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Abstract
In this study, we investigate the effects of thermal fluctuations on the generalized Johnson–Kendall–Roberts (JKR) model. 
We show that the distribution of pull-off forces in this model is similar to that of the Bradley model, and is also consistent 
with the experiment result observed in Wierez-Kien et al. (Nanotechnology 29(15):155704 2018). Increasing temperature 
leads to a broadening of the distribution, while leads to a reduction of the pull-off force. Additionally, the pull-off force, 
which is separated into an athermal term and a thermal-induced reduction term, is measured by using spring velocity ranging 
over 5 orders of magnitude. We show that for compliant spring, the pull-off force is significantly enhanced with increasing 
velocity, which is mainly attributed to the contribution of the thermal-induced reduction term, while the athermal term is 
barely sensitive to changes in velocity.
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1 Introduction

Adhesion plays an important role in contact mechanics 
at different scales, such as the adhesive ability of natural 
insects on vertical walls [2, 3], and microelectromechanical 
systems [4]. As a simple and commonly used approach to 
adhesive contact mechanics in the Hertzian geometry, the 
Bradley model assumes that the interaction between the 
counterfaces is nothing but a Lennard-Jones (LJ) poten-
tial [5, 6]. In such a way, assuming that the surface energy 
is � , and the radius of curvature is R, the pull-off force in 
athermal case estimated by this model is 2��R , which is 
identical to the estimation of that in the Derjaguin-Muller-
Toporov (DMT) model [7].

While it has been demonstrated several times that the 
DMT model is accurate in the limit of the long-range 
adhesion and stiff material  [8–10], this model becomes 
increasingly inaccurate for large and soft matter, hence dif-
ferent assumptions on the interaction have led to the JKR 
model [11], in which a singular crack term is assumed near 
the contact line.

The thermal fluctuation, which is often ignored in most 
theoretical and numerical studies on contact mechanics, has 
been demonstrated several times in experiments that can lead 
to a noticeable reduction of pull-off force [1, 12]. In fact, it 
has been shown that thermal fluctuations limit the adhesive 
strength of compliant solids [13]. Therefore, modelling the 
thermal effects on pull-off force within the framework of 
JKR model would be worthwhile.

Additionally, in athermal case, the elastic body jumps out 
of contact when the spring stiffness k is less than the maxi-
mum curvature of the potential energy V ′′

max
 . This mecha-

nism is analogous to that of the friction-velocity relation 
in the Prandtl model [14–16], in which a particle of mass 
m is dragged through a sinusoidal potential with a driving 
spring with velocity v. On the other hand, several experi-
mental studies have demonstrated that the velocity can sig-
nificantly affect the pull-off force [17–19]. In light of this 
fact, we expect that this model to also accurately describe 
the relation between pull-off force and velocity and further 
predict the contribution of thermal effects on this relation.

In this study, we set up a loading-unloading experiment 
in silico, in which a parabolic indenter is fixed in space, 
a linearly elastic body is placed below the indenter and is 
connected with an elastic spring, as shown in the inset of 
Fig. 1. This spring is used to characterize the stiffness of 
the cantilever and is allowed to move up and down with a 
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constant velocity [20]. The effects of thermal fluctuations 
can be cast as random forces, which have to satisfy the fluc-
tuation-dissipation theorem (FDT) [21].

The first intention of this study is to validate whether 
this modified Bradley model can plausibly reproduce the 
experimental pull-off force distribution. Another intention is 
to explore the effect of spring velocity on the pull-off force. 
To discriminate the athermal pull-off force from the thermal 
pull-off force, the short-hand notation F0 will be used to 
indicate the pull-off force in athermal case.

The remainder of this paper is organized as follows: 
Model and method are introduced in Sect. 2. results are pre-
sented in Sect. 3, while conclusions are drawn in Sect. 4.

2  Model and method

2.1  Modified Bradley model

In this model, the Newton’s equation of motion of the elastic 
solid reads

where

m is the mass, � is the damping coefficient, k the stiffness 
of the driving spring, uela and uspr represent the displace-
ment of elastic body and driving spring, respectively. Γ(t) 
is a random force characterizing the thermal fluctuations 

(1)müela + m𝜂
(
vela − vspr

)
= −

𝜕Vtot

𝜕uela
+ Γ(t),

(2)Vtot =
1

2
k
(
uspr − uela

)2
− ∫

uela

0

duFcont,

and thus must satisfy the FDT. Fcont represents the contact 
force within the framework of JKR model, which can be 
determined by

jointly, where E∗ is the contact modulus and ac the contact 
area [22]. The pull-off force in athermal case is given by 
FJKR = 3��R∕2.

To eliminate the effect of different unit systems, the 
model should be expressed in a reduced system in which 
� , R and E∗ as well as k

B
 are equal to unity. Therefore, the 

remaining reduced parameters in this model are reduced 
mass m̃ = m𝜂2∕(E∗R) , reduced velocity ṽ = v∕(R𝜂) , 
reduced stiffness k̃ = k∕(E∗R) , reduced thermal energy 
k
B
T̃ = k

B
T∕(E∗R3) and reduced surface energy �̃� = 𝛾∕(E∗R) . 

These five independent, dimensional variables can fully 
determine the performance of this model.

2.2  Simulation method

In molecular dynamics simulation, we apply velocity Verlet 
algorithm to propagate the equation of motion in Eq. (1), 
which is a typical Langevin dynamics (LD). The random 
forces, which are used to characterize the thermal fluctua-
tions, as mentioned before, must satisfy the FDT, which 
means, the mean and second moment of random forces must 
obey

respectively, where ⟨⋅⟩ represents ensemble average and �(⋅) 
denotes the Dirac delta function.

In a certain simulation, the random forces are realized by

where u� is a (pseudo) random number generator, which can 
produce random numbers uniformly distributed between 
[0, 1], Δt is time step and � is an integer to account the time 
step. In such a way, the random forces will satisfy the FDT 
automatically.

Now we must specify the time step Δt . Towards this 
end, we first determine the value of the mass m, which 
must be well chosen so that the dynamics is slightly 
underdamped, specifically, it equals to m = 4V ��

tot
∕�2 . The 

time step, on one hand, should be fairly small compared 

(3)Fcont =
4E∗

3R
a
3
c
−
√
8��E∗a

3∕2
c

(4)uela =
a2
c

R
−

√
2��

E∗
a
1∕2
c

(5)⟨Γ(t)⟩ = 0

(6)⟨Γ(t)Γ(t�)⟩ = 2m�k
B
T�(t − t

�)

(7)Γ� =

√
6m�k

B
T

Δt
(2u� − 1)

Fig. 1  The reduced spring force F̃spr∕F̃JKR as a function of the 
reduced spring displacement ũspr∕ũ0 , where ũ0 represents the spring 
displacement at the pull-off point in athermal case, F̃JKR = 3𝜋�̃�∕2 is 
the reduced pull-off force in athermal case. Inset shows the schematic 
illustration of a tip-substrate model for loading-unloading simulations
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to the system period, which is given by 2�
√
m∕V ��

tot  . On 
the other hand, it should be small compared to the retract 
period, which is given by uc∕vspr , where uc is the distance 
from unloading position to the jump-out-of-contact posi-
tion. The expression of uc can be determined by Eqs. (3-4) 
jointly. Therefore, the time step used in our simulation 
can be written as below,

Additionally, the random forces should be separated into two 
parts, which reads

where Γela is used to simulate the thermal effects on the 
driving spring, which indicates that it exists throughout the 
simulation, while Γcont is used to characterize the thermal 
effects when the elastic body jumps into contact, which fol-
lows the spirit of assumptions in the JKR model.

In real experiments, the interaction between the coun-
terfaces results in the vertical deflection of the cantile-
ver. Therefore, the applied force can be deduced from the 
deflection according to the Hooke’s law [23, 24]. In light 
of this fact, we measure the spring force Fspr in simula-
tions, which is given by

On the other hand, considering that the Langevin dynamics 
will become inefficient in the case of over-damped simula-
tion as the time step of the simulation Δt should be very 
small compared to the damping time 1∕� . This fact motivates 
us to employ the Brownian dynamics (BD), which can be 
described as a special case of the Langevin dynamics, that 
is, the inertia müela presented in Eq. (1) equals to zero. This 
allows the Eq. (1) to be reduced to

The equation of motion applied for Brownian dynamics can 
also be achieved by assuming that the mass m is infinitely 
small while m� is fixed to non-zero, which corresponds to 
the over-damped Langevin dynamics. To propagate the sim-
ulation, the velocity of the elastic body can be approximated 
as vela = (unow

ela
− u

old
ela
)∕Δt , as a result, we can write

the time step is chosen as Δt = 1∕(20�) so that it is fairly 
small compared to the damping time.

(8)Δt =
1

40
min

{
2�

√
m

V
��
tot

,
uc

vspr

}
.

(9)Γ(t) = Γela(t) + Γcont(t)

(10)F̃spr = −k̃
(
ũspr − ũela

)

(11)0 = −
�Vtot

�uela
− m�

(
vela − vspr

)
+ Γ(t).

(12)u
now
ela

= u
old
ela

+
Δt

m�
[m�vspr −

�Vtot

�uela
+ Γ(t)],

3  Results

3.1  Distribution of pull‑off forces

In this section, we address the question how thermal fluc-
tuations affect the distribution of pull-off force. As a first 
glance, Fig. 1 shows a force-displacement hysteresis of a 
single loading-unloading simulation considering the JKR 
force and the thermal effects. The reduced parameters 
which matter this simulation are chosen as m̃ = 5.0 × 10−5 , 
ṽspr = 1.0 × 10−4 , k̃ = 2.0 × 10−5 , k

B
T̃ = 5.0 × 10−8 and 

�̃� = 1.2 × 10−4.
In this single loading-unloading hysteresis, it is inter-

esting to observe that the pull-off force is significantly 
reduced. We would suggest that the adhesive strength is 
limited in value by thermal fluctuations, which had been 
noted by Tang et.al [13].

To further study how thermal fluctuations affect the 
pull-off force, we should firstly demonstrate if our simu-
lation can reasonably reflect the real experiment. Towards 
this end, we measured the distribution of pull-off force 
from a mass of loading-unloading simulations, the param-
eters are well chosen so that they are approximately of 
the same order as those used in real experiments, which 
is also applied to simulate the single loading-unloading 
hysteresis in Fig. 1.

With the choice of parameters, we can map these 
reduced units to real units, it could be conducted by 
assuming that E∗ ≈ 20.0 GPa and R ≈ 15.7 nm . The asso-
ciated parameters with real unit are � = 3.6 × 10−2 J/m2 , 
k = 6.3 × 10−3 N/m and T = 288.4 K . Furthermore, we 
assume that the mass m ≈ 1.0 × 10−12 kg , which is of the 
same order as applied in several experimental studies on 
atomic force microscopy (AFM) contact problems [12, 
25], thus it turns out to be a reasonable choice and the 
resulting velocity of the driving spring is vspr = 196.3 nm/s.

It should be mentioned that this set of parameters 
implies that our simulations are most relevant at least in 
the case of weak interactions, that is, in the case where van 
der Waals interactions are the only forces at work between 
the interfaces [26, 27].

The result is shown in Fig. 2, which is obtained from 
more than 2000 loading-unloading simulations. To map 
our simulation to real experiment, this figure is plotted 
with real units rather than reduced units. The data pre-
sented in this figure reveals a good agreement between 
simulation and the experiment reported in Ref. [1], which 
follows an asymmetric bell-like curve.

Figure 3 shows reduced pull-off force distributions with 
different temperatures. The distribution depicted in Fig. 2 
is applied as the reference data, while the real units are 
replaced by reduced units. It indicates that the pull-off 
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force distributions can be fitted reasonably well with the 
probability density function of skew-Gaussian distribution. 
Additionally, it confirms that the pull-off force decreases 
with increasing temperature. Similar results are also 
observed in the Bradley model simulations by Pinon et 
al. [12].

3.2  Relation between pull‑off forces and velocity

In this section, we investigate how velocity of the driv-
ing spring ṽspr affects the pull-off force F̃p . Towards this 
end, both Brownian dynamics and Langevin dynamics are 

performed to measure the pull-off force with velocity rang-
ing over 5 orders of magnitude at various temperatures. In 
both dynamics, � , E∗ and R as well as k

B
 are fixed to unity. 

The reduced surface energy �̃� is well chosen such that the 
depth of the JKR potential equals to unity, which leads to 
�̃� ≈ 0.229.

In terms of the reduced mass, two cases are considered. 
In one case, it is set to infinity, while the m� is fixed, which 
leads to overdamped simulation or Brownian dynamics. In 
another case, the value of the reduced mass is determined 
such that the simulation is slightly underdamped, in this 
study, it is fixed to m̃ = 0.01.

To project the simulations to practical experiments, it is 
important to map the reduced units to real units. Towards this 
end, we assume that the contact modulus E∗ = 1 GPa , the 
radius of curvature R = 16 nm and the mass m ≈ 10−12 kg 
as used in Ref. [12, 25] is nevertheless a reasonable choice. 
This makes the velocity vspr be roughly located in the range 
64 nm/s ≤ vspr ≤ 3.2 mm/s , and the velocities used by 
indenters in several AFM loading-unloading experiments 
also fall in this range [17, 28].

Since this study considers the effects of thermal fluctua-
tions on pull-off force, it is expected to separate the pull-off 
force into two parts, which reads,

where F̃0 is the pull-off force in athermal case, while F̃t rep-
resents the thermal-induced reduction on pull-off force.

Figure 4 compares Brownian and Langevin dynamics for 
various spring stiffness at athermal case. F̃0(vspr) relation dif-
fers noticeably at large velocity for underdamped and over-
damped simulations. Nevertheless, both simulations show 
similar trend, that is, F̃0(vspr) is enhanced with increasing 

(13)F̃p(ṽspr, kBT̃) = F̃0(ṽspr, 0) − F̃t(ṽspr, kBT̃)

Fig. 2  Comparison of experimental data and simulation data on pull-
off force distribution. The experimental distribution (grey bars) is 
obtained from the Fig. 5 of Ref. [1], while the data is renormalized so 
that the integration equals to unity. The simulation data (red line) is 
obtained from the method introduced in this study

Fig. 3  Normalized pull-off force distribution with various tempera-
tures. Solid squares represent the simulation results while dashed 
lines represent fitting curves using the skew-Gaussian probability 
density function. All pull-off force distributions are obtained from 
more than 2000 simulations

Fig. 4  Reduced athermal pull-off force F̃0 as a function of velocity 
ṽspr for Brownian and Langevin dynamics respectively at different 
spring stiffness. Open symbols represent the dynamics while dashed 
lines represent the fitting curves
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velocity, and it can be fit very well over an extended velocity 
range 10−5 ≤ ṽspr ≤ 0.5 with expression

where v0 , �0 and �0 are dimensionless parameters.
Furthermore, it is interesting to note that the exponent 

�0 is remarkably reduced from 0.134 to 0.005 when k̃ is 
decreased from 0.8 to 0.1 for Langevin dynamics, similar 
reduction is also observed for Brownian dynamics. This 
implies that for compliant spring, the velocity can barely 
affect the athermal pull-off force F̃0 . In practical AFM 
loading-unloading curve, a compliant spring is generally 
applied to identify the pull-off force in order to obtain pre-
cise results [29–31]. Therefore, it is more attractive to iden-
tify how velocity affects the pull- off force in the case of 
compliant spring.

Figures 5 and 6 show how velocity ṽspr affects the thermal-
induced reduction on pull-off force F̃t for k̃ = 0.1 in Langevin 
and Brownian dynamics respectively. All simulations are 
performed in an extended velocity range 10−5 ≤ ṽspr ≤ 0.5 
and can be fitted very well with expression

where � , vt , �t and �t are dimensionless parameters which 
varies with different temperatures.

When ṽspr is increased, the reduction of pull-off force is 
noticeably decreased, which as a result leads to an increment 
of the pull-off force F̃p . In addition, when k̃ = 0.1 , the veloc-
ity dependence of athermal pull-off force F̃0(ṽspr) is quite 

(14)F̃0(ṽspr, 0) = F̃JKR

{
1 +

(
ṽspr

v0

)𝛼0
}𝛽0

,

(15)F̃t(ṽspr, kBT̃) = 𝜉

{
1 + 𝛼t exp

[
−

(
ṽspr

vt

)𝛽t
]}

,

weak as the exponent �0 is extremely small, which indicates 
that the increment in pull-off force is principally attributes 
to the effects of the thermal fluctuations.

It can also be observed in these two figures that with 
increasing temperature, the thermal-induced reduction in 
pull-off force will approach the athermal pull-off force and 
eventually cancels it out.

4  Conclusions

In this study, a modified Bradley model, in which the LJ 
interaction was replaced by the JKR contact force, was pre-
sented to study how thermal fluctuations affect the pull-off 
force. It was demonstrated that this model reasonably repro-
duced real AFM loading-unloading curve. At a given tem-
perature, a skewed pull-off force distribution was observed 
by collecting a large number of simulation results. With 
appropriate parameters, the simulated distribution can be in 
plausible agreement with the experimental results, and can 
be fitted reasonably well with the skew Gaussian distribu-
tion. Increasing temperature leads to a reduction on pull-off 
force while a broadening of the distribution.

We also investigated the relation between pull-off force 
and the driving spring velocity when the thermal effects are 
considered. Towards this end, the pull-off force was sepa-
rated into two contributions, namely, the athermal pull-off 
force and the thermal-induced reduction on pull-off force. 
When the value of the spring stiffness is fairly small, the 
athermal pull-off force has a weak dependence on velocity, 
in which case the thermal-induced reduction term dominate 
the velocity dependence of pull-off force. It is also observed 

Fig. 5  Thermal-induced reduction of pull-off force F̃
t
 as a function of 

velocity ṽspr for Langevin dynamics at various temperatures. Lines are 
fits according to the fitting function as given in Eq. (15). The spring 
stiffness is fixed to k̃ = 0.1

Fig. 6  Thermal-induced reduction of pull-off force F̃
t
 as a function 

of velocity ṽspr for Brownian dynamics at various temperatures. Lines 
are fits according to the fitting function as given in Eq. (15). The 
spring stiffness is fixed to k̃ = 0.1
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that the pull-off force decreases as the temperature increases. 
The main reason for this reduction is that the increase in 
temperature leads to an enhancement in the value of ther-
mal-induced reduction.
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