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Abstract
I consider fluid flow at the interface between solids with random roughness. For anisotropic roughness, obtained by stretch-
ing isotropic roughness in the x-direction by a factor of �1∕2 and in the y-direction with a factor of �−1∕2 , I give an argument 
for why the flow conductivity in the critical junction theory should be proportional to � in the x-direction and proportional 
to 1∕� in the y-direction.
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The influence of the surface roughness on the fluid flow 
dynamics is a complex topic. However, if there is a sep-
aration of length scales the problem can be simplified: if 
R >> 𝜆0 , where R is the (smallest) length characterizing 
the macroscopic shape of the bodies and �0 is the longest 
(relevant) surface roughness component, then it is possi-
ble to eliminate (integrate out) the surface roughness and 
obtain effective fluid flow equations involving solid bod-
ies with smooth surfaces (no roughness). The effective fluid 
flow equations depend on two quantities determined by the 
surface roughness, usually denoted fluid flow factors. These 
factors depend on the average surface separation ū , which 
will vary throughout the nominal contact region; ū is the 
local interfacial surface separation u(x, y) averaged over the 
surface roughness.

The aim of this short communication is to add some 
new results for fluid flow between surfaces with anisotropic 
roughness. In particular, I will argue that the most narrow 
constrictions in the critical junction theory of fluid flow can 
be treated as square-like pores even for surfaces with ani-
sotropic roughness. Only if this is the case will the effec-
tive flow conductivity (in the critical junction theory) scale 
as � and 1∕� along the two principal fluid flow directions, 

as also found in the effective medium theory [1], and in 
exact numerical calculations [2], close to the percolation 
threshold.

We consider the simplest fluid flow problems, which 
include the leakage of static seals [3, 4] and the squeeze-out 
of fluids between elastic solids. For these applications, the 
roughness enter only via one function, namely, the pressure 
flow factor 𝜙p(ū) (in general a 2 × 2 tensor) or, equivalently, 
the (effective) fluid flow conductivity �eff defined by the 
equation

where p̄ = ⟨p(x, y)⟩ is the fluid pressure and �̄ = ⟨�(x, y)⟩ is 
the two-dimensional (2D) fluid flow current, both averaged 
over the surface roughness (ensemble averaging). The flow 
conductivity �eff is a 2 × 2 matrix (tensor). From the fluid 
flow conductivity, one can calculate the pressure flow fac-
tor using

where � is the fluid viscosity.
For randomly rough surfaces, the flow conductivity �eff 

can be calculated approximately using the Bruggeman 
effective medium [1, 4] or the simpler critical junction 
theory [3]. These theories were originally developed for 
isotropic roughness but have been generalized to sur-
faces with anisotropic roughness, where the roughness is 
characterized by the Peklenik number [5, 6] � . Here, it 

(1)�̄ = − 𝜎eff∇p̄

(2)𝜎eff =
ū3

12𝜂
𝜙p
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is assumed that a surface with anisotropic roughness can 
be obtained from a surface with isotropic roughness by 
stretching the surface along the x-direction by a factor of �.

The 2D Bruggeman effective medium theory predicts 
that the contact area percolates for A∕A0 = 0.5 independ-
ent of � . Numerical contact mechanics calculations for 
randomly rough surfaces predict that the contact area per-
colates for A∕A0 ≈ 0.42 for � = 1 (see Ref. [7]), and for 
A∕A0 > 0.42 when 𝛾 < 1 and A∕A0 < 0.42 when 𝛾 > 1 (see 
Ref. [8, 9]). However, the latest study of Wang and Müser 
[2] indicates that even for systems with anisotropic surface 
roughness, if the roll-off region in the surface roughness 
power spectra is large enough, the contact area percolates 
for A∕A0 ≈ 0.42 independent of � . The Bruggeman effec-
tive medium theory can be generalized to give percolation 
at A∕A0 ≈ 0.42 .

According to the 2D Bruggeman effective medium the-
ory, in the coordinate system where �eff is diagonal,

we have

where �∗ = (�y∕�x)
1∕2

� , and where ⟨..⟩ stands for ensemble 
averaging or averaging over the probability distribution P(u) 
of interfacial separations. The microscopic flow conductiv-
ity � = u3∕(12�) . From these equations, one can show that 
close to the percolation threshold (see Ref. [1]) �x ≈ �

2
�y so 

that in spite of the fact that percolation occurs in the x- and 
y-directions at the same time, the flow current before per-
colation can be very different in the two directions. We will 
now show that the relation �x ≈ �

2
�y can be easily under-

stood using the critical junction theory.
Let us study the contact between the two solids as we 

increase the magnification � . We define � = L∕� , where 
� is the resolution. We study how the apparent contact 
area (projected on the xy-plane), A(�) , between the two 
solids depends on the magnification � . At the lowest mag-
nification, we cannot observe any surface roughness, and 
the contact between the solids appears to be completed, 
i.e., A(1) = A0 . As we increase the magnification, we will 
observe some interfacial roughness, and the (apparent) 
contact area will decrease. At high enough magnification, 
say � = �c , a percolating path of non-contact area will be 
observed for the first time. We denote the most narrow 
constriction along this percolation path as the critical 

�eff =

[
�x 0

0 �y

]
,

(3)
1

�x

=

⟨
1 + �

∗

� + �∗�x

⟩

(4)
1

�y

=

⟨
1 + (1∕�∗)

� + (1∕�∗)�y

⟩

constriction. The critical constriction will have the lateral 
size �c = L∕�c and the surface separation at this point is 
denoted by uc.

If the nominal contact pressure is high enough, an 
accurate estimate of the leak rate is obtained by assuming 
that all the leakage occurs through the critical percolation 
channels and that the whole pressure drop ΔP = Pa − Pb 
(where Pa and Pb is the pressure to the left and right of 
the seal) occurs over the critical constrictions (of width 
and length �c ≈ L∕�c and height uc ). If we approximate 
the critical constriction as a pore with rectangular cross-
section (width and length �c and height uc << 𝜆c ), and if 
we assume an incompressible Newtonian fluid, the volume 
flow per unit time through the critical constrictions will be 
given by (Poiseuille flow)

The flow conductivity �eff can be obtained from Q̇ using 
Q̇ = JxL = 𝜎eff(ΔP∕L)L giving

At the critical magnification, several fluid conducting chan-
nels may appear and each of them may have several critical 
constrictions as indicated in Fig. 1a. Let us now stretch the 
contact in the x-direction with a factor of �1∕2 and contract 
it by a factor of �−1∕2 in the y-direction. This will increase 
the number of flow channels per unit area in the x-direction 
by a factor of �1∕2 , and on each flow channel, it will reduce 
the number of critical junctions per unit length by a factor 
of �−1∕2 . Hence, the  fluid conductivity �x = ��0 , where �0 
is the flow conductivity for isotropic roughness. In a simi-
lar way, one can show that �y = �0∕� which implies that 
�x = �

2
�y.

The argument for why �x = �
2
�y only holds if the fluid 

pressure drop over a critical constriction is not modified 
by the stretching–contraction of the system. This assump-
tion can be made plausible using the following argument:

Consider the contact between two solids as we increase 
the magnification. When we change the magnification, we 
change the resolution and hence the size of the smallest 
unit (pixel) which can be resolved. A pixel may be in con-
tact (black) or out of contact (white). The size of a pixel 
depends on the magnification. Note the pixels are squares 
because the resolution is the same in the x and y-direction 
(as when the contact is observed using, e.g., an optical 
microscope). Now, when we increase the magnification, 
the contact area decreases and simultaneously the size of 
the pixel decreases but in a continuous way (see Fig. 2). 
However, I will assume we increase the magnification in 

(5)Q̇ =
u3
c

12𝜂
ΔP

(6)�eff =
u3
c

12�
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discrete (but small) steps. Now in the step just before the 
non-contact area percolation, there will be some narrow 
contact regions which will open up when we increase the 
magnification. If the discretion step is small, most likely 
this opening-up is due to removal of just one contact pixel 
in this most narrow contact region. Thus, the critical con-
striction is square-like in this picture even for anisotropic 
roughness.

In the effective medium theory, the relation �x = �
2
�y 

holds only close to the percolation threshold. This is illus-
trated in Fig. 3 which shows the fluid pressure flow factor 
𝜙p = 12𝜂𝜎x∕ū

3 as a function of the average surface separa-
tion ū (log-log scale). In the calculation, we have used the 
surface roughness power spectra shown in Fig. 7 in Ref. 
[1]. Results were obtained using the effective medium (em) 
theory for � = 1∕4 (red curve) and � = 4 (blue curve). Also 
shown is the result for � = 1∕4 scaled by a factor of �2 = 16 
(green curve). As expected, close to the percolation thresh-
old, the relation �x = �

2
�y is accurately obeyed.

In Ref. [7], it was suggested how to modify the Brugge-
man effective medium theory for systems with isotropic 
roughness so that it correctly reproduce the percolation 

for Ap∕A0 ≈ 0.42 . The resulting theory was found to be in 
good agreement with exact numerical results for the flow 
conductivity.

In a similar way as for isotropic roughness, one can gener-
alize the Bruggeman effective medium theory for anisotropic 
roughness so that it gives the correct percolation threshold. 
This was attempted in Ref. [1] but unfortunately, a factor 
was placed in the wrong place as described in Ref. [2]. This 
resulted in expressions for �x and �y which did not have the 
solution �x = �y = � which corresponds to a homogeneous 
system (no surface roughness and uniform surface separa-
tion). (In the numerical calculations, another expression for 
the flow conductivity was used which correctly describes 
the homogeneous system solution.) The correct equations 
for �x and �y were given by Wang et al. and can be obtained 
as follows [2].

For systems with anisotropic roughness, first consider a 
system in n dimension (in the study above, n = 2 ). In this 
case in the coordinate system where �eff is diagonal:

where �∗ = (�y∕�x)
1∕2

� . From these equations, one can show 
that at percolation [1]

Thus, given Ap∕A0 obtained from (exact) numerical simula-
tions, if we choose

then the (modified) effective medium theory will result in 
a flow conductivity which vanishes when the (normalized) 
contact area reaches the value Ap∕A0 where the contact area 
percolates.

The equations above (with Ap∕A0 = 0.42 ) were used in 
producing the results in Fig. 3. The results of another calcu-
lation for the same system are shown in Fig. 4. Here, I show 
the fluid pressure flow factor as a function of the average 
surface separation ū (log–log scale) for � = 1∕4 (red curves), 
� = 1 (green curves) and � = 4 (blue curves) using the effec-
tive medium theory (solid lines) and the critical junction 
theory (dashed curves). As expected, the critical junction 
theory is accurate when the average surface separation is 
small enough but is inaccurate for very small contact pres-
sures where the average surface separation is large; this is 
expected as for large average surface separation, a nearly 

(7)
1
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=

⟨
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⟩
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1
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=

⟨
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n
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(a) Isotropic roughness

(b) Anisotropic (stretched) roughness γ=2

Fig. 1   a Percolating fluid flow channels (lines) and critical constric-
tions (black dots) for a L × L square unit system with isotropic rough-
ness. b The percolating fluid flow channels and critical constrictions 
for a system obtained by stretching by a factor of 2 in the x-direction 
and 1/2 in the y-direction (Pekeling number � = 4 ). After this map-
ping, the concentration of flow channels is increased by a factor of 2 
in the x-direction and reduced by a factor of 1/2 in the y-direction. For 
a square unit L × L (not shown), the number of critical constrictions 
along each percolating flow channel is reduced by a factor of 1/2 in 
the x-direction and increased by a factor of 2 in the y-direction. The 
net result is that the fluid flow conductivity is increased by a factor of 
4 in the x-direction and reduced by a factor of 1/4 in the y-direction, 
i.e., �x = ��0 and �y = �0∕� , where �0 is the flow conductivity for the 
system with isotropic roughness in (a). Adapted from [1]
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uniformly thick fluid film separates the surfaces and the fluid 
pressure drop will not occur over a small number of narrow 
constrictions, but will occur in nearly uniformly over the 
whole nominal contact area. However, this limiting case is 
not of interest in sealing applications.
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Fig. 2   The contact region (black) at different magnifications (sche-
matic). Note that at the point where the non-contact area (white area) 
percolates A(�c) ≈ 0.4A0 , while there appears to be complete contact 
between the surfaces at the lowest magnification � = 1 : A(1) = A0 . 
Adapted from [3]
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Fig. 3   Fluid pressure flow factor 𝜙p = 12𝜂𝜎x∕ū
3 as a function of the 

average surface separation ū (log–log scale). In the calculation, we 
have used the surface roughness power spectra shown in Fig.  7 in 
Ref. [1] and the Young’s elastic modulus E = 10 MPa . Results were 
obtained using the effective medium (em) theory for � = 1∕4 (red 
curve) and � = 4 (blue curve). Also shown is the result for � = 1∕4 
scaled by a factor of �2 = 16 (green curve)
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Fig. 4   Fluid pressure flow factor 𝜙p = 12𝜂𝜎x∕ū
3 as a function of the 

average surface separation ū (log–log scale). In the calculation, we 
have used the surface roughness power spectra shown in Fig. 7 in [1] 
and the Young’s elastic modulus E = 10 MPa . Results are shown for 
� = 1∕4 (red curves), � = 1 (green curves), and � = 4 (blue curves) 
using the effective medium theory (solid lines) and the critical junc-
tion (cj) theory (dashed curves)
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