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Abstract Fundamental to the safety assessment 
of genetically modified (GM) crops is the concept 
of negligible risk for newly expressed proteins for 
which there is a history of safe use. Although this 
simple concept has been stated in international and 
regional guidance for assessing the risk of newly 
expressed proteins in GM crops, its full implementa-
tion by regulatory authorities has been lacking. As a 
result, safety studies are often repeated at a signifi-
cant expenditure of resources by developers, study 
results are repeatedly reviewed by regulators, and 
animals are sacrificed needlessly to complete redun-
dant animal toxicity studies. This situation is illus-
trated using the example of the selectable marker 
phosphomannose  isomerase (PMI) for which famili-
arity has been established. Reviewed is the history 
of safe use for PMI and predictable results of newly 
conducted safety studies including bioinformatic 

comparisons, resistance to digestion, and acute toxic-
ity that were repeated to gain regulatory reapproval 
of PMI expressed from constructs in recently devel-
oped GM maize. As expected, the results of these 
newly repeated hazard-identification and characteri-
zation studies for PMI indicate negligible risk. PMI 
expressed in recently developed GM crops provides 
an opportunity to use the concept of familiarity by 
regulatory authorities to reduce risk-disproportionate 
regulation of these new events and lessen the result-
ing waste of both developer and regulator resources, 
as well as eliminate unnecessary animal testing. 
This would also correctly imply that familiar pro-
teins like PMI have negligible risk. Together, such 
modernization of regulations would benefit society 
through enabling broader and faster access to needed 
technologies.

Keywords Phosphomannose isomerase (PMI) · 
History of safe use · Genetically modified · Risk-
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Introduction

Familiarity in risk assessment

Fundamental to the safety assessment of genetically 
modified (GM) crops is the concept of negligible risk 
for newly expressed proteins for which there is a his-
tory of safe use. Proteins with familiarity (safe use) 
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in food and feed should require little or no additional 
assessment for safety (Roper et  al. 2021). This is 
analogous to the “generally regarded as safe” (GRAS) 
concept used for food ingredients by the US Food 
and Drug Administration (FDA) (Burdock and Cara-
bin 2004). In simple terms, food and feed ingredients 
that have a track record of being safely consumed 
should be exempt from further regulatory oversight. 
While this simple concept has been stated in interna-
tional and regional guidance for assessing the risk of 
newly expressed proteins in GM crops (EFSA Panel 
on Genetically Modified Organisms (GMO) 2011; 
OECD 1986), its full implementation by regulatory 
authorities has been lacking. As a result, safety stud-
ies are continually repeated at a significant expendi-
ture of resources by developers, study results are 
repeatedly reviewed by regulators, and animals are 
sacrificed needlessly to complete redundant animal 
toxicity studies (Garcia-Alonso et  al. 2022). Here 
we illustrate this situation using the example of the 
selectable marker phosphomannose  isomerase (PMI) 
for which familiarity has been established. The PMI 
enzyme functions as a selectable marker in tissue cul-
ture by enabling plant cells to use mannose as a car-
bon source (Reed et al. 2001). Reviewed here is the 
history of safe use for PMI and predictable results of 
newly conducted safety studies that were repeated to 
gain regulatory approval of the PMI selectable marker 
expressed in recently developed GM events in maize. 
This publication will add to the existing literature on 
this subject with the hope that regulatory policies will 
evolve as the evidence becomes overwhelming.

Familiarity of PMI

The food and feed safety of PMI expressed in GM 
crops was first described over two decades ago (Reed 
et al. 2001) and was updated in 2008 (Delaney et al. 
2008a). In the latter paper, it is noted that “PMI is 
ubiquitous in nature” and that PMI enzymes are found 
in microbes, mammals (including humans), human 
gut microflora, and less frequently in plants. A recent 
review concluded there was negligible allergenicity 
risk for PMI (Herman et  al. 2021a). PMI expressed 
in GM crops has been approved for use in > 25 coun-
tries/regions, with over 275 regulatory approvals 
across these geographies, and maize expressing the 
PMI protein has been grown commercially in the 
United States since 2007 (https:// www. isaaa. org/ 

gmapp roval datab ase/ gene/ defau lt. asp? GeneID= 37& 
Gene= pmi). Most recently, “Golden Rice” (high 
vitamin-A rice; event IR-00GR2E-5) expressing PMI 
was approved in Australia, Canada, New Zealand, the 
Philippines, and the United States (https:// www. isaaa. 
org/ gmapp roval datab ase/ event/ defau lt. asp? Event ID= 
528). It seems reasonable to conclude that this level 
of familiarity with PMI in food and feed without any 
reports of harm should be considered overwhelming 
as evidence of safety. As recognition of this, authori-
ties in Argentina recently recognized the appropri-
ateness of reducing the regulatory requirements for 
familiar newly expressed proteins in GM crops, and 
included PMI in a list of such proteins (https:// www. 
magyp. gob. ar/ sitio/ areas/ biote cnolo gia/ conab ia/_ 
pdf/ CIRCU LAR_ CIyB_ N2_ HDUS. pdf). However, 
the results of new safety studies are reported here to 
facilitate timely approval by regulatory authorities of 
newly developed GM maize events that express PMI.

Materials and methods

Production of the PMI protein test substance followed 
methods summarized in Carlson et  al. (2019), Carl-
son et al. (2022), or Mathesius et al. (2009). Briefly, 
PMI was produced in an Escherichia coli expression 
system as a fusion protein with a N-terminal His-tag. 
The tagged protein was purified using Ni–NTA affin-
ity chromatography and the tag was removed with on-
column thrombin cleavage. Q Sepharose HP column 
chromatography was used for further purification fol-
lowed by thrombin removal using Heparin Sepharose 
column chromatography. Buffer exchange to 50-mM 
ammonium bicarbonate was completed using dialysis. 
The purified protein was then lyophilized and stored 
in an ultralow freezer until used in the subsequent 
studies. A set of analyses were conducted to charac-
terize and verify that the microbially produced pro-
tein was comparable to the in planta version and thus 
was suitable to use in subsequent safety and charac-
terization studies (Carlson et al. 2019, 2022; Delaney 
et  al. 2008a, b; Gao et  al. 2004; Griffin et  al. 2013; 
Harrison et al. 1996; Mathesius et al. 2009). For PMI, 
this characterization included amino acid composi-
tion analysis for concentration, purity analysis using 
SDS-PAGE/Coomassie staining, western blot for 
molecular weight and immunoreactivity determina-
tion, peptide mapping and intact mass determination 

https://www.isaaa.org/gmapprovaldatabase/gene/default.asp?GeneID=37&Gene=pmi
https://www.isaaa.org/gmapprovaldatabase/gene/default.asp?GeneID=37&Gene=pmi
https://www.isaaa.org/gmapprovaldatabase/gene/default.asp?GeneID=37&Gene=pmi
https://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=528
https://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=528
https://www.isaaa.org/gmapprovaldatabase/event/default.asp?EventID=528
https://www.magyp.gob.ar/sitio/areas/biotecnologia/conabia/_pdf/CIRCULAR_CIyB_N2_HDUS.pdf
https://www.magyp.gob.ar/sitio/areas/biotecnologia/conabia/_pdf/CIRCULAR_CIyB_N2_HDUS.pdf
https://www.magyp.gob.ar/sitio/areas/biotecnologia/conabia/_pdf/CIRCULAR_CIyB_N2_HDUS.pdf
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by mass spectrometry, N-terminal sequencing and 
enzymatic activity measurement.

PMI glycosylation status, susceptibility to simu-
lated gastric fluid (SGF), simulated intestinal fluid 
(SIF), and SGF followed by SIF, and heat stability 
of the enzymatic activity were determined to further 
characterize the protein and meet the current expecta-
tions of regulatory agencies for allergenicity assess-
ment. A 14-day acute oral toxicity study in mice and 
in silico bioinformatic analyses of the PMI sequence 
were also performed to evaluate the potential toxicity 
of PMI, with the latter also supporting the allergenic-
ity safety assessment. Both the allergenicity and tox-
icity assessments are foundational for the weight-of-
evidence approach used to evaluate safety for newly 
expressed proteins in GM plants (Codex Alimentarius 
Commission 2003; Delaney et al. 2008a).

Characterization of microbially produced PMI

The methods used for concentration determina-
tion by amino acid composition analysis, purity by 
Coomassie staining of the sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) 
gels, demonstration of immunoreactivity to a PMI 
monoclonal antibody and confirmation of molecular 
weight via western blot analysis, protein identity by 
liquid chromatography-mass spectrometry (LC–MS) 
analysis of the trypsin-and-chymotrypsin-digested 
PMI, molecular mass determination by LC–MS, 
and N-terminal amino acid sequence determination 
were previously described in Carlson et  al. (2022) 
and Carlson et  al. (2019) are summarized as fol-
lows. For amino acid composition, the lyophilized 
protein samples were solubilized in formic acid and 
hydrolyzed in hydrochloric acid at a final concentra-
tion of 6 N under argon at 110 °C for 24 h, diluted, 
and then mixed with isotopically labeled amino acid 
internal standards. Samples and calibration solutions 
were separated by gradient elution using ultra perfor-
mance liquid chromatography (ACQUITY UPLC®; 
Waters Corporation; Milford, MA) fitted with a 
Cortecs UPLC C18 1.6  µm column (2.1 × 100  mm; 
Waters Corporation; Milfold, MA). The resulting elu-
ent was directed to the electrospray source on a tan-
dem quadrupole (Xevo TQ™; Waters Corporation; 
Milford, MA) mass spectrometer operating in the 
positive mode. Multiple Reaction Monitoring tran-
sitions were collected, and quantitation performed 

using QuanLynx™ software (version 4.1; Waters 
Corporation; Milford, MA). Molar amounts of each 
amino acid were used to calculate the protein con-
centration. For SDS-PAGE, samples were solubilized 
with 1X LDS sample buffer, heated, diluted further 
in the same buffer, loaded onto 4–12% Bis–Tris gels 
(Invitrogen, Waltham, MA) along with molecular 
weight markers, and electrophoresis performed with 
a pre-cast gel electrophoresis system. Upon comple-
tion of electrophoresis, gels were removed from the 
gel cassette and used for Coomassie staining, west-
ern blot analyses, or sample preparation for peptide 
mapping and N-terminal amino acid sequencing. The 
gel intended for Coomassie staining was washed, 
stained with GelCode Blue stain reagent (Thermo 
Scientific), destained, and electronically imaged for 
purity determination using densitometry. For west-
ern blot analysis after SDS-PAGE, PMI was trans-
ferred to a nitrocellulose membrane using an iBlot 
Gel Transfer system and the membrane washed and 
blocked. Sequential incubations were performed 
using a PMI-specific antibody, a secondary antibody 
conjugated with horseradish, and a chemilumines-
cent substrate before capturing the PMI and molecu-
lar weight marker images electronically. For peptide 
mapping following SDS-PAGE, Coomassie stain-
ing, and gel imaging, protein bands at the expected 
molecular weight were excised, then reduced with 
dithiothreitol, alkylated with iodoacetamide, and 
digested with trypsin and chymotrypsin. The digested 
samples were then separated by gradient elution using 
an UPLC (ACQUITY; Waters Corporation; Milford, 
MA) fitted with a Cortecs UPLC C18 1.6 μm Column 
(2.1 × 100  mm; Waters Corporation; Milford, MA). 
The eluent was directed into an electrospray source 
operating in positive mode on a hybrid quadrupole-
TOF MS (Triple TOF 5600+; Sciex; Farmingham, 
MA). Data were subsequently processed using MS 
Data Converter (Beta 1.3; Sciex; Farmingham, MA) 
and an MS/MS ion search was performed (Mascot 
Software version 2.7.0; Matrix Science; Boston, MA) 
to match peptides from the expected PMI sequence 
(Perkins et  al. 1999). GPMAW software (version 
12.11.0; Lighthouse Data; Odsense, Denmark) was 
used to calculate the combined sequence coverage. 
For intact mass determination, a lyophilized-PMI 
sample was solubilized and then diluted in 2% ace-
tonitrile/0.1% formic acid solution prior to the mass 
determination by gradient elution using an UPLC 
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(ACQUITY; Waters Corporation; Milford, MA) fit-
ted with a Acquity UPLC BEH C4, 300  Ǻ, 1.7  μm 
column (2.1 × 100  mm; Waters Corporation; Mil-
ford, MA). The eluent was then directed into an elec-
trospray source operating in the positive mode on a 
Triple TOF 5600+ MS (Sciex; Farmingham, MA). 
The generated data were processed using BioPharma 
View software (version 2.1; Sciex; Farmingham, 
MA) to produce and intact protein molecular weight. 
For N-terminal sequence analysis, a gel was incu-
bated in cathode buffer following SDS-PAGE and 
the proteins were transferred to a sequencing grade 
PVDF membrane (Millipore Immobilon-P) using the 
Trans-Blot SD Semi-Dry Electrophoretic Transfer 
Cell system. Once the transfer process was complete, 
the membrane was washed, stained with GelCode 
Blue, and destained with water. Bands were excised 
and combined into a single sample which was then 
analyzed using an N-terminal sequencer (Shimadzu 
PPSQ-51A; Shimadzu; Columbia, MD) where 10 
Edman degradation cycles were performed. During 
each cycle, the N-terminal amino acid was sequen-
tially derivatized with phenylisothiocyanate (PITC), 
cleaved with trifluoracetic acid, and converted to 
phylthiohydantoin (PTH)-amino acid, which were 
identified through chromatography. LabSolutions 
software (Shimadzu; Columbia, MD) was used to 
identify the N-terminal sequence.

Determination of enzymatic activity for the 
microbially produced PMI

PMI activity was determined using a coupled enzy-
matic reaction in a 96-well format. The increase 
in the final product was measured using spectro-
photometrically based methods described in Gracy 
and Noltmann (1968), with some alterations made 
according to Hu et  al. (2016). Sample prepara-
tion started with solubilizing lyophilized PMI in 
water under chilled conditions, followed by deter-
mining the PMI concentration using a validated 
enzyme-linked immunoassay (ELISA). Master mix 
consisting of M6P, β-NADP, PGI, G6PDH, and 
50  mM Tris, pH 7.5 was prepared and dispensed 
into the wells of a 96-well plate which was then 
equilibrated at 25° C in a spectrophotometric plate 
reader (SpectraMax; Molecular Devices; San Jose, 
CA) for approximately 15  min prior to adding the 

solubilized PMI further diluted with 50 mM Tris at 
pH 7.5. Using Kinetic-PathCheck protocol in Soft-
max Pro (Molecular Devices; San Jose, CA), the 
loaded plate was returned to the plate reader and the 
auto-mix feature used to mix the plate once prior to 
reading every 20  s for 10 min at 340  nm. Calcula-
tions to convert the absorbance change to reaction 
velocity (mOD/min) were performed by SoftMax 
Pro GxP and the PathCheck feature was used to nor-
malize this value to 1  cm pathlength. The absorb-
ance change at 340 nm (OD/min) was converted to 
PMI specific activity units (µmol/min/mg) using the 
β-NADPH at 340  nm millimolar extinction coeffi-
cient of 6.22  mM−1  cm−1 and a 1 cm pathlength.

Potential toxicity and allergenicity of microbially 
produced PMI

Bioinformatic comparisons were performed between 
the PMI amino acid sequence and the 2020 version 
of the Corteva internal toxin database and the Com-
prehensive Protein Allergen Resource (COMPARE) 
2020 database (January 2020), the latter available 
at http:// compa redat abase. org, respectively, and 
as described in Carlson et  al. (2019, 2022). Toxic-
ity assessment was further evaluated in a 14-day 
acute mouse study at a target dose of 5000  mg/
kg body weight of PMI along with a vehicle con-
trol and 5000  mg/kg body weight of bovine serum 
albumin with the same parameters assessed as 
those described in Delaney et  al. (2008b), Math-
esius et  al. (2009), Papineni et  al. (2017), Carlson 
et  al. (2019, 2022). SGF and SIF analyses used 
SDS-PAGE and western blot with lyophilized 
PMI, BSA, and β-lactoglobulin and the same time 
course as described in Thomas et  al. (2004), Carl-
son et  al. (2019, 2022) for SGF and Delaney et  al. 
(2008b) and Mathesius et al. (2009) for SIF. For the 
sequential SGF/SIF, PMI was incubated for 1  min 
in SGF as described and then incubated for 0, 0.5, 
1, 2, 5, 10, 20, and 30  min in SIF containing pan-
creatin at pH ~ 7.5 followed by SDS-PAGE. A Pierce 
Glycoprotein staining kit was used to determine 
the PMI glycosylation status following the meth-
ods outlined in Mathesius et  al. (2009), Carlson 
et  al. (2019, 2022). Presence of any glycoproteins 
appears as magenta bands in the resulting gel. The 

http://comparedatabase.org
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spectrophotometric enzymatic assay was also used 
to assess the enzymatic activity in the aliquots heat-
treated at 25, 50, 75, or 95 °C as compared with the 
enzymatic activity in an unheated control aliquot.

Results

Results of characterization of microbially produced 
PMI

Characterization supported the use of the lyophilized 
PMI protein test substance for use in subsequent stud-
ies. Amino acid composition analysis determined that 
the concentration of the microbially produced PMI 
protein test substance was 0.85 mg of protein per mg 
of lyophilized powder (Table 1). After purity adjust-
ment, the protein concentration was 0.68 mg PMI/mg 
lyophilized powder.

Coomassie staining of the SDS-PAGE gel (Fig. 1.) 
demonstrated PMI migrated as a predominant band 
consistent with the expected molecular weight of 
approximately 43 kilodaltons (kDa). The purity was 
determined to be 80% based on densitometry.

Western blot analysis demonstrated PMI was 
immunoreactive to a PMI monoclonal antibody and 
visible as a single band consistent with the expected 
molecular weight of approximately 43 kDa (Fig. 2.).

The matched peptides identified with the LC–MS 
analysis of the trypsin-and-chymotrypsin-digested 
PMI accounted for 92.1% (362/393) of the expected 
PMI amino acid sequence (Table 2).

Table 1  Concentration determination by amino acid analysis 
of PMI via LC–MS

Amino acids Sample 1
(nmol)

Sample 2
(nmol)

Sample 3
(nmol)

Arginine 22.86 21.07 20.83
Asparagine/Aspartic acid 22.40 20.66 20.10
Glutamine/Glutamic acid 22.36 19.87 20.46
Isoleucine 22.06 20.18 20.18
Leucine 21.28 20.03 20.11
Phenylalanine 21.64 20.30 20.20
Proline 21.47 20.12 20.18
Valine 21.82 20.27 20.04
Average (nmol) 21.99 20.31 20.26
Protein concentration of 

analytical sample (mg/
ml)

4.73 4.37 4.36

Protein to powder (mg/
mg)

0.82 0.87 0.82

Overall average (mg/mg) 0.85

Fig. 1  Analysis of the microbially derived PMI by SDS-PAGE 
(Coomassie staining). Lane 1: pre-stained protein molecular 
weight markers; Lane 2: buffer only; and Lanes 3 -5 PMI

Fig. 2  Western blot analysis of microbially derived PMI. Lane 
1: pre-stained protein molecular weight marker; Lane 2: buffer 
only; and Lane 3: PMI
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Table 2  LC–MS analysis identified tryptic and chymotryptic peptides of microbially derived PMI

Matched residue posi-
tion

Experimental  massa Theoretical  massb Identified peptide sequence

Trypic peptides
6–18 1478.749 1478.752 LINSVQNYAWGSK
19–45 2988.382 2988.382 TALTELYGMENPSSQPMAELWMGAHPK
50–61 1241.670 1241.673 VQNAAGDIVSLR
50–68 2028.047 2028.049 VQNAAGDIVSLRDVIESDK
62–68 804.3834 804.3865 DVIESDK
62–78 1773.938 1773.936 DVIESDKSTLLGEAVAK
69–78 987.5575 987.560 STLLGEAVAK
79–88 1252.696 1252.697 RFGELPFLFK
80–88 1096.593 1096.596 FGELPFLFK
89–104 1773.953 1773.956 VLCAAQPLSIQVHPNK
89–113 2757.437 2757.438 VLCAAQPLSIQVHPNKHNSEIGFAK
105–113 1001.490 1001.493 HNSEIGFAK
114–126 1343.613 1343.614 ENAAGIPMDAAER
182–197 1807.901 1807.903 LSELFASLLNMQGEEK
200–205 627.4302 627.4319 ALAILK
206–220 1714.829 1714.828 SALDSQQGEPWQTIR
283–294 1372.757 1372.76 YIDIPELVANVK
295–309 1682.935 1682.936 FEAKPANQLLTQPVK
357–381 2598.362 2598.365 GSQQLQLKPGESAFIAANESPVTVK
Chymotrypic peptides
1–6 662.3427 662.3421 GSMQKL
7–13 836.3998 836.4028 INSVQNY
14–21 832.4424 832.4443 AWGSKTAL
14–24 1175.615 1175.619 AWGSKTALTEL
16–25 1081.562 1081.566 GSKTALTELY
26–39 1575.669 1575.67 GMENPSSQPMAELW
61–71 1261.651 1261.651 RDVIESDKSTL
61–72 1374.7330 1374.7350 RDVIESDKSTLL
72–80 989.5652 989.5658 LGEAVAKRF
73–80 876.4784 876.4817 GEAVAKRF
97–111 1705.849 1705.854 SIQVHPNKHNSEIGF
112–128 1819.851 1819.852 AKENAAGIPMDAAERNY
129–139 1322.697 1322.698 KDPNHKPELVF
145–153 1113.525 1113.528 LAMNAFREFc

151–159 1078.563 1078.566 REFSEIVSL
151–160 1191.648 1191.65 REFSEIVSLL
160–173 1427.766 1427.767 LQPVAGAHPAIAHF
161–173 1314.683 1314.683 QPVAGAHPAIAHF
174–182 1068.553 1068.556 LQQPDAERL
174–185 1397.714 1397.715 LQQPDAERLSEL
175–186 1431.7 1431.699 QQPDAERLSELF
191–201 1261.603 1261.608 NMQGEEKSRAL
202–208 714.4619 714.4639 AILKSAL
202–216 1641.835 1641.836 AILKSALDSQQGEPW
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The predominant mass obtained by LC–MS analy-
sis of the protein was 42,993.74 daltons (Da) consist-
ent with the expected mass of 42,993.63 Da based on 
the PMI sequence. N-terminal amino acid sequence 
analysis identified a sequence (GSMQKLINSV) 
matching amino acid residues 1–10 of the expected 
protein sequence. Enzymatic activity analysis demon-
strated that the PMI specific activity was 154 μmol/
min/mg protein.

Evaluation of toxicity and allergenicity of microbially 
produced PMI

Results of the search of the PMI sequence against 
the sequences in the Corteva internal toxin database 

returned no alignments with an E-value ≤  10–4. 
Results of the search of the PMI sequence against 
the COMPARE database of known and putative 
allergen sequences found no alignments with an 
E-value ≤  10–4 that were a length of 80 or greater 
with a sequence identity of > 35%. One contigu-
ous 8-residue amino acid match (DLSDKETT) was 
found between the PMI sequence and the sequence 
of an allergen (a putative alpha-parvalbumin from 
frog, GenBank Accession CAC83047.1; Hilger 
et al. 2002). This 8-amino acid match is not consid-
ered an indication of allergenic risk. Mitigating fac-
tors as described by Herman et al. (2021a) include: 
(1) PMI has a history of safe use in food; (2) the 
source organism for PMI as expressed in GM crops 

Table 2  (continued)

Matched residue posi-
tion

Experimental  massa Theoretical  massb Identified peptide sequence

205–216 1344.629 1344.631 KSALDSQQGEPW
209–216 945.3804 945.3828 DSQQGEPW
217–221 629.3849 629.386 QTIRL
217–225 1105.612 1105.613 QTIRLISEF
222–233 1402.628 1402.629 ISEFYPEDSGLF
237–243 797.5352 797.5375 LLNVVKL
239–250 1317.672 1317.675 NVVKLNPGEAMF
239–251 1430.758 1430.759 NVVKLNPGEAMFL
251–259 1047.5 1047.503 LFAETPHAY
252–259 934.4155 934.4185 FAETPHAY
253–259 787.3477 787.3501 AETPHAY
260–275 1671.851 1671.85 LQGVALEVMANSDNVL
261–275 1558.765 1558.766 QGVALEVMANSDNVL
266–275 1090.493 1090.497 EVMANSDNVL
296–304 982.5428 982.5447 EAKPANQLL
305–314 1069.574 1069.577 TQPVKQGAEL
305–323 2115.058 2115.053 TQPVKQGAELDFPIPVDDF
305–325 2333.158 2333.158 TQPVKQGAELDFPIPVDDFAF
326–345 2156.096 2156.096 SLHDLSDKETTISQQSAAIL
346–355 1196.515 1196.517 FCVEGDATLW
356–361 659.3584 659.3602 KGSQQL
356–363 900.5007 900.5029 KGSQQLQL
362–370 975.5004 975.5025 QLKPGESAF
a The experimental mass is the uncharged mass calculated from the mass to charge ratio of the observed ion
b The theoretical mass is the in silico generated mass that matches closest to the experimental mass
c This peptide was modified by methionine oxidation (Oxidation-M)
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is Escherichia coli for which no natively expressed 
allergens are known; (3) the 8-amino-acid contigu-
ous match between PMI and the CAC83047.1 par-
valbumin frog allergen has been considered a neg-
ligible risk in the past by regulators in the approval 
of other genetically modified crops; (4) there are 
no known cross-reactive allergens that share an 
8-amino-acid contiguous match without also shar-
ing > 35% identity across an 80 amino acid window; 
(5) the 8-amino-acid contiguous match between 
the PMI and the CAC83047.1 parvalbumin frog 
allergen appears to be outside of known allergen 
epitopes shared by cross-reactive parvalbumins; (6) 
and PMI does not share three-dimensional struc-
tural features that are critical to the allergenicity of 
allergenic parvalbumins. These data indicate that no 
toxicity or allergenicity concern arose from the bio-
informatics assessment of PMI. Intragastric expo-
sure of 5000 mg PMI /kg body weight to male and 
female Crl:CD1(ICR) mice did not result in mortal-
ity or other evidence of acute oral toxicity, based on 
evaluation of body weight, clinical signs, and gross 
pathology (Table 3). Therefore, the acute oral toxic-
ity tolerant dose and PMI  LD50 were determined to 
be greater than 5000 mg/kg body weight.

The  SGF digestion analysis indicated greater 
than 95% of PMI (the band migrating at ~ 43  kDa) 
was digested within 0.5  min as shown in both the 
stained SDS-PAGE gel and western blot. Weak low 
molecular weight bands (~ 3 kDa) on the SDS-PAGE 
gel remained detectable in the PMI samples for up 
to 60  min in SGF (Fig.  3.). In SIF digestion analy-
sis, PMI migrating at ~ 43  kDa was digested within 

20  min as shown in the stained SDS-PAGE gel and 
within 60  min as shown in western blot (Fig.  4). 
However, the weak low molecular weight bands were 
digested within 0.5  min in the sequential digestion 
(Fig.  5.).No protein glycosylation was detected for 
PMI (Fig. 6.). 

Enzymatic analyses results demonstrated PMI 
was inactivated when heat-treated for 30–35 min at 
75 °C and 95 °C, with no activity measured in com-
parison to the unheated control (Table  4). While 
heat and digestive stability, as well as the presence 
of glycans, are typically considered risk factors 
for allergenicity by regulatory agencies, the cur-
rent science does not support this belief (Bøgh and 
Madsen 2016; Goodman et al. 2008; Herman et al. 
2022; Privalle et  al. 2011; Verhoeckx et  al. 2019). 
However, if a protein were to exhibit a toxic hazard, 
heat and digestive lability would typically indicate 
reduced exposure compared with that estimated by 
expression in the edible tissues of the raw commod-
ity. PMI exhibited no unusual stability to heat or 
digestion.

Discussion

Predictably, the results of these newly repeated haz-
ard identification and characterization studies for 
PMI indicate negligible risk since this protein has 
a history of safe use in food and feed. However, to 
meet the expectations of current regulations, these 
studies were repeated in support of new GM maize 
events expressing PMI. Adding these results to the 

Table 3  Mouse acute oral 
toxicity study with target 
dose 5000 mg PMI/kg body 
weight: Mean mouse body 
weights (g ± SD)

a Fasted weight

Treatment n Days Relative to Start Date

Day  1a Day 2 Day 3 Day 5 Day 8 Day 15

Males
Vehicle 6 31.1 ± 2.2 31.7 ± 2.1 31.8 ± 2.0 32.3 ± 2.4 33.0 ± 2.4 34.7 ± 2.5
BSA 6 31.2 ± 1.7 32.1 ± 2.1 31.1 ± 1.8 31.9 ± 1.8 32.4 ± 1.8 34.8 ± 2.1
PMI 6 31.5 ± 2.2 32.7 ± 1.9 31.6 ± 1.9 31.9 ± 2.2 32.5 ± 2.5 35.3 ± 2.4
Females
Vehicle 6 25.1 ± 1.8 25.3 ± 1.9 24.4 ± 1.8 25.3 ± 2.1 26.1 ± 1.3 28.9 ± 1.8
BSA 6 24.0 ± 2.7 24.8 ± 2.4 24.4 ± 2.6 24.7 ± 2.7 25.2 ± 2.5 28.0 ± 2.4
PMI 6 24.8 ± 2.4 24.9 ± 2.5 24.2 ± 2.4 25.1 ± 2.2 25.7 ± 3.0 27.8 ± 1.9
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already substantial scientific literature on this topic 
will hopefully help facilitate the evolution of gov-
ernment regulations toward more risk-proportional 
requirements.

It is beneficial to society when the regulation 
of technology is both proportional to risk and sci-
ence- based. Although societal acceptance of specific 

technologies and trust in regulatory decisions is very 
important in gaining widespread use of scientific 
advances, conflating efforts to provide the public with 
information on safety with regulatory oversight can 
unintentionally cause distrust of a technology because 
risk-disproportionate regulation implies high risk for 
low-risk products (Herman et al. 2021b; Strauss and 

Fig. 3  SDS-PAGE analysis 
(top) and western blot anal-
ysis (bottom) of microbially 
derived PMI from time 0 
to 60 min in SGF. Lane 1: 
PMI in water, time 0; Lane 
2: Pre-stained molecular 
weight makers; Lane 3: 
PMI in SGF, time 0; Lane 
4: PMI in SGF, time 0; 1:20 
dilution (SDS-PAGE) and 
1:200 dilution (western 
blot); Lanes 5–11: PMI in 
SGF for 0.5, 1, 5, 10, 20, 
and 60 min; Lane 12: SGF 
control for 60 min
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Sax 2016). The incorporation of the concept of his-
tory of safe use into the risk assessment and approval 
process would likely communicate appropriately 
the negligible risk of GM crops and traits that are 
familiar. The PMI expressed in recently developed 
GM maize events and any future events potentially 
even across crops provides an opportunity to use the 

concept of familiarity by regulatory authorities to 
reduce risk-disproportionate regulation of these new 
events and lessen the resulting waste of both devel-
oper and regulator resources, as well as eliminate 
unnecessary animal testing. This would also correctly 
imply to the public that familiar traits like PMI have 

Fig. 4  SDS-PAGE analysis 
(top) and wester blot analy-
sis (bottom) of microbially 
derived PMI from time 0 to 
60 min in SIF. Lane 1: PMI 
protein in water, time 0; 
Lane 2: Pre-stained molecu-
lar weight makers; Lanes 
3–11: PMI in SIF for 0. 0.5, 
1, 5, 10, 20, 30, and 60 min; 
Lane 12: SIF control for 
60 min
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negligible risk. Modernizing regulation to appropri-
ately integrate history of safe use for proteins newly 
expressed in GM crops into the risk assessment 
would, in this way, benefit society by enabling useful 

Fig. 5  SDS-PAGE analysis of microbially derived PMI in 
SFG followed by SIF. Lane 1: Pre-stained molecular weight 
makers; Lane 2: PMI in SGF, time 0; Lane 3: SGF only, 1 min; 
Lane 4: PMI in SGF, 1 min; Lanes 5–12: PMI in SGF 1 min, 
SIF for 0, 0.5, 1, 5, 10, 20, and 30 min

Fig. 6  Glycoprotein stain-
ing of microbially derived 
PMI. Lane 1: Pre-stained 
molecular weight mark-
ers; Lanes 2, 4, 6: IX LDS 
sample buffer; Lane 3: 
horseradish peroxidase; 
Lane 5: soybean trypsin 
inhibitor; Lane 7 PMI. aGel 
treated with glycoprotein 
staining reagent. bGel 
treated with glycoprotein 
staining reagent followed 
by Coomassie Blue staining 
reagent for total proteins

Table 4  Summary of the effect of heat treatment on PMI 
enzymatic activity

Prior to heat treatment, all treatments were solubilized to a tar-
get concentration of 1 mg PMI/ml and diluted. The unheated 
control solution was maintained chilled (on wet ice). Not appli-
cable (NA).

Treatment PMI activity units 
(µmol/min/ml)

% Activity 
of control

Unheated control solution 219 NA
Test solution heated to 25 °C 220 101
Test solution heated to 50 °C 272 124
Test solution heated to 75 °C 0 0
Test solution heated to 95 °C 0 0

crop traits to also be developed by academic scien-
tists, non-profits, and smaller entities that help people 
in both developed and developing countries.
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