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Abstract
Recently, tribologists have shown increasing interest in rate-dependent phenomena occurring in viscoelastic fractures. How-
ever, in some cases, conflicting results are obtained despite the use of similar theoretical models. For this reason, we try to 
shed light on the effects that long and short-range adhesion has on the pull-off force in the contact of viscoelastic media by 
exploiting a recently developed numerical model. We find that, in the limit of long-range adhesion, the unloading veloc-
ity has little effect on the pull-off force, which is close to the value predicted by Bradley for rigid bodies. In such case, the 
detachment process is characterized by a uniform bond-breaking of the contact area, and viscous dissipation involves the 
bulk material. For medium(short)-range adhesion, the pull-off force is instead a monotonic increasing function of the pulling 
velocity and, at high speeds, reaches a plateau that is a function of the adiabatic surface energy. In this case, the detachment 
process is similar to the opening of a circular crack, and viscous dissipation is localized at the contact edge.

Keywords Rate-dependent adhesion · Long and short-range adhesion · Tabor parameter · Finiteelement method · Pull-off 
force

1 Introduction

In the 1970s, two pioneering contact mechanics theories 
were formulated to study the adhesion between elastic 
spheres. First, Johnson, Kendall and Roberts (JKR) [1] 
exploited a thermodynamic approach to include adhesion 
in the Hertz theory. JKR solution assumes infinitely short-
range adhesive interactions inside the contact area, that 
cause a deformation of the Hertzian contact profile. Later, 
Derjaguin, Muller and Toporov (DMT) [2] proposed a dif-
ferent solution where weak long-range adhesive interactions 
are localized outside the contact area, without deforming the 
Hertzian gap.

Both JKR and DMT theories predict a pull-off force, i.e., 
the maximum tensile force reached during the detachment 
that is independent of the elastic properties of the half-space 
and equal to 1.5�Δ�R and 2�Δ�R , respectively, being R the 
radius of the sphere and Δ� the adiabatic surface energy.

Tabor [3] first clarified that JKR theory is accurate in the 
limit of high values of a dimensionless parameter � (known 
as Tabor parameter), namely for soft materials with high 
surface energy and radii of curvature. On the contrary, DMT 
theory is accurate in the limit of 𝜇 ≪ 1 . Notice DMT pull-
off force is the same calculated by Bradley [4] in the limit 
of rigid bodies.

Maugis [5], exploiting the Dugdale cohesive law, for-
mulated a theory, known as Maugis-Dugdale (MD) theory, 
which allows to capture the JKR-DMT transition in terms 
of � . Therefore, he showed that, moving from JKR to DMT 
limit, the pull-off force ranges in between 1.5�Δ�R and 
2�Δ�R , as also confirmed by a successive numerical study 
[6].

In modern adhesive systems, soft materials are widely 
used to enhance adhesive features. Such materials exhibit 
rate-dependent adhesion as a consequence of their intrinsic 
viscoelasticity, while JKR, DMT, and MD theories cannot 
capture rate effects and viscous dissipation. In fact, experi-
ments have shown that the viscoelastic pull-off force may 
be order of magnitudes larger than the value predicted by 
elastic adhesion theories (see, for example, Ref. [7]).

Recently, Das and Chasiotis (DC) [8] proposed to 
extend MD model to the case of a rigid sphere indenting a 
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viscoelastic half-space. In their works, unloading starts from 
a relaxed state of the viscoelastic material and is performed 
at fixed rate of the applied force.

In the limit of short-range adhesive interactions, DC 
model predicts the pull-off force to be a monotonic increas-
ing function of the unloading rate. If FPO,0 denotes the elas-
tic pull-off force, the maximum pull-off force that can be 
reached at high unloading rate is FPO,max = (FPO,0E∞)∕E0 , 
being E∞ and E0 the instantaneous and relaxed moduli of 
the viscoelastic material, respectively. However, such value 
cannot be reached for any value of the Tabor parameter (see, 
for example, Refs. [9–11]).

Moreover, when long-range adhesive interactions are pre-
dominant, namely when � → 0 , DC model continues to pre-
dict FPO,max = (FPO,0E∞)∕E0 at high unloading rate, while in 
Ref. [11] it is observed that FPO,max → FPO,0 independently 
of the value of the unloading rate.

In this work, we try to clarify such qualitative and quan-
titative discordance by performing contact simulations with 
the fully deterministic model developed in Ref. [12], where 
adhesive interactions are modeled with Lennard-Jones-based 
potential and viscoelasticity with the standard linear solid.

2  Statement of the Problem

Consider a rigid sphere, with radius of curvature R, 
pulled off from a viscoelastic substrate. Detachment starts 
from static equilibrium conditions as the sphere initially 
approaches the substrate at low speed up to a maximum 
penetration �max . Retraction is then performed at a constant 
speed V = −d�∕dt.

The contact problem is solved using the finite element 
(FE) model presented in Ref. [12], at which the reader is 
referred for further details. We here recall that: (i) inter-
face interactions are modelled by a traction-gap law based 
on Lennard-Jones potential, according to the  proximity 
approximation (i.e., the force acting between two bodies is 
expressed in terms of the force between two semi-infinite 
planes); (ii) the viscoelastic behaviour of the substrate is 
modelled with the standard linear solid according to the 
Maxwell representation.

We are interested in studying how the pull-off force is 
affected by the retraction speed V, in the cases of short, 
medium, and long-range adhesive interactions. In the elastic 
case, the Tabor parameter is defined as

where E0 is Young’s modulus of the substrate, � is the range 
of action of attractive forces, and � is Poisson’s ratio.

(1)� =
R1∕3

�

[

Δ�(1 − �2)

E0

]2∕3

,

For a viscoelastic material, Young’s modulus E(�) is 
a function of the frequency of excitation and hence var-
ies during the detachment process. Viscoelastic modulus 
E(�) → E0 only when detachment occurs in quasi-static 
conditions, namely when V → 0 . As a result, while in the 
elastic case we are sure that � uniquely describes the trend 
of the pull-off force, in the viscoelastic case this it is not 
necessarily true. However, we can reasonably assume that 
long-range adhesion is expected for low values of the adi-
abatic surface energy Δ� , resulting in 𝜇 ≪ 1 , while medium 
and long-range adhesion occurs at higher Δ� . In the follow-
ing, we shall discuss our results in terms of Δ� rather than �.

3  Results and Discussion

All plots are given for R∕� = 500 , E∞∕E0 = 10 and � ≈ 0.5 , 
and in terms of the following dimensionless quantities: 
F̂PO = FPO∕(𝜋Δ𝛾R) ; Δ�̂� = Δ𝛾∕(E0R) ; V̂ = V𝜏∕𝜖 , being � 
the relaxation time of the viscoelastic material. Furthermore, 
the unloading phase started after reaching the penetration 
𝛿max = 𝛿∕𝜖 = 17.7 . Yu and Polycarpou [13] showed that, 
for the Lennard-Jones potential law, the ’exact’ value of 
� is affected by material properties, such as the interfacial 
surface energy. Here, we fixed � = 0.3 nm, assuming it is 
independent of Δ� . This assumption is usually adopted in 
adhesive contact simulations [14]. However, even consid-
ering a dependence of � with Δ� , the qualitative trend of 
the pull-off force with the surface energy is not expected to 
change, while some quantitative differences may occur [13].

Figure 1 shows the normalized pull-off force F̂PO in terms 
of the pulling velocity V̂ , which is constant during the retrac-
tion of the sphere. Results are obtained for different values 
of the adiabatic surface energy Δ�̂� and for V̂  ranging from 
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Fig. 1  The normalized pull-off force F̂PO in terms of the dimension-
less pulling velocity V̂  . Finite element calculations (markers) are 
shown for Δ�̂� = 1.35 × 10−7 , 3.73 × 10−6 , 6.75 × 10−4 , 1.35 × 10−3 . 
DMT and JKR elastic limits are also shown as a reference
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0.0033 to 100. First, let us consider what happens when 
V ∼ 0 ; for the lower values of Δ�̂� , the DMT limit is returned, 
being F̂PO ∼ 2 . As a result, adhesion is basically described 
by long-range interactions. On the contrary, for the higher 
values of Δ�̂� , F̂PO ∼ 1.5 and the JKR limit is recovered being 
dominant the short-range adhesion. Notice, the JKR limit is 
not closely reached as, in our calculations, finite values of 
the Tabor parameter are considered [10]. In all cases, F̂PO is 
a monotonic increasing function of V̂  and reaches a maxi-
mum asymptotic value F̂PO,max at high pulling velocities. 
However, notice F̂PO,max is strongly affected by the value 
of Δ�̂�.

In this regard, fracture mechanics and cohesive zone 
models (see, for example, Refs. [15, 16]) suggest that 
FPO,max∕FPO,0 = E∞∕E0 , being FPO,0 the pull-off force 
in the elastic limit. Our calculations, instead, returns 
FPO,max∕FPO,0 ∼ 0.8E∞∕E0  for  Δ�̂� = 1.35 × 10−3 and 
FPO,max∕FPO,0 ∼ 0.14E∞∕E0 for Δ�̂� = 1.35 × 10−7 . These 
results agree with the theoretical findings given in Ref. [11], 
where it is suggested that there is an upper bound of the pull-
off force that depends on the Tabor parameter. However, this 
is not the only reason for which FPO,max∕FPO,0 is less than 
E∞∕E0 ; indeed, in a recent study [9], we have shown that 
geometric and finite-size effects influence FPO,max , which 
decreases when retraction starts from smaller initial contact 
radii amax.

To highlight the effect of the adiabatic surface energy 
on the maximum pull-off force, Fig. 2 shows F̂PO,max in 
terms of Δ�̂� and for V̂ = 100 . Results disagree with DC 
findings [8], where F̂PO,max is predicted to increase when 
we move from short-range to long-range adhesive interac-
tions for all rates of unloading (see Fig. 6C in Ref. [8]). 

Therefore, in DC calculations, F̂PO,max is surprisingly 
found to be a decreasing function of the Tabor parameter.

However, we have to observe that our outcomes agree 
with results given in Ref. [11], where a similar model to 
DC one, based on Maugis–Dugdale approach, is adopted. 
Our results are also in agreement with recent numerical 
findings of Muser and Persson (MP) [10], who performed 
calculations on the detachment of a rigid cylinder from a 
viscoelastic substrate. They found a decrease in F̂PO,max 
when reducing the Tabor parameter � . However, they 
changed the size of the radius R of the indenter maintain-
ing the same value of Δ�̂� . In such conditions, size effects 
due to amax may arise, leading to additional variations in 
the pull-off force [9]; moreover, at small scales, a transi-
tion of the detachment mode from crack propagation to 
uniform bond-breaking can also occur [9, 10, 17].

In addition, Van Dokkum et  al. [18] observed, in a 
similar problem, the normalized effective surface energy 
Δ�eff ∕Δ� (or equivalently F̂PO ) decreases with the Tabor 
parameter. Furthermore, Jiang et al. [19], performing FE 
calculations on the pull-off force of a spherical indenter 
from a soft viscoelastic stamp, observed a reduction of 
F̂PO when decreasing Δ�̂� . Similarly to our approach, they 
changed the value of Δ�̂� maintaining the same maximum 
penetration �max.

Our results find confirmation also in the experimental 
measurements of Ahn and Shull (AS) [20], who performed 
axisymmetric adhesion tests between a hemispherical elas-
tomeric cap and a variety of flat substrates with different 
values of interface energy. Moving from the JKR formal-
ism, they used a standard fracture mechanics approach to 
estimate the effective surface energy Δ�eff according to 
the phenomenological equation Δ�eff = Δ�[1 + f (Vc)] [21], 
where the quantity f (Vc) takes into account the increase 
in surface energy due to viscous dissipation and depends 
only on the contact line velocity Vc = −da∕dt (provided 
the process is assumed occurring at constant temperature).

Figure  3A, B show the increase in the dissipated 
energy density ΔUD at pull-off, for V̂ = 1 and Δ�̂� equal to 
1.35 × 10−3 and 1.35 × 10−7 , respectively. For high values 
of the adiabatic surface energy (Fig. 3A), viscous dissipa-
tion is localized at the edge of contact, suggesting that the 
detachment process is similar to the mechanism of open-
ing of a circular crack [12]. For low Δ�̂� (Fig. 3B), a much 
lower viscous dissipation is observed. It mainly involves 
the bulk material, suggesting the occurrence of a different 
debonding mechanism, as clarified in Fig. 4A, B, where 
the normal displacement (net of the rigid one) is shown at 
three different times close to the pull-off instant (namely 
the instant at which the tensile force is maximum).

Results are given for the two cases correspond-
ing to Fig. 3A, B. For Δ�̂� = 1.35 × 10−3 , the debonding 
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Fig. 2  The maximum pull-off force F̂PO,max in terms of the dimen-
sionless adiabatic surface energy Δ�̂� . F̂PO,max is calculated at high 
pulling speed ( ̂V = 100 ). Green markers refer to finite element cal-
culations, red and blue dashed lines are DMT and JKR elastic limits, 
respectively, and black dashed line is the theoretical limit predicted at 
high speeds by fracture mechanics models
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mechanism is clearly related to crack propagation; for 
Δ�̂� = 1.35 × 10−7 , the displacement field instead moves 
homogeneously leading to a quasi-uniform bond-breaking.

4  Conclusions

In this paper, we investigate the effect of the adhesive inter-
actions on the pull-off force of viscoelastic bodies when the 
detachment process starts from a relaxed equilibrium state 
of the material.

In the limit of long-range adhesion ( Δ� → 0 ), quasi-
uniform bond-breaking describes the mechanism of detach-
ment, and viscous dissipation occurs in the bulk material. 
As a result, the pull-off force is not affected by the pulling 
speed and tends to the rigid limit of Bradley [4].

When medium(short)-range interactions occur, the 
detachment process is similar to that of a propagating 

circular crack. In this case, the pull-off force is a mono-
tonic increasing function of the pulling speed. At high 
speeds, the pull-off load reaches a plateau, which depends 
on Δ�.

Therefore, we can state that the pull-off force is limited 
by the strength of adhesion ( Δ� ), rate of unloading and 
finite-size effects ( amax ). This is the reason why the ratio 
between the actual pull-off force and its elastic value does 
not approach the theoretical limit E∞∕E0 at high pulling 
speeds.

Such outcomes also have important implications in 
problems of viscoelastic fracture mechanics.
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Fig. 3  The increase in the dissipated energy density at pull-off. 
Results are given for a pulling speed V̂ = 1 , with Δ�̂� = 1.35 × 10−3 
(A) and Δ�̂� = 1.35 × 10−7 (B)
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Fig. 4  Displacement fields in the vicinity of the pull-off instant, for a 
pulling speed V̂ = 1 , with Δ�̂� = 1.35 × 10−3 (A) and Δ�̂� = 1.35 × 10−7 
(B). The dimensionless time t̂ = t∕𝜏 increases in the direction of the 
arrow. The displacements are given net of the rigid one
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