11. Each of 
these figures shows the 20 numerical computations for M 

Table 3   Relative differences of dimensionless maximum pressure P

Calculation conditions Number of boundary elements ( NC) 1013 3093
Number of domain elements (ND) 7258 21,638

L = 10 , M = 200 (PE) Maximum pressure Pmax (pressure spike P
s
) 0.5735 (0.2388) 0.5764 (0.2428)

ΔPmax∕Pmax ( ΔPs
∕P

s
)  < 0.50% (< 1.6%) –

L = 1 , M = 200 (IE) Pmax 0.5736 0.5763
ΔPmax∕Pmax  < 0.47%

L = 10 , M = 0.73 (PR) Pmax 0.29208 0.29216
ΔPmax∕Pmax  < 0.027% –

L = 10 , M = 0.1 (IR) Pmax 0.040551 0.040552
ΔPmax∕Pmax  < 0.0025% –

Fig. 8   Oil pressure distributions for L = 1 , as M goes from 200 to 0.1 in 20 steps (Color figure online)
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Fig. 9   Oil pressure distributions for L = 2.5 , as M goes from 200 to 0.1 in 20 steps (Color figure online)

Fig. 10   Oil pressure distributions for L = 5 , as M goes from 200 to 0.1 in 20 steps (Color figure online)
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(enumerated from 1 to 20) starting from 200 and going down 
to 0.1, for L = 1, 2.5, 5, and 10 , respectively. It means that 
these results represent the oil pressure distributions spanning 
from the isoviscous elastic (IE) to the isoviscous rigid (IR) 
lubrication region.

As shown in Figs. 8,9,10,11, the derivative of the oil 
pressure distribution is 0 at both the inlet and exit, verify-
ing that the inlet region in the present numerical calcu-
lation method effectively prevents starved conditions. It 
can also be seen that the oil pressure distribution expands 
towards the inlet boundary as the value of M reduces.

3.3 � Oil Film Thickness

In this section, the Moes’ approximate expression 
h̃Moes
min

(M, L) for the minimum oil film thickness is com-
pared with the minimum oil film thickness obtained using 
the present model, and the comparison is conducted over 
a large portion of the Johnson chart [1].

The calculation results of the dimensionless oil film 
thickness h

Moes
 , for spanning the same range of the 

dimensionless load parameter M and material parameter 
L are depicted in Fig. 12. As shown here, the dimension-
less minimum oil film thickness increases along with a 
decrease in M . Moes’ approximate expression results [7] 

are in good agreement with the dimensionless minimum 
oil film thickness trend of the present model over a large 
portion of the Johnson chart [1]. A comparison of results 
of h̃Moes

min
(M, L) calculated by Moes’ approximate expression 

vis a vis the present model is presented in Table 4, which 

Fig. 11   Oil pressure distributions for L = 10 , as M goes from 200 to 0.1 in 20 steps (Color figure online)
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Fig. 12   The minimum oil film thickness results obtained using the 
present model for L = 1, 2.5, 5, 10 , and M going from 200 to 1 in 
20 steps. Solid lines are Moes’ approximate solutions (Color figure 
online)
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shows that the relative difference between the two values 
is less than 2.7%

4 � Conclusions

In this paper, we have presented a numerical EHL cal-
culation method for oil film thickness that ensures fully 
flooded conditions by employing the present inlet distance 
normalization. The results obtained with the present model 
were compared with results from Moes’ approximate mini-
mum oil film thickness expression.

The main conclusions are:

•	 With the definition of the inlet distance established 
herein, we confirmed that the oil pressure distributions 
obtained over the whole Johnson chart correspond to 
fully flooded conditions.

•	 The maximum relative difference found in the mesh 
convergence study occurs in the PE region [represented 
here by (L,M) = (10, 200) ] and a mesh with 21,638 
domain elements was employed to get a sufficiently 
accurate representation of the pressure spike.

–	 The maximum relative difference between dimen-
sionless minimum oil film thickness obtained with 
the coarsest mesh (with 7258 domain elements) 
and the reference solution (obtained with the mesh 
with 21,638 domain elements) is less than 0.28%.

–	 The maximum relative difference of the dimen-
sionless maximum oil pressure obtained with the 
coarsest mesh (with 7258 domain elements) and 
the reference solution (obtained with the mesh with 
21,638 domain elements) is less than 0.5%.

Regarding the oil film thickness, the relative difference 
between the prediction of the minimum oil film thickness 
using the present model and that by Moes’ approximate 
expression is less than 3% over the whole Johnson chart.
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