Skip to main content
Log in

Loss of MuRF1 in Duroc pigs promotes skeletal muscle hypertrophy

  • Research
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Muscle mass development depends on increased protein synthesis and reduced muscle protein degradation. Muscle ring-finger protein-1 (MuRF1) plays a key role in controlling muscle atrophy. Its E3 ubiquitin ligase activity recognizes and degrades skeletal muscle proteins through the ubiquitin–proteasome system. The loss of Murf1, which encodes MuRF1, in mice leads to the accumulation of skeletal muscle proteins and alleviation of muscle atrophy. However, the function of Murf1 in agricultural animals remains unclear. Herein, we bred F1 generation Murf1+/− and F2 generation Murf1−/− Duroc pigs from F0 Murf1−/− pigs to investigate the effect of Murf1 knockout on skeletal muscle development. We found that the Murf1+/− pigs retained normal levels of muscle growth and reproduction, and their percentage of lean meat increased by 6% compared to that of the wild type (WT) pigs. Furthermore, the meat color, pH, water-holding capacity, and tenderness of the Murf1+/− pigs were similar to those of the WT pigs. The drip loss rate and intramuscular fat decreased slightly in the Murf1+/− pigs. However, the cross-sectional area of the myofibers in the longissimus dorsi increased in the adult Murf1+/− pigs. The skeletal muscle proteins MYBPC3 and actin, which are targeted by MuRF1, accumulated in the Murf1+/− and Murf1−/− pigs. Our findings show that inhibiting muscle protein degradation in MuRF1-deficient Duroc pigs increases the size of their myofibers and their percentage of lean meat without influencing their growth or pork quality. Our study demonstrates that Murf1 is a target gene for promoting skeletal muscle hypertrophy in pig breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All data and analysis supporting this article can be obtained from the authors or corresponding author, and all data and materials are published in the article and supplementary material.

Abbreviations

MuRF1:

Muscle ring-finger protein-1

UPS:

Ubiquitin–proteasome degradation pathway

MYH:

Myosin heavy chain protein

MYBPC3:

Myosin-binding protein C

MYH7:

β-Myosin heavy chain 7

MYH1:

Myosin heavy chain 1

WGA:

Wheat germ agglutinin

MYLC2:

Myosin light chain 2

CSA:

Cross-sectional area

CRISPR/Cas9n:

Clustered regularly interspaced short palindromic repeats/cas9 nickase

LD:

Longissimus dorsi

LW:

Large white

References

  • Adams V, Bowen TS, Werner S, Barthel P, Amberger C, Konzer A, Graumann J, Sehr P, Lewis J, Provaznik J, Benes V, Buttner P, Gasch A, Mangner N, Witt CC, Labeit D, Linke A, Labeit S (2019) Small-molecule-mediated chemical knock-down of MuRF1/MuRF2 and attenuation of diaphragm dysfunction in chronic heart failure. J Cachexia Sarcopenia Muscle 10:1102–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams V, Schauer A, Augstein A, Kirchhoff V, Draskowski R, Jannasch A, Goto K, Lyall G, Mannel A, Barthel P, Mangner N, Winzer EB, Linke A, Labeit S (2022) Targeting MuRF1 by small molecules in a HFpEF rat model improves myocardial diastolic function and skeletal muscle contractility. J Cachexia Sarcopenia Muscle 13:1565–1581

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307:E469–E484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Cabling MM, Kang HS, Lopez BM, Jang M, Kim HS, Nam KC, Choi JG, Seo KS (2015) Estimation of genetic associations between production and meat quality traits in Duroc pigs. Asian-Australas J Anim Sci 28:1061–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 306:717–726

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Cai Y, Su Y, Wang D, Pan X, Zhi X (2021) Study of meat quality and flavour in different cuts of Duroc-Bamei binary hybrid pigs. Vet Med Sci 7:724–734

    Article  CAS  PubMed  Google Scholar 

  • Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6:376–385

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185:1083–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosper PF, Leinwand LA (2012) Myosin heavy chain is not selectively decreased in murine cancer cachexia. Int J Cancer 130:2722–2727

    Article  CAS  PubMed  Google Scholar 

  • Du M, Huang Y, Das AK, Yang Q, Duarte MS, Dodson MV, Zhu MJ (2013) Meat science and muscle biology symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J Anim Sci 91:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Liu Z, Xu K, Wu T, Ruan J, Zheng X, Bao S, Mu Y, Sonstegard T, Li K (2022) Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci 65:362–375

    Article  CAS  PubMed  Google Scholar 

  • Fielitz J, Kim MS, Shelton JM, Latif S, Spencer JA, Glass DJ, Richardson JA, Bassel-Duby R, Olson EN (2007) Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 117:2486–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumucio JP, Mendias CL (2013) Atrogin-1, MuRF-1, and sarcopenia. Endocrine 43:12–21

    Article  CAS  PubMed  Google Scholar 

  • Hirner S, Krohne C, Schuster A, Hoffmann S, Witt S, Erber R, Sticht C, Gasch A, Labeit S, Labeit D (2008) MuRF1-dependent regulation of systemic carbohydrate metabolism as revealed from transgenic mouse studies. J Mol Biol 379:666–677

    Article  CAS  PubMed  Google Scholar 

  • Hu Y (2017) Construction and analysis of Murf1 and MAFbx knockout Pigs. In: College of biological sciences. China Agricultural University, Beijing

  • Hwee DT, Baehr LM, Philp A, Baar K, Bodine SC (2014) Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age. Aging Cell 13:92–101

    Article  CAS  PubMed  Google Scholar 

  • Koyama S, Hata S, Witt CC, Ono Y, Lerche S, Ojima K, Chiba T, Doi N, Kitamura F, Tanaka K, Abe K, Witt SH, Rybin V, Gasch A, Franz T, Labeit S, Sorimachi H (2008) Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. J Mol Biol 376:1224–1236

    Article  CAS  PubMed  Google Scholar 

  • Labeit S, Hirner S, Bogomolovas J, Cruz A, Myrzabekova M, Moriscot A, Bowen TS, Adams V (2021) Regulation of glucose metabolism by MuRF1 and treatment of myopathy in diabetic mice with small molecules targeting MuRF1. Int J Mol Sci 22:2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie M, Baehr J, Furlow D, Bodine SC (2011) Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 589:19

    Google Scholar 

  • Li W, Li R, Wei Y, Meng X, Wang B, Zhang Z, Wu W, Liu H (2020) Effect of MSTN mutation on growth and carcass performance in Duroc × Meishan hybrid population. Animals (basel) 10:932

    Article  PubMed  Google Scholar 

  • Li M, Tang X, You W, Wang Y, Chen Y, Liu Y, Yuan H, Gao C, Chen X, Xiao Z, Ouyang H, Pang D (2021) HMEJ-mediated site-specific integration of a myostatin inhibitor increases skeletal muscle mass in porcine. Mol Ther Nucleic Acids 26:49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindqvist J, Kolb J, de Winter J, Tonino P, Hourani Z, Labeit S, Ottenheijm C, Granzier H (2022) Removal of MuRF1 increases muscle mass in nemaline myopathy models, but does not provide functional benefits. Int J Mol Sci 23:8113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mearini G, Gedicke C, Schlossarek S, Witt CC, Kramer E, Cao P, Gomes MD, Lecker SH, Labeit S, Willis MS, Eschenhagen T, Carrier L (2010) Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovasc Res 85:357–366

    Article  CAS  PubMed  Google Scholar 

  • Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandi D, Tahiliani P, Kumar A, Chandu D (2006) The ubiquitin-proteasome system. J Biosci 31:137–155

    Article  CAS  PubMed  Google Scholar 

  • Navon A, Ciechanover A (2009) The 26 S proteasome: from basic mechanisms to drug targeting. J Biol Chem 284:33713–33718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen T, Bowen TS, Augstein A, Schauer A, Gasch A, Linke A, Labeit S, Adams V (2020) Expression of MuRF1 or MuRF2 is essential for the induction of skeletal muscle atrophy and dysfunction in a murine pulmonary hypertension model. Skelet Muscle 10:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olive M, Abdul-Hussein S, Oldfors A, Gonzalez-Costello J, van der Ven PF, Furst DO, Gonzalez L, Moreno D, Torrejon-Escribano B, Alio J, Pou A, Ferrer I, Tajsharghi H (2015) New cardiac and skeletal protein aggregate myopathy associated with combined MuRF1 and MuRF3 mutations. Hum Mol Genet 24:3638–3650

    Article  CAS  PubMed  Google Scholar 

  • Paek HJ, Luo ZB, Choe HM, Quan BH, Gao K, Han SZ, Li ZY, Kang JD, Yin XJ (2021) Association of myostatin deficiency with collagen related disease-umbilical hernia and tippy toe standing in pigs. Transgenic Res 30:663–674

    Article  CAS  PubMed  Google Scholar 

  • Passmore LA, Barford D (2004) Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 379:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peris-Moreno D, Malige M, Claustre A, Armani A, Coudy-Gandilhon C, Deval C, Bechet D, Fafournoux P, Sandri M, Combaret L, Taillandier D, Polge C (2021) UBE2L3, a partner of MuRF1/TRIM63, is involved in the degradation of myofibrillar actin and myosin. Cells 10:1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polge C, Heng AE, Jarzaguet M, Ventadour S, Claustre A, Combaret L, Bechet D, Matondo M, Uttenweiler-Joseph S, Monsarrat B, Attaix D, Taillandier D (2011) Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J 25:3790–3802

    Article  CAS  PubMed  Google Scholar 

  • Rehfeldt C, Kuhn G (2006) Consequences of birth weight for postnatal growth performance and carcass quality in pigs as related to myogenesis. J Anim Sci 84(Suppl_13):E113–E123

    Article  PubMed  Google Scholar 

  • Salazar-Mendiguchia J, Ochoa JP, Palomino-Doza J, Dominguez F, Diez-Lopez C, Akhtar M, Ramiro-Leon S, Clemente MM, Perez-Cejas A, Robledo M, Gomez-Diaz I, Pena-Pena ML, Climent V, Salmeron-Martinez F, Hernandez C, Garcia-Granja PE, Mogollon MV, Cardenas-Reyes I, Cicerchia M, Garcia-Giustiniani D, Lamounier A Jr, Gil-Fournier B, Diaz-Flores F, Salguero R, Santome L, Syrris P, Olive M, Garcia-Pavia P, Ortiz-Genga M, Elliott PM, Monserrat L, Group GR (2020) Mutations in TRIM63 cause an autosomal-recessive form of hypertrophic cardiomyopathy. Heart 106:1342–1348

    Article  CAS  PubMed  Google Scholar 

  • Sugiura K, Hirasaka K, Maeda T, Uchida T, Kishimoto K, Oarada M, Labeit S, Ulla A, Sakakibara I, Nakao R, Sairyo K, Nikawa T (2022) MuRF1 deficiency prevents age-related fat weight gain, possibly through accumulation of PDK4 in skeletal muscle mitochondria in older mice. J Orthop Res 40:1026–1038

    Article  CAS  PubMed  Google Scholar 

  • Thornton KJ (2019) Triennial growth symposium: the nutrition of muscle growth: impacts of nutrition on the proliferation and differentiation of satellite cells in livestock species. J Anim Sci 97:2258–2269

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang K, Tang X, Xie Z, Zou X, Li M, Yuan H, Guo N, Ouyang H, Jiao H, Pang D (2017) CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res 26:799–805

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chai J, Luo Z, He H, Chen L, Liu X, Zhou Q (2018) Meat and nutritional quality comparison of purebred and crossbred pigs. Anim Sci J 89:202–210

    Article  CAS  PubMed  Google Scholar 

  • Zhu XX, Zhan QM, Wei YY, Yan AF, Feng J, Liu L, Lu SS, Tang DS (2020) CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs. Reprod Domest Anim 55:1314–1327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Heng Wang for reading, revising, and commenting on an early version of the manuscript. We also thank the staff of China Agricultural University Teaching experimental base to help with sample collection.

Funding

This research was supported by the National Transgenic Breeding Project of China (project grant numbers 2016ZX08009003006 and 2011ZX08006001) and the 948 Program of the Ministry of Agriculture of China (2012-G1(4)).

Author information

Authors and Affiliations

Authors

Contributions

NL and XXH proposed the ideas; JPL, YQH, XXH, NL, and YMX designed the research; JPL, YQH, JJL, HTW, HYW,TT, CCZ, XL, LZ, DZ, YS, and YMC collected samples; JPL, YQH, and JJL performed experiments; JPL analyzed the data; YQH supported; JPL drafted the manuscript.

Corresponding authors

Correspondence to Ning Li or Xiaoxiang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All animal experiments and procedures were approved by the China Agricultural University laboratory animal welfare and animal experimental ethical council.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2427 KB)

Supplementary file2 (PDF 126813 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, Y., Li, J. et al. Loss of MuRF1 in Duroc pigs promotes skeletal muscle hypertrophy. Transgenic Res 32, 153–167 (2023). https://doi.org/10.1007/s11248-023-00342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-023-00342-0

Keywords

Navigation