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Abstract Gene deletion by the Cre-Loxp system has

facilitated functional studies of many critical genes in

mice, offering important insights and allowing deeper

understanding on the mechanisms underlying organ

development and diseases, such as heart development

and diseases. In this study, we generated a Myh6-Cre

knockin mouse model by inserting the IRES-Cre-

wpre-polyA cassette between the translational stop

codon and the 30 untranslated region of the endoge-

nous Myh6 gene. By crossing knockin mice with the

Rosa26 reporter lines, we found that Myh6-Cre

targeted cardiomyocytes at the embryonic and post-

natal stages. In addition, we were able to inactivate the

desmosome gene Desmoplakin (Dsp) by breeding

Myh6-Cre mice with a conditional Dspflox knockout

mouse line, which resulted in embryonic lethality

during the mid-term pregnancy. These results suggest

that the new Myh6-Cre mouse line can serve as a

robust tool to dissect the distinct roles of genes

involved in heart development and function.

Keywords Cre-loxp �Mouse model �Development �
Desmoplakin

Introduction

Congenital heart disease is the most common birth

defect in humans and the leading cause of death in the

first year of life (Hoffman 1995; Wolf and Basson

2010; Bruneau and Srivastava 2014; Gelb and Chung

2014). Gene deletion by the Cre-Loxp system has

facilitated causative studies of many genes in mice

that are essential for heart development and function.

A variety of transgenic constitutive or inducible Cre

mouse tools have been generated and employed in

order to manipulate the expression of target genes in

cardiomyocytes. However, transgenes may not always

correctly reflect the expression of endogenous genes
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(Laboulaye et al. 2018), and the copy number of

insertional transgenes may be reduced during passages

which directly influences Cre expression levels (Davis

et al. 2012). For the inducible CreER or MerCreMer

(Cre recombinase fused to two mutated estrogen

receptor ligand binding domains), regardless of being

transgenic or knockin mouse lines, the inducible Cre is

not able to mediate complete excision, and the

administration of tamoxifen is toxic to embryos and

could easily lead to abortion before sample collection.

Furthermore, some transgenic inducible Cre mice

displayed cardiac functional defects after tamoxifen

treatment (Buerger et al. 2006; Hall et al. 2011;

Koitabashi et al. 2009; Hougen et al. 2010; Lexow

et al. 2013; Bersell et al. 2013; Molkentin and Robbins

2009), which may lead to the misinterpretation of data

in different studies.

Myh6, also known as aMHC, Myhc and Myhca,

encodes the cardiac muscle specific protein, alpha-

myosin heavy chain, which is dynamically expressed

in cardiomyocytes and with significant importance for

heart development (Carniel et al. 2005; Ching et al.

2005; Posch et al. 2011; Ng et al. 1991). Mutations in

MYH7 in humans cause dilated and hypertrophic

cardiomyopathy (Carniel et al. 2005; Richard et al.

2003). MYH6 is expressed at low levels in adult

human cardiomyocytes and the role of genetic variants

in MYH6 in human diseases is uncertain. In this study,

we created a Myh6-Cre knockin mouse line by

inserting the IRES-Cre-wpre-polyA cassette between

the translational stop codon and the 30 untranslated
region (UTR) of the endogenous Myh6 gene. By

immunostaining experiments, we found that Myh6-

Cre targeted cardiomyocytes during fetal and postna-

tal stages. In addition, we were able to efficiently

delete the desmosome gene Desmoplakin (Dsp) from

the mouse heart using Myh6-Cre, which resulted in

embryonic lethality during mid-term pregnancy. Our

results showed that Myh6-Cre is a useful genetic tool

that enables the deletion of target genes in

cardiomyocytes.

Materials and methods

Animals

All mouse studies were performed in accordance with

the guidelines provided by the institutional Animal

Care and Use Committee at ShanghaiTech University.

All mice were maintained in specific pathogen-free

conditions. Mice were bred with a normal diet and

maintained on a C57BL6/J/ICR background. Both

male and female animals were used in the analyses.

R26-tdTomato and Dspflox mice have been previously

reported (Madisen et al. 2010; Vasioukhin et al. 2001).

The R26-tdTomatomouse line was kindly provided by

the Shanghai Model Organisms Center, INC. The

Dspflox mouse line was purchased from the Jackson

Laboratory. For generation of the Myh6-Cre mouse

line, the CRISPR/Cas9 technology was used to insert

the internal ribosome entry site (IRES)-Cre cassette,

the woodchuck hepatitis virus posttranscriptional

regulatory element (wpre), and a polyA sequence

between the translational stop codon and the 30 UTR of

the endogenousMyh6 gene. TheMyh6-Cremouse line

was generated by the Shanghai Model Organisms

Center, INC. This newly generated mouse line is

available from the corresponding author with a

completed material transfer agreement.

Genotyping

Genomic DNA was extracted from either the embry-

onic yolk sac or the mouse tail. The harvested tissues

were lysed through incubation with proteinase K for a

total of 12 h at a temperature of 55 �C, followed by

centrifugation for 8 min. This process allowed us to

obtain a supernatant containing the genomic DNA,

which was precipitated by adding isopropanol. All

embryos and mice used in our experiments were

genotyped with specific primers that distinguished the

knockin from the wild-type alleles. The genotyping

primers used in the Myh6-Cre mouse line were: 50-
TTCCCAAGGGCATTTTATTAG-30 and 50-
CTTTGGGCTTGGCATCATCTGGT-30 (wild type

allele); 50-CAGAAGATGCACGACGAG-30 and 50-
CAGCCCCTTGTTGAATACG-30 (knock-in allele).

Immunostaining

We performed immunofluorescence staining accord-

ing to previously described protocols (Huang et al.

2019). Briefly, mouse embryos or hearts were col-

lected and fixed in 4% paraformaldehyde (PFA) for a

total of 30 min to 1 h, depending on the age of the

tissues. After three consecutive washes in PBS, mouse

embryos or hearts were photographed using
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fluorescence microscopy (Olympus, MVX10). The

tissues were then dehydrated in 30% sucrose and

embedded in optimum cutting temperature (OCT)

compound (Sakura). Cryosections collected with

9-lm thickness were air-dried and then blocked with

blocking buffer (5% donkey serum, 0.1% Triton

X-100 in PBS). Both of these steps were performed

for 30 min each at room temperature. Primary anti-

bodies were incubated overnight at 4 �C. The follow-
ing primary antibodies were used: tdTomato

(Rockland, 600–4,010,379, 1:1000; Sicgen, AB8181-

200, 1:1000), PDGFRa (R&D, AF1062, 1:500),

PDGFRb (eBioscience, 14-1402-82, 1:500), aSMA

(Sigma, F3777, 1:400), CDH5 (R&D, AF1002,

1:200), TNNI3 (Abcam, ab56357, 1:200), Cre (Mil-

lipore, MAB3120, 1:200), MYH6 (Invitrogen, PA5-

97,224,1:200) and WT1 (Abcam, ab89901, 1:100).

Signals were developed with Alexa fluorescence

antibodies (Invitrogen). The images obtained were

acquired using a confocal microscope (Nikon A1R).

Real-time quantitative PCR

Mouse embryos at embryonic day 10.5 or adult hearts

at postnatal 8 weeks were harvested. The hearts or

non-cardiac tissues were treated with Trizol in order to

extract RNA in accordance with the manufacturer’s

instructions (Invitrogen). We converted the RNA to

cDNA using the Prime Script RT kit (Vazyme). We

used the SYBR Green qPCR master mix (Vazyme)

and amplified the cDNA on a StepOnePlusTM real-

time PCR system (Applied Biosystems). The primers

used to detect the mRNA levels of the Dsp,Myh6 and

Gapdh are listed below. Dsp: 50-AAACCGGCAC-
CATGTCTAGA-30 and 50- CTCCGAATTT-

CAGTTCCGGC-30; Myh6: 50-
CAATGCAGAGTCGGTGAAGG-30 and 50-
CCTCTGTCTGGTAGGTGAGC-30; Gapdh: 50-
TTGTCTCCTGCGACTTCAAC-30 and 50-GTCA-
TACCAGGAAATGAGCTTG-30.

Hematoxylin and Eosin staining

Mouse hearts at postnatal 8 weeks were fixed in 4%

PFA at 4 �C for 1 h and then dehydrated in 30%

sucrose overnight. The next day, the hearts were

processed into OCT-embedded serial sections. Slides

were incubated in hematoxylin solution for 8–10 min

and then rinsed in running tap water. The slides were

then treated with 1% concentrated hydrochloric acid in

70% ethanol for 1.5 min and rinsed in running tap

water. After soaking in PBS for 3 min and washed by

running tap water, the slides were stained with eosin

solution for 3–5 min followed by dehydration in

ethanol and xylene. Images were acquired by stere-

omicroscope (Olympus MVX10).

Echocardiographic assessment

Adult mice at postnatal 8 weeks or 4 months were

anesthetized with inhalation of isoflurane (2.5%-3%)

and heart rate was maintained at 400–500 bpm. The

chest was shaved and further cleaned with hair

removal gel cream. Mice were placed on a warm

board in the supine position with the limbs taped onto

the metal electrocardiographic leads. Acoustic gel was

applied to the thorax surface as coupling medium.

Using a VisualSonics Vevo 2100 system and a

30-MHz microvisualization scan head probe, M-mode

images and real-time B-mode cine loops of the left

ventricle were acquired for cardiac structure and

function assessment. Using the long-axis view, left

ventricular end-systolic volume and end-diastolic

volume, as well as the ejection fraction were calcu-

lated by identifying frames with the maximal and

minimal cross-sectional area and width. All data were

presented as mean values ± SEM. The echocardiog-

raphers were blinded to animal group assignments.

Cardiomyocyte isolation

Myh6-Cre/ ? ;R26-tdTomato/ ? mice at postnatal

8 weeks were intraperitoneally injected with about

150 USP units heparin 15 min in advance. Then mice

were intraperitoneally injected with 10% chloral

hydrate. The dissected hearts were perfused with

modified Tyrode’s solution (MTS) for 5 min. Later,

the hearts were perfused with MTS containing 1 mg/

ml collagenase II and 0.08 mg/ml Protease XIV. The

digested hearts were shredded with forceps and filtered

through a 70 lm strainer. The filtered cells were

centrifuged at 20 9 g for 3 min at 4 �C and most of

the cardiomyocytes were pelleted. The pellets were re-

suspended in MTS with 0.5% BSA and then cen-

trifuged at 100 9 g for 5 min at 4 �C in Percoll to

remove the dead cells. The cardiomyocytes were re-

suspended in MTS with 0.5% BSA and implanted in
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24-well plates. Images were taken under a stereo

microscope (Olympus MVX10).

Western blot

The hearts at postnatal 8 weeks were dissected and

washed in PBS buffer. Then about 15 mg tissues were

lysed in 300 lL RIPA lysis buffer and incubated on

ice for 30 min. All protein samples were mixed with

5 9 loading buffer and boiled at 95 �C for 5 min. The

lysates were analyzed by SDS/PAGE and transferred

onto the polyvinylidene fluoride membrane. Mem-

branes were blocked for 1 h at room temperature by

using 5% BSA-TBST solution. Then the membranes

were incubated with primary antibodies Anti-MYH6

(Invitrogen, PA5-97,224, 1:1000), Anti-Cre recombi-

nase (Millipore, MAB3120, 1:1000) at 4 �C over-

night. The next day, after washing primary antibodies

with TBST, membranes were incubated with HRP-

conjugated secondary antibodies at room temperature

for 1 h. HRP-anti-b-Actin (ZENBIO, 700068,

1:10000) primary antibodies were just incubated at

room temperature for 1 h. Signals were revealed with

the enhanced chemiluminescence kit.

Statistics analysis

All data were representative of at least three indepen-

dent experiments and presented as mean val-

ues ± SEM. Data of the two groups were analyzed

using an unpaired Student’s t-test, and comparison

between more than two groups was performed using

analysis of variance (ANOVA), followed by Tukey’s

multiple comparison test. p\ 0.05 indicated statisti-

cal significance.

Results

Generation of Myh6-Cre mice

Myh6 mutations lead to dilated and hypertrophic

cardiomyopathy, as well as atrial septal defect (Posch

et al. 2011; Ching et al. 2005; Carniel et al. 2005). In

order to avoid mutating or disrupting Myh6, we

generated a knockin mouse line Myh6-Cre using

CRISPR/Cas9 to insert the IRES-Cre-wpre-polyA

cassette between the translational stop codon and the

30 UTR of the endogenous Myh6 gene (Fig. 1a).

Specifically, we injected the Cas9 mRNA, gRNA (50-
acagcgagggtctgctggag-30), and the donor targeting

vector, which contains 50 homologous arm (2.5 kb),

IRES-Cre-wpre-poly A cassette, and 30 homologous

arm (4.0 kb), into C57BL6/J zygotes, which were

subsequently transferred into pseudo-pregnant mice.

With 21 offspring of F0 generation obtained, we

designed four primers (Primers I and II to amplify the

wild type allele [10.5 kb] or the recombined 50 arm
[6.8 kb]; Primers III and IV to amplify the recombined

30 arm [4.8 kb]) to screen the F0 mice, and finally

found 3 founders with successful homologous recom-

bination (Fig. 1a, b). We next sequenced the PCR

products to further confirm the correct recombination,

and then crossed the 3 founders with wild type mice to

get F1 generation.

To optimize the genotyping protocol forMyh6-Cre

knockin, we re-designed four PCR primers (P1 and P2

to amplify the wild type allele [923 bp] and P3 and P4

to amplify the inserted site [452 bp]), which were

located outside or inside of the IRES-Cre-wpre-polyA

cassette sequence (Fig. 1c). Genotyping by PCR using

the forward and reverse primers showed that the IRES-

Cre-wpre-polyA cassette was successfully inserted

into the Myh6 locus (Fig. 1c).

Myh6-Cre labels cardiomyocytes from embryonic

stage to adulthood

To characterize the Myh6-Cre mouse line, we subse-

quently crossed theMyh6-Cre/ ? mice with a reporter

line containing a stop cassette flanked by loxp sites

upstream of tdTomato at the Rosa26 locus (Rosa26-

loxp-stop-loxp-tdTomato, or R26-tdTomato)(Madisen

et al. 2010). This crossing allowed us to generate a

Myh6-Cre/ ? ;R26-tdTomato/ ? mouse line. Impor-

tantly, the loxp-flanked stop cassette, which prevents

the transcription of the downstream tdTomato, was

thus deleted in the Cre-expressing cells, leading to the

expression of tdTomato.

cFig. 1 Strategy for generating Myh6-Cre mice. a The strategy

for generating Myh6-Cre mice. The IRES-Cre-wpre-polyA

cassette was inserted between the translational stop codon and

the 3’UTR. b PCR results show that homologous recombination

was detected in the F0 generation mice. c Locations of the

genotyping primers and an example of genotyping result

showing the PCR products
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We examined the Myh6-Cre/ ? ;R26-tdTomato/

? embryos at different time points. At embryonic day

(E) 8.5, we specifically detected tdTomato signals in

the heart tubes (Fig. 2a). At E9.5, we found similar

results that tdTomato was exclusively expressed in the

hearts (Fig. 2a). Immunostaining for tdTomato and

cardiomyocyte marker TNNI3 showed that most

cardiomyocytes were labelled by tdTomato at E9.5

(Fig. 2b). We then analyzed the embryos at E13.5.

tdTomato signals were robustly detected in the heart,

but not in other organs, such as the stomach, lung and

liver (Fig. 2c, d). Immunostaining for tdTomato and

TNNI3 confirmed that the majority of cardiomyocytes

were tdTomato? at E13.5 (Fig. 2e). Moreover, co-

staining assays of different heart sections with tdTo-

mato and either WT1 or CDH5 antibodies showed that

tdTomato did not target any epicardial or endothelial

cells at E13.5 (Fig. 2f, g). We also stained the Myh6-

Cre/ ? embryonic hearts with TNNI3, MYH6 and

Cre antibodies and found co-localization of Cre and

MYH6 in TNNI3? cardiomyocytes (Supplementary

Fig. S1), suggesting that Cre activity is specifically

localized to MYH6? cardiomyocytes with high

fidelity in Myh6-Cre/ ? embryonic hearts.

Next, we proceeded to analyze the Myh6-Cre/

? ;R26-tdTomato/ ? mice at postnatal stages. We

harvested the hearts at postnatal 2 weeks (P2W) and

were able to detect significant tdTomato signals in the

whole-mount views (Fig. 3a, b). Similarly, co-staining

for tdTomato and TNNI3 on heart sections also

demonstrated that the majority of cardiomyocytes

were tdTomato? at P2W (Fig. 3c). PDGFRa has been

previously used as a marker for cardiac fibroblasts

(Kaur et al. 2016; Huang et al. 2019; Feng et al. 2019).

Hence, in order to examine whether the lineage tracer

marks cardiac fibroblasts at P2W, we stained the heart

sections with tdTomato and PDGFRa antibodies. No

tdTomato-labelled PDGFRa? cells were found

(Fig. 3d), suggesting that cardiac fibroblasts were

not targeted by tdTomato. Additionally, we stained the

hearts with antibodies against tdTomato, CDH5 and

PDGFRb, a gene which was previously reported as a

coronary vascular pericyte marker (Chen et al. 2016;

Huang et al. 2019). Similarly, we could not find any

tdTomato-labelled coronary endothelial cells or per-

icytes at P2W (Fig. 3e). Finally, we were not able to

identify any tdTomato-labelled smooth muscle cells

(SMCs) (aSMA?) in hearts at P2W (Fig. 3f). Taken

together, our results provide strong evidence that

Myh6-Cre/ ? ;R26-tdTomato/ ? specifically targets

cardiomyocytes in early mouse infants.

We subsequently examined the hearts from adult

Myh6-Cre/ ? ;R26-tdTomato/ ? mice at P8W. Sim-

ilar to P2W, we identified strong tdTomato signals in

the whole-mount view of the hearts (Fig. 4a, b), and

found that the significant majority of cardiomyocytes

were targeted by tdTomato by staining on heart

sections (Fig. 4c). We also confirmed the tdTomato

expression in the isolated cardiomyocytes from P8W

hearts (Supplementary Fig. S2). Moreover, our obser-

vations confirmed that no PDGFRa? fibroblasts,

CDH5? coronary endothelial cells, or PDGFRb?

vascular pericytes were marked by tdTomato in the

adult hearts (Fig. 4d, e). However, we did find

tdTomato expression in a few coronary vascular

SMCs (Fig. 4f). Microscopic quantification shows

that 9.42 ± 2.84% of SMCs are labeled in the adult

Myh6-Cre/ ? ;R26-tdTomato/ ? mouse hearts. Col-

lectively, these observations demonstrate that Myh6-

Cre/ ? ;R26-tdTomato/ ? is also able to efficiently

target cardiomyocytes in adult hearts.

To compare the labeling specificityMyh6-Cre with

other similar Cre strains, we employed the inducible

transgenic mouse lineMyh6-MerCreMer that has been

reported previously to target cardiomyocytes (Sohal

et al. 2001). We administered the Myh6-MerCre-

Mer ? ;R26-tdTomato/ ? mice with a dose of tamox-

ifen (0.2 mg/g of body weight) at P8W and harvested

the hearts for analyses after 48 h. tdTomato were

bFig. 2 Myh6-Cre labels cardiomyocytes in embryonic hearts.

(a, c) Whole-mount view of theMyh6-Cre/ ? ;R26-tdTomato/
? embryos at E8.5 and E9.5. b Immunostaining for tdTomato

and TNNI3 on embryonic sections at E9.5. The arrows in (a–
c) indicate hearts with enriched tdTomato signals. d Whole-

mount view of the organs from Myh6-Cre/ ? ;R26-tdTomato/
? mice at E13.5. (e–g) Immunostaining for tdTomato and

TNNI3, WT1 or CDH5 on heart sections from Myh6-Cre/
? ;R26-tdTomato/ ? mice at E13.5. Boxed regions are magni-

fied on the right. 4 embryos were examined for each embryonic

stage. Red scale bars, 1 mm; White scale bars, 100 lm
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detected in cardiomyocytes, but not in cardiac fibrob-

lasts, pericytes, endothelial cells, or SMCs (Fig. 4g).

We noted that the intensity of tdTomato signals in

cardiomyocytes were remarkably inhomogeneous;

and the tdTomato signals in the cytoplasm were too

weak to be identified in a significant part of cardiomy-

ocytes (Fig. 4g). Therefore, the specificity of Myh6-

MerCreMer in adult heart seems better thanMyh6-Cre

in this study, as Myh6-Cre is constitutively activated

and also targets a few SMCs in adult hearts.

Next, we examined whether Myh6-Cre/ ? ;R26-

tdTomato/ ? targets other tissues or organs outside

the heart at P8W. Few tdTomato signals were detected

in the liver or thymus, but plenty of tdTomato? cells

were identified in the kidney, spleen, skeletal muscle,

and lung (Fig. 5a), suggesting the Cre expression in

these non-cardiac tissues.

Myh6-Cre affects the expression of endogenous

Myh6 in heart

Myh6-Cre strain can be maintained in the homozygous

background and were also viable and fertile. However,

we performed echocardiographic analysis at P8W and

found that the heart functions of Myh6-Cre/Cre mice

were compromised compared to wild type and Myh6-

Cre/ ? groups (Supplementary Fig. S3, Fig. 5b). For

instance, the left ventricular end-systolic dimension,

left ventricular end-diastolic dimension, end-systolic

volume, and end-diastolic volume were increased; and

the ejection fraction and fractional shortening were

decreased (Fig. 5b). There was no significant differ-

ence in heart function between the wild type and

Myh6-Cre/ ? groups at P8W (Supplementary Fig. S3,

Fig. 5b). The appearance of Myh6-Cre/Cre mice was

normal (Fig. 5c), but the hearts were hypertrophic

(Fig. 5d, e). Histological examination showed thinner

ventricular septa and left ventricular walls in the hearts

of Myh6-Cre/Cre mice (Fig. 5f). Wheat germ agglu-

tinin (WGA) staining showed the cardiomyocyte size

significantly increased in the hearts of Myh6-Cre/Cre

mice (Fig. 5g). These data suggest that the homozy-

gous Myh6-Cre strain exhibits cardiac hypertrophy at

the adult stage. We also examined heart functions of

Myh6-Cre/ ? mice at the later stage, and did not

found any significant difference between the wild type

andMyh6-Cre/ ? groups at postnatal 4 months (Sup-

plementary Fig. S4).

Because the homozygous Myh6-Cre mice had

deteriorative heart function, we speculated that the

insertion of IRES-Cre-wpre-poly A cassette between

the translational stop codon and the 30 UTRmay affect

the expression of endogenous Myh6 gene. Therefore,

we performed real-time quantitative PCR and found

that the expression level ofMyh6 was decreased in the

hearts of adultMyh6-Cre/Cremice compared with the

wild type and Myh6-Cre/ ? groups (Fig. 5h). At the

same time, the expression level of Cre was increased

in the hearts of adult Myh6-Cre/Cre mice (Supple-

mentary Fig. S5a). Western blot confirmed a reduced

MYH6 protein level and increased Cre protein level in

the hearts of adult Myh6-Cre/Cre mice (Supplemen-

tary Fig. S5b). The reason why Myh6 expression is

downregulated by the insertion needs further

investigation.

Deletion of desmoplakin gene in cardiomyocytes

using Myh6-Cre

Desmoplakin (Dsp) is one of the members of the

desmosome gene family. To further examine the

deletion efficiency of Myh6-Cre, we crossed Dspflox

(Dspfl) (Garcia-Gras et al. 2006) with Myh6-Cre mice

in order to delete the Dsp gene in cardiomyocytes

(Fig. 6a). We investigated whether Myh6-Cre was

able to efficiently delete the Dsp gene in mouse hearts

by crossing Myh6-Cre/ ? ;Dspfl/? with Dspfl/fl mice.

After this, we collected the embryos at E10.5 and

performed real-time quantitative PCR experiments

(primer P5 and P6 to amplify exon 2) to examine the

mRNA levels of Dsp in the hearts (Fig. 6a). We found

that DspmRNA was decreased in the hearts of mutant

mice (Myh6-Cre/ ? ;Dspfl/fl) compared to their litter-

mate controls (Fig. 6b). We also analyzed the Dsp

mRNA in the embryos without hearts at E10.5, and did

not find any significant difference between the mutant

and control groups (Fig. 6b). These data suggested

bFig. 3 Myh6-Cre labels cardiomyocytes in infant mice. (a,
b) Whole-mount view of the hearts from Myh6-Cre/ ? ;R26-
tdTomato/ ? mice at P2W. Scale bars, 5 mm. (c, d) Immunos-

taining for tdTomato and TNNI3 or PDGFRa on heart sections

from Myh6-Cre/ ? ;R26-tdTomato/ ? mice at P2W. (e, f) Im-

munostaining for tdTomato, CDH5 and PDGFRb or aSMA on

heart sections from Myh6-Cre/ ? ;R26-tdTomato/ ? mice at

P2W. Boxed regions in (c–f) are magnified on the right. Scale

bars in (c–f), 100 lm. Each picture is representative of 3

individual mouse samples
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that the exon 2 of the Dsp gene was significantly

deleted in the cardiomyocytes of mutant embryos.

Finally, we harvested the embryos at E11.5 and

found that the morphology of the mutants was roughly

normal compared to the controls (Fig. 6c). While at

E13.5, the mutants appeared very pale and exhibited

growth arrest at * E11.5. The mutant hearts did not

beat and were significantly smaller than those of

littermate controls at E13.5 (Fig. 6c), suggesting that

the inactivation of theDsp gene in the cardiomyocytes

severely influences heart development and results in

embryonic lethality during mid-term pregnancy.

Discussion

A few constitutively activated Cre strains using Myh6

promoter are commercially available, such as Tg(My-

h6-Cre) (JAX stock #009,074) (Oka et al. 2006) and

Tg(Myh6-Cre) (JAX stock #011,038) (Agah et al.

1997). These strains are transgenic and transgenes

may not always correctly reflect the expression of

endogenous Myh6 temporally or spatially. For

instance, the transgenic Myh6-Cre line was reported

to begin excising at E9.5 (Agah et al. 1997; Gaussin

et al. 2002; Xu et al. 2009; Papanicolaou et al. 2012),

while the knockin line Myh6-Cre we generated in this

study turns on as early as E8.5. Therefore, this Myh6-

Cre knockin mouse line can be used to target

cardiomyocytes since an earlier embryonic stage.

TheMyh6-Cre in this study also labels a few SMCs

in addition to cardiomyocytes in adult hearts. The

inducible transgenic Myh6-MerCreMer strain (Sohal

et al. 2001) is more specific in adult hearts likely

because the MerCreMer allele can be activated in the

restricted temporal window, while our Myh6-Cre is

constitutively activated. Dynamic expression of Cre in

unpredicted tissues or cells are always the issue for

every constitutive Cre line.

Dsp is one of desmosomal genes, which also

include desmocllin-2, desmoglein-2, plakophilin-2,

and plakoglobin. Previous studies have identified

mutations in all of the known desmosomal genes in

patients with arrhythmogenic cardiomyopathy (Austin

et al. 2019). Early embryonic lethality has been

reported in the germline Dsp-null mice (Gallicano

et al. 1998). Deletion of the Dsp gene in cardiomy-

ocytes using transgenic aMHC-Cre mice also leads to

high lethality in embryos (Garcia-Gras et al. 2006).

The cardiac-restricted Dsp mutants exhibited growth

arrest at E10-E12, and the specific phenotypes of the

mutants have been investigated in more detail in the

previous study (Garcia-Gras et al. 2006). In this study,

just to examine the deletion efficiency of Myh6-Cre,

we crossed the Dspfl mice with Myh6-Cre mice and

found that the exon 2 of the Dsp gene was significantly

removed in the E10.5 hearts by the Myh6-Cre. The

Dsp mutants in this study exhibited growth arrest

at * E11.5, in agreement with the previous observa-

tions (Garcia-Gras et al. 2006).

In summary, we established a new Myh6-Cre

mouse model as an efficient tool enabling targeted

gene deletion in cardiomyocytes. This model may thus

significantly improve our knowledge and address

critical questions regarding heart development and

diseases.

bFig. 4 Myh6-Cre labels cardiomyocytes and a small portion of

smooth muscle cells in adult hearts. (a, b) Whole-mount view of

the hearts from adult Myh6-Cre/ ? ;R26-tdTomato/ ? mice.

Scale bars, 2 mm. (c, d) Immunostaining for tdTomato and

TNNI3 or PDGFRa on heart sections from adult Myh6-Cre/
? ;R26-tdTomato/ ? mice. (e, f) Immunostaining for tdTo-

mato, CDH5 and PDGFRb or aSMA on heart sections from

adult Myh6-Cre/ ? ;R26-tdTomato/ ? mice. The arrows in

(f) indicate tdTomato-labelled smooth muscle cell. g Immunos-

taining on heart sections from adultMyh6-MerCreMer ? ;R26-
tdTomato/ ? mice, which were administered with tamoxifen

48 h before harvest. The arrows in (g) indicate cardiomyocytes

with weak tdTomato signal in the cytoplasm. Boxed regions are

magnified as indicated. Scale bars in (c–g), 100 lm. Each

picture is representative of 3 individual mouse samples
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Fig. 5 Myh6-Cre targets some other organs outside the heart

and affects the expression of endogenous Myh6 in heart.

a tdTomato was detected in some other organs from the adult

Myh6-Cre/ ? ;R26-tdTomato/ ? mice at P8W. 3 mouse sam-

ples were examined. b ECG analyses of the P8W hearts with

indicated genotypes. n = 6 mice per group. LVESD, left

ventricular end-systolic dimension; LVEDD, left ventricular

end-diastolic dimension; ESV, end-systolic volume; EDV, end-

diastolic volume; EF, ejection fraction; FS, fractional shorten-

ing. c Whole bodies of the mice with indicated genotypes at

P8W. d Whole-mount view of the hearts with indicated

genotypes at P8W. e The relative heart weight was increased

in theMyh6-Cre/Cremice at P8W. HW, heart weight. BW, body

weight. f HE staining shows the thinner left ventricular wall and

ventricular septum in the hearts ofMyh6-Cre/Cre mice at P8W.

g WGA staining on heart sections. h The expression level of

Myh6 in the adult hearts at P8W. n = 3 mice per group in (c–h).
White scale bars, 5 mm; Black scale bars, 2 mm; Red scale bars,

200 lm; Yellow scale bars, 100 lm. NS, non-significant;

*p\ 0.05; ***p\ 0.001
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