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Abstract
Motivated by roughness-induced adhesion enhancement (toughening and strengthening) in low modulus materials, we study 
the detachment of a sphere from a substrate in the presence of both viscoelastic dissipation at the contact edge, and rough-
ness in the form of a single axisymmetric waviness. We show that the roughness-induced enhancement found by Guduru 
and coworkers for the elastic case (i.e. at very small detachment speeds) tends to disappear with increasing speeds, where the 
viscoelastic effect dominates and the problem approaches that of a smooth sphere. This is in qualitative agreement with the 
original experiments of Guduru’s group with gelatin. The cross-over velocity is where the two separate effects are compa-
rable. Viscoelasticity effectively damps roughness-induced elastic instabilities and makes their effects much less important.
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1 Introduction

It is well known that adhesion of hard solids is difficult 
to measure at macroscopic scales, and Fuller and Tabor 

[1] proved that even in low modulus materials (they used 
rubbers with E ∼ 1 MPa ), a ∼ 1� m of roughness destroy 
adhesion almost completely, despite van der Waals adhe-
sive forces are quite strong, giving the so-called “adhesion 
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paradox” [2]. Adhesion of macroscopic bulk objects requires 
smooth surfaces, and at least one of the solids has to have a 
very low elastic modulus. Dahlquist [3, 4], while working 
at 3 M, proposed a criterion largely used in the world of 
adhesives, namely that the elastic Young modulus should be 
smaller than ∼ 1 MPa to achieve stickiness even in the pres-
ence of roughness. This clearly is just a rough indication, 
but Tiwari [5] finds for example that the work of adhesion 
(at a given retraction speed) is reduced of a factor 700 for a 
rubber in contact with a rough hard sphere when the rubber 
modulus is E = 2.3 MPa (because of a certain roughness) 
but is actually increased for the same roughness by a factor 
2 when the rubber has modulus E = 0.02 MPa. The thresh-
old does not change much even if we consider nanometer 
scale roughness, as in the recent results of Dalvi et al. [6] 
for pull-off of PDMS hemispheres having four different elas-
tic moduli against different roughened plates: Dahlquist’s 
criterion seems to work surprisingly well, as while there is 
little effect of roughness for the three cases of low modulus 
up to near E = 2 MPa, roughness has strong effect both dur-
ing approach and retraction for the high modulus material 
( E = 10 MPa), where the hysteresis may be due partly to 
viscoelastic effects1. However, for the 3 low modulus materi-
als, roughness almost systematically increases the work of 
adhesion rather than decreasing it as for the high modulus 
material, for a given retraction speed.

Roughness-induced adhesion enhancement was measured 
with some surprise first by Briggs and Briscoe [7] and Fuller 
and Roberts [8], and Persson–Tosatti’s [9] theory attributes 
it to the increase of surface area induced by roughness2. 
Another mechanism was put forward by Guduru et al. [10, 
11]. Guduru considered a spherical contact having a concen-
tric axisymmetric waviness and considers that the contact is 
complete over the contact area. The waviness gives rise to 
oscillations in the load-approach curve which results in up to 
factor 20 increase of the pull-off with respect to the standard 
smooth sphere case of the JKR theory [12]. Also, the curves 
fold on each other so that we expect jumps at some points in 
the equilibrium curve, which corresponds to dissipation and 
emission of elastic waves in the material and results in strong 

hysteresis. Later, Kesari and Lew [13] noticed that Guduru’s 
solution has an elegant “envelope” obtained by expanding 
asymptotically for very small wavelength of the waviness.

But most soft materials are viscoelastic, and therefore, 
there is a strong velocity dependence of the pull-off result. 
Many authors [14–22] have proposed that the process of 
peeling involves an effective work of adhesion w which is the 
product of the thermodynamic (Dupré) work of adhesion w0 
and a function of velocity of peeling of the contact/crack line 
and temperature, as long as there is no bulk viscoelasticity 
involved, over a large range of crack speeds, namely of the 
form that has been validated also by a large amount of data 
including peeling tests at various peel angles:

where k and n are constants of the material, with n in the 
range 0.1−0.8 and aT is the WLF factor [23], which permits 
to translate results at various temperatures T from measure-
ment at a certain standard temperature. This form of effec-
tive work of adhesion can be obtained also from theoreti-
cal models (which start from the viscoelastic constitutive 
equations of the material) using either Barenblatt models 
[24, 25] and also [19, 20, 26], or crack tip-blunting models 
[22], for quite wide class of materials, since the power law 
tends to emerge even for a single relaxation time material 
(standard material). But power laws emerge even for more 
complex rheologies: for example, [22] showed that for a 
frequency-dependent viscoelastic modulus E(�) ∼ �1−s , 
0 < s < 1 , in the transition region between the “rubbery 
region” and the “glassy region” (where the strong internal 
damping occurs), Eq. (1) is satisfied at intermediate veloci-
ties with n = (1 − s)∕(2 − s) (so that 0 < n < 1∕2, in agree-
ment with most of the range cited above, except for the high 
range n > 0.5 ). Remark that the Gent–Schultz law tends 
to see viscoelasticity as an effect increasing the toughness 
from an “adiabatic” value at very low propagation, since 
the material is seen to have a finite relaxed or “equilibrium” 
modulus E0 > 0 , whereas the well-known Barenblatt-like 
cohesive models of Schapery generally see viscoelasticity 
as an effect reducing the elastic fracture limit, where speed 
of propagation is wave speed in the material. There may 
be deviations from the simple Gent–Schultz power law for 
materials having more complex behaviour obtained with a 
general relaxation spectrum, but for the scope of the present 
paper, the simple form of the Gent–Schultz law permits to 
show exemplary results.

In applying Gent–Schultz with viscoelastic effects con-
densed at the crack tip, “the only hypotheses are that failure 
is an adhesive failure and that viscoelastic losses are limited 
to the crack tip; this last condition means that gross displace-
ments must be elastic for Γ to be valid in kinetic phenomena” 
[21]. This assumption greatly simplifies the analysis and 

(1)w = w0

[

1 + k
(

aTvp
)n]

,

1 Despite the authors intended to remove as much as possible rate-
dependent effects by applying a retraction rate of only 60 nm/s, they 
are probably still present. The authors claim a good correlation of 
the energy loss during the cycle of loading and withdrawing with the 
product of the real contact area at maximum preload with the “intrin-
sic” work of adhesion. Notice that this would not work for a smooth 
sphere where JKR theory predicts that the energy loss is independ-
ent on preload and indeed the data of Dalvi et al. [6] with the lowest 
roughness do show almost a constant trend. Also, the hard material 
case shows almost no energy loss.
2 Instead, adhesion reduction is attributed by Persson and Tosatti [9] 
to the elastic energy to flatten roughness, which is proportional to the 
elastic modulus.
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indeed is used by many authors, including in Refs. [20, 27, 
28], based on the evidence that the timescales of the crack 
tip and the bulk deformations are very different.

The effective “toughness” w can increase of various 
orders of magnitude over w0 as the velocity increases (more 
precisely, of the ratio E(∞)∕E(0) , where E(�) is the fre-
quency-dependent elastic modulus), and the pull-off of a 
sphere has also been effectively measured to increase of vari-
ous orders of magnitude over an increase of peeling speed 
[15]. On the contrary, during crack closure, the effective 
work of adhesion is even smaller than w0 , (this time it is 
reduced by the ratio E(0)∕E(∞) , see [20]), so in some cases, 
loading could become essentially an elastic model without 
adhesion.

Equation 1 generalizes the thermodynamic equilibrium 
of elastic cracks for the strain energy release G, namely, it 
provides a condition for crack edge velocity—when G > w0 , 
the crack accelerates under the force G − w0 applied per 
unit length of crack, until a limit speed vp for equilibrium 
is found, depending on the loading conditions. For exam-
ple, G − w0 is a constant for classical peeling experiments, 
whereas it monotonically increases for flat punches and has 
a much richer behaviour for the smooth sphere. Therefore, 
for imposed tensile load smaller in absolute value than the 
JKR pull-off value P0 = 3∕2�wR , the contact area simply 
decreases to another equilibrium value (given asymptoti-
cally by JKR theory), while for imposed load below the JKR 
value, it decreases with nonmonotonic velocity but without 
the JKR pull-off instability, so up to complete detachment. 
Therefore, pull-off depends on the loading condition: can be 
anything greater than P0 if load is imposed, whereas it is a 

precise function of the retraction rate in an experiment where 
the cross-head of a rigid machine keeps the remote approach 
velocity as constant.

Various authors [15, 20, 27] have studied the peeling of 
viscoelastic spheres with the above form of fracture mechan-
ics formulation (1), and some approximate scaling results 
have also been given [27, 29], but a theoretical or numeri-
cal investigation about the coupled effect of viscoelasticity 
and roughness has not been attempted, in the best of the 
authors’ knowledge, not even with numerical simulations. 
It seems that in general, viscoelasticity can only increase 
the “tack”, i.e. the force or the work needed to detach two 
solids, whereas the role of roughness is more controversial, 
as we have discussed above. We are aware of the complex-
ity of the general problem, so here, we tackle the study of a 
simple problem that of a sphere with a single wave of rough-
ness, which generalizes the relatively recent work of Guduru 
et al. [10, 11] and following related literature, to the case of 
a viscoelastic substrate.

2  The Theory

We consider the Guduru contact problem for a sphere against 
a f lat  sur face,  where the gap is  def ined as 
f (r) =

r2

2R
+ A

(

1 − cos
2�r

�

)

 , where R is the sphere radius, � 
is wavelength of roughness and A is its amplitude.

The Guduru problem can be solved by considering the 
stress intensity factor K at the contact edge (radius r = a ) or 
equivalently the strain energy release rate G [10]

where E∗ = E∕
(

1 − �2
)

 is plane strain elastic modulus (i.e. 
E is Young’s modulus and � the Poisson ratio, generally 
equal to 0.5 in rubbery materials, while we consider that the 
countersurface is generally much more rigid so we neglect 
its elastic properties). Notice that, according to the theory 
of Muller [27] for the smooth sphere, we assume that vis-
coelastic effects are concentrated at the contact boundary, 
while the bulk material remains relaxed; thus, we assume 
E∗ = E∗(� = 0) , i.e. the relaxed modulus of the viscoelastic 
material.

Here, P1(a) is the load required to maintain a contact 
radius a in the absence of adhesion, while P is the smaller 
load to maintain the same contact radius in the presence of 
adhesion. In particular, standard contact mechanics gives 
[10]

(2)G(a,P) =
K(a,P)2

2E∗
=

(

P1(a) − P
)2

8�E∗a3
,

(3)P1(a) =2E
∗

{(

2

R
+

4�2
A

�2

)

a
3

3
+

�Aa

2
H1

(

2�a

�

)

−
�2

Aa
2

�
H2

(

2�a

�

)

}

,

Fig. 1  The load-approach curve in the Guduru elastic problem 
with E∗ = 16500 Pa; R = 0.23 m; w0 = 0.008 J/m2 ; �∕R = 0.002 ; 
A∕� = 0.005 and reference ai = 0.01 m
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where Hn are the Struve functions of order n.
In the adhesionless conditions, the remote approach (posi-

tive for compression) is

so in the adhesive condition, we have to decrease this by 
an amount given by a flat punch displacement giving the 
general result for approach:

From (5), we can obtain the general equation for the load as 
a function of contact radius and approach

where P1(a) is given by Eq. (3) above. Imposing the condi-
tion of thermodynamic equilibrium G(a) = w0 , using Eqs. 
(2) and (3), permits to write the Guduru solution explicitly 
as parametric equations of the contact radius a

Using the Kesari and Lew [13] expansion, Ciavarella [30] 
obtained that the Guduru solution has oscillations bounded 
between two exact JKR [12] envelope curves for the smooth 
sphere, but with a corrected (enhanced or reduced, respec-
tively, for unloading or loading) surface energy

(4)�1(a) =
a2

R
+ �2A

�
aH0

(

2�a

�

)

(5)�(a,P) =
a2

R
+ �2A

�
aH0

(

2�a

�

)

−
P1(a) − P

2E∗a
.

(6)
P(a, �) = P1(a) + 2E∗a�(a) − 2E∗ a

3

R
− �2 2E

∗A

�
a2H0

(

2�a

�

)

,

(7)P(a) = P1(a) − a3∕2
√

8�w0E
∗

(8)�(a) = �1(a) − a1∕2
√

2�w0∕E
∗

(9)Penv(a) =
4

3R
E∗a3 − a3∕2

√

8�wE∗

�

1 ±
1

√

��KLJ

�

,

where

is the parameter Johnson [31] introduced for the JKR adhe-
sion of a nominally flat contact having a single-scale sinu-
soidal waviness of amplitude A and wavelength � . Thus, 
since Eq. (9) is JKR equation for a smooth sphere of radius 
R, the factor

is a roughness-induced increase that holds as long as a 
compact contact area can be obtained, which requires not 
too large roughness and/or sufficiently strong precompres-
sion. In practice, factors up to 20 have been obtained also 
experimentally by Guduru and Bull [11], although of course, 
these were achieved in geometry built for the specific goal 
to achieve very large enhancement. Figure 1 elucidates the 
behaviour of the oscillations in the Guduru solution for a 
representative case, which we shall later extend to the vis-
coelastic solution. Given these gulfs and reentrances, in the 
elastic solution, the real followed path will depend on the 
loading condition. For a soft system (close to “load con-
trol”), there will be horizontal jumps in approach while in a 
stiff system (close to “displacement control”), there will be 
vertical jumps to the next available stable position. In both 
cases, there will be areas “neglected” during these jumps 
which represent mechanical dissipated energy. Indeed, in 
the “envelope” solution of Kesari–Lew–Ciavarella, the 
combined effect of these jumps results in the different JKR 
loading and unloading curves that give an additional hyster-
esis with respect to the standard JKR case, where the only 
hysteresis comes as a single elastic instability in pull-in and 
another (different) single instability at pull-off. The dashed 
lines in Fig. 1 are the Kesari–Lew–Ciavarella envelopes Eqs. 
(9, 10) using Eq. ( 11).

2.1  Viscoelastic Problem

For a given remote applied withdrawing of the sphere 
v = −

d�

dt
 , we can write the velocity of the contact edge as 

follows:

(10)�env(a) =
a2

R
− a1∕2

�

2�w

E∗

�

1 ±
1

√

��KLJ

�

,

(11)�KLJ =

√

2w0�

�2E∗A2

(12)
weff

w0

=

�

1 +
1

√

��KLJ

�2

(13)vp = −
da

dt
= v

da

d�
.

Fig. 2  The geometry of the problem. A sphere of radius R with a sim-
ple axisymmetric roughness, being a single axisymmetric wave with 
wavelength � and amplitude A. The smooth sphere case is obviously 
obtained for A = 0 
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The condition G(a) = w (which replaces the thermodynamic 
equilibrium G(a) = w0 for the elastic sphere), therefore, 
defines a differential equation for a = a(�) , obtained using 
Eqs. (1, 2 and 13)

Hence, using Eq. (6) and defining the dimensionless 
parameters

we write Eq. (14) as

which can be solved with a numerical method. After a solu-
tion is obtained for a = a(�) , we substitute back into Eq. (6) 
to compute the load. Notice that, for a given starting point 
of the peeling process in terms of load P, the term under 
parenthesis in Eq. (14) is zero, and hence, da

d�
 starts off zero 

giving some delay with respect to the elastic curve, which is 
hard to eliminate even at very low withdrawal speeds.

3  Results

3.1  Smooth Sphere

Let us first consider the detachment of a smooth sphere from 
a viscoelastic substrate having n = 0.33 and dimension-
less withdrawal velocity V = [0.0002, 0.002, 0.02, 0.2, 2] ; 
the other constants, as indicated in Fig. 2 caption, are 
E∗ = 16500 Pa; R = 0.23 m; w0 = 0.008 J/m2; for the gen-
eral problem with waviness, we will use �∕R = 0.002 ; 
A∕� = 0.005 . However, we solve first the problem for the 
smooth sphere (the equation for the smooth sphere is obvi-
ously obtained for A = 0 in the equations above), and the 
obtained results are shown in Fig. 3. As we discussed in 
the theory paragraph, in the initial point da

d�
= 0 , and we 

find (Fig. 3c) that the velocity remains practically zero for 
a longer time when V is bigger. The velocity of the contact 
line increases monotonically from zero to infinite when 
pull-off occurs at zero contact area.

(14)1

k1∕naTv

(
(

P1(a) − P
)2

8�E∗a3w0

− 1

)1∕n

=
da

d�
.

(15)V = k1∕naTv ; � =

(

2�w0

RE∗

)1∕3

,

(16)

da

d�
=

1

V

[

(R∕a)

�3

(

�

R
−

a2

R2
− �2A

�

a

R
H0

(

2�a

�

)

)2

− 1

]1∕n

Fig. 3  The load P∕P0 (a), the contact radius a∕ai (b), and the veloc-
ity of contact line da∕d� = vp∕v (c) as a function of approach �∕�i 
for the smooth sphere. The inner black curve is the JKR classi-
cal solution, and the other five curves are obtained numerically for 
V = [0.0002, 0.002, 0.02, 0.2, 2] (follow the arrow). Here, n = 0.33 , 
and other constants as indicated in Fig. 2 caption
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Fig. 4  Load P∕P0 (a) and the contact radius a∕ai (b) as a func-
tion of approach �∕�i . P0 is JKR pull-off of the smooth sphere, and 
�i the initial value of approach for unloading. The inner black wavy 
curve is the equilibrium Guduru solution, and the other five curves 
increasingly departing from it are obtained numerically for increasing 
dimensionless velocities of withdrawal (see the verse of the arrow) 
V = [0.0002, 0.002, 0.02, 0.2, 2] . Here, n = 0.33 , and other constants 
as indicated in Fig. 2 caption

3.2  Rough Sphere

We consider here the same parameters used above, but 
A∕𝜆 > 0 . According to Eq. (12) derived from the Guduru 
theory, this corresponds to an “adiabatic” elastic enhance-
ment of the pull-off of weff

/

w0 = 1.42 . We indicate with 
P0 = 3∕2�w0R the JKR value of pull-off for the smooth 
sphere. The loading curve follows the elastic solution 
(Eqs. 7, 8), and we start withdrawing the indenter from 
a reference value of ai = 0.01 m. Corresponding values 
of initial approach �i and load Pi can, therefore, be found 
from Eqs. (7, 8). Numerical solutions are found with the 
NDSolve algorithm in Mathematica with default options. 
Figure 4a shows the obtained load-approach curve in terms 

of P∕P0 and �∕�i where P0 is JKR pull-off of the smooth 
sphere, and Fig. 4b shows the contact radius a∕ai peeling as 
a function of approach. The inner black wavy curves are the 
equilibrium Guduru solutions, and the other five curves are 
obtained numerically for increasing dimensionless velocities 
of withdrawal V = [0.0002, 0.002, 0.02, 0.2, 2] . As expected, 
the viscoelastic peeling terminates only when contact radius 
is zero, and not at the JKR unstable radius. However, the 
minimum load is found for a contact radius which, for low 
velocities, is not too different from the unstable pull-off con-
tact radius in the JKR theory.

Figure 5a–c gives some details of the solution at the lowest 
dimensionless velocity of withdrawal V = 0.0002 . In particu-
lar, Fig. 5a shows clearly that the numerical solution follows 
closely the prediction of the Guduru elastic solution under 
displacement control, as expected, with almost sharp jumps 
of the force at specific values of the approach. After the jump, 
the solution seems to return to the Guduru equilibrium solu-
tion. Obviously with the viscoelastic theory, the strict elastic 
solution should be obtained asymptotically at extremely low 
velocities, but the differential equation would then become 
very “stiff” corresponding to numerical difficulties follow-
ing the jumps. The same behaviour is clarified in terms of 
the contact radius in Fig. 5b, which follows very closely the 
Guduru solution in some time intervals, and then extends a 
little before jumping almost abruptly to the following branch 
of the equilibrium curve. In other words, the curve does not 
have a “rainflow” type of behaviour over the Guduru equi-
librium solution, which would be the elastic real behaviour 
with jump instabilities, but the contact radius “drops” over the 
Guduru curve only after some delays. This is further clarified 
in Fig. 5c, where the velocity of the contact line da∕d� = vp∕v 
is found to follow an oscillatory trend with “bursts” of very 
high (but finite) velocity where the peeling velocity is much 
larger than the imposed withdrawing velocity, after which the 
velocity drops to a low value that is where the contact area 
approaches the adiabatic Guduru curve since G ≃ w0 , and 
which increases progressively with the decreasing approach. 
Slowly, the solution departs from the Guduru elastic one, 
because of the cumulative effects of the acceleration periods. 
However, from Figs. 4 and 5d, we see that there are no real 
“jumps”, and the solution curve is generally smoother for high 
velocities, with the difference between the slow regime and 
the fast regime being smaller. Notice that, while the velocity 
of peeling remains in every case equal to zero at the initial 
point, it remains closer to zero for a much extensive range 
of approach for high velocities, resulting in a curve depart-
ing away from the equilibrium Guduru curve immediately. 
This effect at high velocity produces curves that are generally 
closer to the viscoelastic curves for the smooth sphere, and 
therefore, closer results for pull-off and work for pull-off, as 
we have described in the previous paragraph.
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3.3  Some Comparisons

Summarizing the pull-off results for n = 0.33 but adding 
some solutions also at different amplitudes of roughness A, 

we obtain the amplification factor for pull-off with respect 
to the JKR value as in Fig. 6. Notice initially that the smooth 
sphere results tend to a power-law scaling (linear in the 
log–log plot) as expected from the material law Eq. (1), after 

Fig. 5  Detail of the solution at the lowest dimensionless velocity of 
withdrawal a–c V = 0.0002, and d V = 2 . Here, n = 0.33 , and other 
constants as indicated in Fig. 2. In particular a Load-approach b con-

tact radius vs approach c velocity of contact line da∕d� = vp∕v . d 
velocity of contact line da∕d� = vp∕v but for the highest dimension-
less speed V = 2

Fig. 6  The pull-off amplification with respect to the JKR value, P∕P0 
as a function of dimensionless speed of withdrawal V for various 
amplitudes of waviness increasing as indicated by arrow: A∕� = 0 for 

the smooth sphere (black), A∕� = 0.005 (green),A∕� = 0.015 (red), 
A∕� = 0.045 (blue). Here, all constants as indicated in Fig. 2, except 
a n = 0.33 ; b n = 0.6 (Color figure online)
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a transition from the elastic behaviour. As it is evident from 
Fig. 6, starting off at low velocity with increasing amplitude 
of roughness increases the “elastic” amplification according 
to the Guduru theory, but eventually the effect disappears at 
sufficiently large peeling speeds in the viscoelastic regime. 
In other words, there seems to be a “cross-over” between 
the two phenomena at the speed for which the two increases 
are the same. For example, in Fig. 6, the amplification factor 
P∕P0 is shown for different A∕� = [0, 0.005, 0.015, 0.045 , n 
= 0.33 (a) and n = 0.6 (b). Panel (a) shows that for the very 
“rough” sphere with A∕� = 0.045 (blue line), the Guduru 
enhancement factor is larger ( ≈ 7.5 ) than the viscoelastic 
one in this velocity range. Panel (b) ( n = 0.6 ) shows that, 
increasing n, the pull-off force increases faster with the 
dimensionless speed factor V, confirming our conclusion 
about the cross-over. Eventually, for large speed, the smooth 
sphere result is obtained. Obviously, with so many constants 
in the problem, it is not easy to give comprehensive results.

4  Discussion

Considering the experiments on our geometry done by Gud-
uru and Bull [11], their gelatin material is indeed a viscoe-
lastic material. Although Guduru and Bull [11] recognized 
this, unfortunately, they did not characterize the material in 
particular and tried to minimize the loading rate effects by 
keeping in their tensile test machine a cross-head velocity at 
v = 3 mm/min = 50 �m/s in all experiments. Even this speed 
is not enough to avoid viscoelastic effects, as indeed even 
the smooth sphere case they use for measuring the base-
line work of adhesion shows significant deviations between 
loading and the unloading curves which are not present in 
the standard elastic JKR theory. The unloading has specific 
features similar to what we found for the smooth sphere, 
namely when unloading begins, the contact radius does not 
begin to decrease immediately. Fitting JKR curves, Guduru 
and Bull [11] extracted w0 = 0.008 N/m during loading and 
w�
0
= 0.22 N/m during unloading, a difference of a factor 

27.5. They used as baseline for their comparison with the 
wavy surfaces the unloading value. Despite experimental 
results capture generally the trend of the predictions, there is 
a “systematic difference between the experimental observa-
tion and the theoretical prediction” as the authors say, of the 
order of a −25% . A possible explanation could be the effect 
observed in the present paper, namely that there is no multi-
plicative effect of roughness-induced adhesion enhancement 
and viscoelasticity-induced adhesion enhancement. In other 
words, as Guduru and Bull [11] used their elastic theory 
with the work of adhesion already increased by viscoelastic 
effects, they may have overestimated the effect of roughness-
induced load amplification.

In general, there are several reasons to assume that vis-
coelastic effects will generally dominate over roughness-
induced enhancement. Adhesion experiments with a glass 
ball of radius 2.19 mm on a polyurethane surface ( n = 0.6 , 
which incidentally is not well explained by Barenblatt mod-
els or crack tip-blunting models which start from the linear 
viscoelastic constitutive equations of the material [19, 20, 
22]) by Barquins and Maugis [15] showed viscoelastic 
toughness Eq. ( 1) and pull-off increased by a factor of up to 
3 orders of magnitude. That is the viscoelastic effect can be 
very large, and therefore, generally much larger than the 
geometric one studied originally by Guduru, as it has been 
recently shown also for other geometries, like a dimpled 
surface [32]. Also, Guduru effect only holds for a quite spe-
cial waviness (single scale, axisymmetric), when the contact 
area “peels” quite uniformly around a circle and requires the 
initial contact area to be compact. This poses some limits to 
the amplitude of roughness, hence, the amplification factor 
that can be reached (see a more general numerical solution 
using Lennard-Jones force-separation law in Papangelo and 
Ciavarella [33]). Regarding the non-axisymmetric effect, Li 
et al. [34] numerical experiments for the pull-off of a sphere 
in contact with an elastic substrate with 2-dimensional wavy 
roughness, showed that the adhesion enhancement is further 
much reduced. For a Johnson parameter (11) �KLJ = 0.37, 
they found an increase of a factor 1.7, while from Eq. (12), 
valid for the Guduru axisymmetric geometry, one obtains a 
much higher weff

w0

=
�

1 +
1

√

�0.37

�2

= 6.37 . Numerical experi-
ments with random roughness suggested that this enhance-
ment is also if not more largely reduced [34].

Returning finally to the experiments of Dalvi et al. [6], the 
increase of apparent work of adhesion in the smoother speci-
men (Polished UltraNanoCrystalline Diamond (PUNCD)) 
is of a factor 2, at the retraction speed of 60 nm/s. Given 
the large amplification factors that can be obtained due to 
viscoelasticity (orders of magnitude as shown by Barquins 
and Maugis [15]), the factor 2 increase cannot be excluded 
not even at the 60 nm/s speed. It remains to be clarified if 
the latter enhancement factor obtained in Dalvi et al. [6] 
experiments could be either due to area increase as from the 
Persson–Tosatti [9] theory, or from a reduced Guduru effect.

5  Conclusions

We have revisited the Guduru model for roughness-induced 
enhancement of adhesion of a sphere/flat contact, adding the 
effect of viscoelasticity which is expected in soft materials. 
The results have demonstrated that the roughness-induced 
amplification of pull-off in the Guduru model, which effec-
tively can be modeled as an increased work of adhesion in 



 Tribology Letters (2021) 69:127

1 3

127 Page 10 of 11

the unloading curve, is reduced progressively when veloc-
ity increases with respect to the baseline smooth viscoe-
lastic sphere. This is also in qualitative agreement with the 
original experiments of Guduru and Bull [11]. A significant 
reduction has already occurred at a “cross-over” velocity 
for which the two enhancements (the Guduru and the vis-
coelastic one) are of equal magnitude. We may be tempted, 
therefore, to speculate that viscoelasticity effectively damps 
the roughness-induced elastic instabilities, reduces rough-
ness effects in unloading, while its effects are concentrated 
in the loading phase.
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