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Abstract Two transgenic mouse lines expressing an

inducible form of the Cre recombinase (CreERTM)

under the control of the human GFAP promoter have

been generated and characterized. In adult mice,

expression of the fusion protein is largely confined to

astrocytes in all regions of the central nervous

system. Minimal spontaneous Cre activity was

detected and recombination was efficiently induced

by intraperitoneal administration of tamoxifen in

adult mice. The pattern of recombination closely

mirrored that of transgene expression. The percentage

of astrocytes undergoing recombination varied from

region to region ranging from 35% to 70% while a

much smaller portion (\1%) of oligodendrocytes and

neural precursor cells showed evidence of Cre

activity. These mouse lines will provide important

tools to dissect gene function in glial cells and in

gliomagenesis.
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Introduction

Astrocytes are the most abundant glial cell type in the

mammalian brain and play important roles in all

aspects of the developing and mature organ (He and

Sun 2007). This includes, but is not restricted to a

housekeeping function in support of neurons, the

establishment and maintenance of the blood-brain

barrier and the regulation of synaptogenesis and

synaptic plasticity. It is perhaps not surprising then,

that astrocytes are proposed to be at the root of

numerous pathological processes such as glial scar-

ring following brain injuries, Alexander disease and

the most common primary brain tumor, glioma (He

and Sun 2007). The availability of the appropriate

molecular tools to manipulate gene expression

in vivo is therefore critical to further our understand-

ing of astrocyte contributions to normal and disease

states.

A large number of brain-specific bacteriophage P1

Cre recombinase-expressing mouse strains have been

developed, including those using the glial fibrillary

acidic protein (GFAP) promoter to drive astrocyte-

specific expression of cre (Gaveriaux-Ruff and Kief-

fer 2007). The expression pattern directed by the

GFAP promoter in transgenic mice has been exten-

sively studied and mapped (Brenner and Messing

1996; Johnson et al. 1995). In adult mice its activity

is restricted predominantly to astrocytes while

embryonic expression targets neural precursor cells

of the ventricular zone and spinal cord. In addition, a
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subset of Gfap-expressing glial cells located in the

subventricular zone of the adult brain have been

shown to function as adult neural stem cells capable

of giving rise to the major cell types in the brain:

mature astrocytes, oligodendrocytes and neurons

(Doetsch 2003). Because Cre-mediated recombina-

tion is irreversible, embryonic expression in neural

precursor cells directed by the GFAP promoter and/or

aberrant expression resulting from transgene insertion

effects have resulted in substantial Cre-mediated

recombination in mature neurons as well as glial cells

in all GFAP-cre mice characterized to date (Bajenaru

et al. 2002; Casper and McCarthy 2006; Fraser et al.

2004; Kwon et al. 2001; Marino et al. 2000; McCarty

et al. 2005; Zhuo et al. 2001). Therefore, the ability

to restrict Cre activity during embryogenesis could

greatly mitigate neuronal Cre-mediated recombina-

tion in GFAP-Cre mice and allow for the study of

gene function in mature astrocytes without disruption

of function in neurons.

Cre activity can be regulated in a temporal fashion

by engineering a fusion protein with the ligand

binding domain of a steroid hormone receptor, such

as the estrogen receptor (Feil et al. 1996; Hayashi and

McMahon 2002). Furthermore, a specific point

mutation within the ligand-binding domain termed

ERTM abolishes the binding to endogenous steroid

hormones while retaining its interaction with syn-

thetic estrogen analogs such as tamoxifen. The fusion

protein, CreERTM, is inactive while sequestered in

the cytoplasm by heat shock protein complexes.

Binding of tamoxifen releases CreERTM from this

complex allowing ligand-dependent translocation to

the nucleus where the fusion protein is active and

directs recombination between loxP sites (Hayashi

and McMahon 2002). In this report, we describe the

characterization of two mouse strains expressing

the CreERTM fusion protein under the control of the

human GFAP promoter.

Materials and methods

Transgenic and reporter mice

Standard subcloning techniques were used to con-

struct the transgene placing the 2.2 Kb human GFAP

promoter (a gift from D. Gutmann) (Brenner et al.

1994) upstream of the cDNA encoding the CreERTM

fusion protein (provided by A. McMahon). This was

followed by an internal ribosomal entry sequence

(IRES) and the cDNA encoding bacterial b-galacto-

sidase (b-gal) to facilitate detection of transgene

expression. The construct was terminated by an SV40

intronic sequence and polyadenylation signal. Fol-

lowing pronuclear injection into fertilized FVB/NJ

oocytes and implantation into foster mothers, the

transgenic founder was identified by polymerase

chain reaction (PCR) with primers recognizing the

Cre sequence (50 AGCGATCGCTGCCAGGAT 30

and 50 ACCAGCGTTTTCGTTCTGCC 30). Integra-

tion of the transgene was confirmed by Southern blot

using a probe recognizing the SV40 sequences. The

mouse line was propagated by crossing with FVB/NJ

wild-type mice. Cre activity was assessed by crossing

into the Z/EG reporter mouse line (Jackson Labora-

tory, Bar Harbor, ME) (Novak et al. 2000). Reporter

positive mice were identified by PCR using primers

to the GFP gene (50 CCGGGGTGGTGCCCATCC

TGGT 30 and 50 GCTCCTGGACGTAGCCTTCGG

GC 30). All experiments involving mice were carried

out in compliance with the Animal Care and Use

Committee at St. Jude Children’s Research Hospital.

Induction of Cre activity

Tamoxifen (Sigma, St. Louis, MO) was dissolved in

corn oil (Sigma) at a concentration of 20 mg/ml at

37�C, and then filter sterilized and stored for up to

7 days at 4�C in the dark. A 27 g needle tuberculin

syringe (Becton Dickinson, Franklin Lakes, NJ) was

used for intraperitoneal injections at the indicated

doses. An equivalent volume of sterile filtered corn

oil alone was used for vehicle injections. Multiple

injections in the same mouse were separated by 24 h.

Histochemistry

Animals were perfused with 19 phosphate-buffered

saline (PBS) followed by 2% paraformaldehyde (PFA)

in PBS. Following dissection, tissues were post-fixed

overnight in 2% PFA in PBS at 4�C, and then

equilibrated to 25% sucrose in PBS for a further 24 h

at 4�C. Tissues were subsequently embedded and

cryosectioned at a thickness of 12 lm. Tissue slides

were washed three times in PBS prior to staining.

For detection of b-gal activity, slides were washed

in Rinse A (100 mM NaPO4, pH 7.3; 2 mM MgCl2;
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Fig. 1 Generation of transgenic mouse lines. (a) Diagram of

transgenic construct. The 2.2 Kb human GFAP promoter

drives expression of cDNAs encoding the Cre-estrogen

receptor ligand binding domain (CreERTM) fusion protein, an

internal ribosome entry site (IRES) and E. coli b-galactosidase

(b-gal). (b) Southern blot. Genomic DNAs from the transgenic

founder mouse and a panel of F1 progeny were digested with

EcoRI (location of restriction sites within the transgene are

indicated in panel (a)) to detect fragments resulting from

internal digest of the multicopy transgene as well as those

containing the junction of the transgene with the insertion sites

in genomic DNA. The fragments corresponding to the insertion

site for GFAP-CreERTMA (arrowhead) and for GFAP-

CreERTMB (arrow) are shown. The probe was directed against

SV40 sequences as indicated in panel (a)

Fig. 2 Transgene expression analysis of adult GFAP-

CreERTM brains by b-gal histochemistry. (a–e) GFAP-

CreERTMA brain. (f–j) GFAP-CreERTMB brain. (a, f) Sagittal

sections of brain. Scale bar in (a) is 1 mm and applies to (f).
(b, c, g, h) Sagittal sections of cerebellum at low (b, g) and

high (c, h) power. The arrows in (c) and (h) indicate the

location of Bergman glia. Scale bar in (b) is 0.5 mm and

applies to (g) and that in (c) is 50 lm and applies to (h). (d, i)
Sagittal sections through dentate gyrus. The arrows indicate the

inner layer of the dentate gyrus, the location of neural

progenitor cells. Scale bar in (d) is 100 lm and applies to

(i). (e, j) Sagittal sections through subventricular zone. The

arrows indicate a transgene-expressing cell in the subventric-

ular zone. Scale bar in (e) is 10 lm and applies to (j)
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5 mM EGTA) for 30 min followed by Rinse B

(100 mM NaPO4 pH 7.3; 2 mM MgCl2; 0.01%

sodium deoxycholate; 0.02% NP-40) for 5 min.

Slides were then stained at 37�C for 3–4 days in

Developing Buffer (1 mg/ml X-gal; 100 mM NaPO4;

pH 7.3; 2 mM MgCl2; 0.01% sodium deoxycholate;

0.02% NP-40; 5 mM K3Fe(CN)6; 5 mM K4Fe(CN)6).

After washing extensively in PBS, slides were

counterstained with Nuclear Fast Red (Vector Labs,

Burlingame, CA).

Immunohistochemistry and immunofluorescence

Cryosections were prepared as above. Primary anti-

bodies used for immunodetection were against GFP

(1:5000 for immunohistochemistry, 1:500 for immu-

nofluorescence; Molecular Probes, Eugene, OR),

S100b (1:200; Sigma), NeuN (1:500; Chemicon,

Temecula, CA), CC-1 (1:50; Calbiochem, San Diego,

CA), Gfap (1:200; Sigma) and S100 (1:500; Dako,

Carpinteria, CA). Microwave antigen retrieval was

performed for all antibodies except anti-GFP. For

immunohistochemistry, biotinylated secondary anti-

bodies were used in conjunction with horseradish

peroxidase-conjugated streptavidin (Elite ABC, Vec-

tor Laboratories) treated with NovoRed or VIP

(Fig. 5) substrate (Vector Laboratories) and counter-

stained with hematoxylin or methyl green (Vector

Laboratories), respectively. For immunofluorescence,

Alexa Fluor 488 (Molecular Probes) and cyanine 3

(Jackson Immunoresearch, West Grove, PA) conju-

gated secondary antibodies were employed along

with Vectashield mounting media containing 40,6-

diamino-2-phenylindole (Vector Laboratories).

Quantitation

The percentage of astrocytes undergoing Cre-medi-

ated recombination was determined in five GFAP-

CreERTMA; Z/EG mice injected with 9 mg/40 g body

Fig. 3 Cre-mediated recombination in adult brains by immu-

nohistochemistry for GFP reporter. (a–c) Z/EG single

transgenic mouse injected with 9 mg/40 g tamoxifen daily

for 5 days. (d–f) GFAP-CreERTMA; Z/EG double transgenice

mouse injected with vehicle daily for 5 days. Inset represents

images from an uninduced 14-month-old double transgenic

mouse whereas all other mice presented are *8 weeks of age

as indicated in the text. (g–i) GFAP-CreERTMA; Z/EG double

transgenic mouse injected with 9 mg/40 g tamoxifen daily for

5 days. Brain regions presented are sagittal sections through

the cerebellum (panels a, d, g), cerebral cortex and hippocam-

pus (panels b, e, h) and thalamus and hypothalamus (panels c,

f, i). Scale bar is 0.5 mm and applies to all panels
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weight tamoxifen daily for 5 days. Serial cryosec-

tions were stained with S100 and GFP and positively

stained cells (identified by visibly stained nucleus)

from equivalent surface areas in various regions of

the brain were counted with the aid of the Bioquant

system (Bioquant Image Analysis Corp., Nashville,

TN). The average number of cells counted in each

mouse for the cerebellum, cortex, hippocampus and

thalamus/hypothalamus was 1260, 1430, 490, and

2500, respectively. For oligodendrocytes, CC-1

positive cells in the corpus callosum of cryosections

from two brains were counted (3220 cells each) and

compared to the number of double positive CC-1 and

GFP staining cells in an adjacent section. The total

number of subventricular zone nuclei in sections from

four different animals was determined (an average of

2260 nuclei per mouse) and compared to the number

of GFP positive cells in the same sections.

Results

The cDNA encoding the CreERTM fusion protein was

placed downstream of the 2.2 Kb human GFAP

promoter (Fig. 1a) (Brenner et al. 1994). This was

followed by an internal ribosomal entry site (IRES)

and a LacZ cDNA encoding a nuclear-targeted

version of E. coli b-galactosidase (b-gal). The con-

struct was terminated by an SV40 large T intron and

polyadenylation signal. After pronuclear injection of

FVB/NJ eggs, one founder was obtained. Transgene

integration in this line, hereafter termed GFAP-

CreERTM, was verified by polymerase chain reaction

(PCR) for Cre-specific sequences as well as by

Southern blot hybridization (Fig. 1b). The latter

result suggested the presence of two independent

integration sites, a conclusion which was supported

by a frequency of Cre-positive F1 progeny of 76%

(63 Cre-positive out of 83 total pups). After several

rounds of breeding to wild-type FVB mice, the two

integration sites were separated into independent

lines (GFAP-CreERTMA; Fig. 1b, lanes 6–8, and

GFAP-CreERTMB; Fig. 1b, lanes 3–5). Furthermore,

a single integration site in each line was verified by

fluorescence in situ hybridization (FISH) for the

transgene in MEF cells generated from each GFAP-

CreERTM mouse line with chromosomal location of

9A5 for line A and 15E3 for line B (data not shown).

Transgene expression was characterized by histo-

chemistry for b-gal activity in adult mouse brains. In

wild-type mice, occasional histochemical staining was

noted in cells of the pial membranes, representing

Fig. 4 Cre-mediated

recombination in adult

GFAP-CreERTMA;

Z/EG brains by

immunohistochemistry for

GFP. Mice were treated

with tamoxifen as in Fig. 3.

(a) Cerebral cortex. The

stellate appearance of a

cortical GFP-stained cell

resembling an astrocyte is

presented. (b) Dentate

gyrus. The arrow indicates a

GFP-stained cell located in

the inner layer of the

dentate gyrus which may

represent a neural precursor

cell. (c) Subventricular

zone. These GFP-positive

cells may represent

self-renewing B cells of the

subventricular zone. (d)

Corpus callosum. Scale bar

in (a) is 10 lm and applies

to panels (a, c, d). Scale bar

in (b) is 50 lm
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endogenous b-gal activity (data not shown) (Chow

et al. 2006). In contrast, GFAP-CreERTM brains

exhibited specific and reproducible patterns of b-gal

activity that were virtually identical between the two

mouse lines. Cells expressing b-gal were scattered

throughout all regions of the brain (Fig. 2a, f),

however, the specific pattern in certain areas was

notable. In the cerebellum, many b-gal positive cell

bodies aligned along the Purkinje cell layer with

cellular processes extending into the molecular layer

(Fig. 2b, c arrows, g, h, arrows), a morphological

feature consistent with Bergmann glia. In the dentate

gyrus, b-gal positive cells tended to cluster in the inner

layer of this structure (Fig. 2d, i arrows) where neural

precursor cells are known to reside (Doetsch 2003).

Histochemical staining for b-gal activity was also

noted in cells of the subventricular zone surrounding

the lateral ventricle (Fig. 2e, j arrows) where Gfap-

expressing adult neural stem cells have also been

identified (Doetsch 2003). No b-gal activity was

detected in a panel of tissues from GFAP-CreERTM

adult mice including muscle, skin, lung, thymus, heart,

liver, spleen, adrenal gland, pancreas, bladder, uterus,

ovary and epididymus (data not shown). b-gal activity

was detected in the gastrointestinal tract, kidney and

testis however this likely represents endogenous

activity as similar staining was also noted in non-

transgenic control animals (data not shown).

Reporter mice were used to assess the activity of the

CreERTM fusion protein following treatment with

tamoxifen or vehicle. GFAP-CreERTM mice were

crossed with Z/EG reporter mice in which the cDNA

encoding enhanced green fluorescent protein (GFP) is

expressed only after Cre-mediated excision of a LoxP-

flanked stop cassette (Novak et al. 2000). Mice were

injected starting at 40–50 days of age intraperitoneally

with tamoxifen at a dose of 9 mg/40 g body weight or

vehicle alone daily for five injections, then sacrificed at

least 5 days after the last injection and tissues analyzed

by immunohistochemistry for GFP. In single trans-

genic mice (either GFAP-CreERTM or Z/EG alone), no

GFP immunoreactivity was detected in the brain

Fig. 5 Cre-mediated recombination in adult GFAP-

CreERTMB; Z/EG brains by immunohistochemistry for GFP.

Mice were treated with tamoxifen as in Fig. 3. (a–c) GFAP-

CreERTMB; Z/EG double transgenice mouse injected with

vehicle daily for 5 days. (d–f) GFAP-CreERTMB; Z/EG double

transgenic mouse injected with 9 mg/40 g tamoxifen daily for

5 days. Brain regions presented are sagittal sections through

the cerebellum (panels a, d), cerebral cortex and hippocampus

(panels b, e) and thalamus and hypothalamus (panels c, f).
Scale bar in (a) is 0.5 mm and applies to panels (a–f). (g) High

power image of GFP-positive cell in the cerebral cortex. (h)

Dentate gyrus. The arrow indicates a GFP-stained cell located

in the inner layer of the dentate gyrus. (i) Subventricular zone.

(j) Corpus callosum. Scale bar in (g) is 10 lm and applies to

panels (g, i, j). Scale bar in (h) is 50 lm
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(Fig. 3a–c and data not shown). In double transgenic

mice injected with vehicle, occasional GFP positive

cells were present, particularly in cerebellar Bergmann

glia (Figs. 3d–f and 5a–c). This tamoxifen-indepen-

dent Cre-mediated recombination accumulated slowly

over the period of 14 months remaining predominantly

localized to Bergmann glial cells (Fig. 3d, e insets) and

represents the ‘‘leakiness’’ of this inducible Cre strain.

In contrast, tamoxifen-injected mice displayed wide-

spread GFP expression mirroring the pattern of b-gal

activity in GFAP-CreERTM single transgenic mice

(Figs. 3g–i and 5d–f). Under higher magnification, the

cortical staining pattern for GFP revealed cells exhib-

iting a stellate morphology consistent with mature

astrocytes (Figs. 4a and 5g). Furthermore, GFP-

expressing cells were detected in the inner layer of

the dentate gyrus (Figs. 4b and 5h arrows) and in the

subventricular zone (Figs. 4c and 5i) consistent with b-

gal activity (Fig. 2d, e, i, j). GFP-expressing cells were

also noted in the corpus callosum (Figs. 4d and 5j).

To confirm the cell types targeted for Cre activity,

double labeling by immunofluorescence was per-

formed. The majority of GFP-labeled cells in all

regions of the brain were found to co-express S100b, a

marker for glial cells (Fig. 6a–c). In contrast, almost no

GFP-labeled cells co-expressed NeuN, a marker of

mature neurons (Fig. 6d–f), although the occasional

double-labeled granule neuron in the dentate gyrus,

was noted (Fig. 6f arrow). It is possible that such

cells were Gfap-expressing neural precursors when

tamoxifen was administered, then subsequently differ-

entiated into granule neurons during the 5–10-day-

period prior to analysis. Alternatively, this transgenic

line may drive CreER expression in the rare mature

granule neuron. However, immunophenotypical anal-

yses of multiple GFAP-CreERTM single transgenic

mice failed to identify any CreER expression in

neurons (data not shown). GFP-expressing oligoden-

drocytes in the corpus callosum were identified by co-

expression of the CC-1 antigen (Fig. 6g). Confocal

microscopy was used to confirm Cre activity in

occasional Gfap positive neural precursor cells of the

subventricular zone (Fig. 7).

The degree of Cre-mediated recombination was

assessed by examining sections serially stained for

S100 and GFP proteins in various regions of the brain

(Table 1). Overall, astrocyte recombination ranged

from 35% to 70% and was more efficient in the

cerebellar Bergmann glia than in other parts of the

brain. Interestingly, \1% of all cells in the subven-

tricular zone showed cre-mediated recombination

under the experimental conditions tested and proba-

bly represent Cre activity in the Gfap-expressing B

cells (Fig 7) (Doetsch 2003). This population has

been reported to comprise 20–25% of cells in the

subventricular zone (Doetsch et al. 1997). Increasing

Fig. 6 Identification of cells undergoing Cre-mediated recom-

bination in adult GFAP-CreERTMA; Z/EG brains by double

immunofluorescence. Mice were treated with tamoxifen as in

Fig. 3. (a–c) Staining with an astrocyte marker and anti-GFP.

Co-immunodetection of S100b (green) and GFP (red) is

demonstrated in the cerebellum (a), cerebral cortex (b) and

dentate gyrus (c). (d–f) Staining with a neuronal marker and

anti-GFP. There is no co-immunodetection of NeuN (green)

and GFP (red) in cerebellum (d) and cortex (e) while

occasional granule neurons of the dentate gyrus (f) express

both markers (arrow). (g) Staining with an oligodendrocyte

marker and anti-GFP. Cells staining with both CC-1 (green)

and GFP (red) were readily identified in the corpus callosum.

Scale bar in (f) is 50 lm and applies to panels (a–f). Scale bar

in (g) is 20 lm. DAPI: 40,6-diamino-2-phenylindole (blue).

Immunophenotyping results were identical in the GFAP-

CreERTMB line (data not shown)
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the dose of tamoxifen administered did not result in

further elevations in the number of GFP positive cells

(data not shown), however, recombination could be

restricted to fewer astrocytes by titrating the drug

dose from 9 to 1 mg/40 g body weight in a single

injection (Fig. 8).

Discussion

The GFAP-CreERTM mouse lines described in this

report represent useful tools for investigators inter-

ested in studying the effects of gene manipulation in

mature astrocytes. Virtually no Cre activity is present

in neurons, specifically in the cortex, allowing for the

study of cell autonomous phenomena in this cell

population. This may be particularly relevant to the

fields of brain injury and repair as well as to

gliomagenesis. Furthermore, the presence of detect-

able Cre activity in a subset of adult neural precursor

cells in the dentate gyrus and the subventricular zone

may also facilitate the study of regenerative and

oncogenic potentials of this increasingly scrutinized

cell population.

Recently, similar transgenic mouse lines have been

reported in which the CreERT2 fusion protein (Indra

et al. 1999) was expressed under the control of the

identical GFAP promoter (Casper et al. 2007; Ganat

et al. 2006; Hirrlinger et al. 2006). One report

described CreER activity in young (five-day-old) mice

and found that neural precursor cells were significantly

targeted at this age (Ganat et al. 2006). Interestingly,

these cells went on to differentiate into mature neurons,

oligodendrocytes and astrocytes in vivo taking resi-

dence in all regions of the brain. We have yet to

examine CreER activity in our juvenile mice. Two

other groups have documented CreER activity in adult

astrocytes (Casper et al. 2007; Hirrlinger et al. 2006).

One line appears to have broad activity in astrocytes,

although quantitation was not reported (Casper et al.

2007), while the other is more restricted to certain

regions of the brain (Hirrlinger et al. 2006). Neither

group commented on CreER activity in adult neural

precursor cells. Other astrocyte-specific inducible Cre

mouse strains have also been described with activity in

adult neural progenitor cells (Mori et al. 2006; Slezak

et al. 2007). We describe CreER activity in a broad

range of adult astrocytes as well as in a restricted

Fig. 7 Confocal imaging of subventricular zone in adult GFAP-

CreERTMA; Z/EG brains. Mice were treated with tamoxifen as in

Fig. 3. (a, b) Staining with antibodies against Gfap (green) and

GFP (red) with DAPI (blue). Occasional cells co-expressing

these two markers in the subventricular zone were identified in

these 1 lm optical sections. Scale bar in (a) is 10 lm and

applies to both panels

Table 1 Quantitation

of Cre-mediated

recombination in

different brain regions

of GFAP-CreERTM

A mice

Region % Recombination (SEM)

Cerebellar astrocytes (Bergmann glia) 70.8 (2.5)

Cortical astrocytes 52.9 (6.1)

Hippocampal astrocytes 44.3 (3.9)

Thalamic/hypothalamic astrocytes 35.1 (3.4)

Corpus callosum oligodendrocytes \1.0

Subventricular zone cells \1.0
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population of adult neural progenitor cells. While the

pattern of expression is largely similar between our two

lines, the degree of CreER expression and conse-

quently of recombination in astrocytes appears to be

slightly greater in the GFAP-CreERTMA line (compare

Figs. 2a–f and 3h, i to 5e, f). In addition, by using a less

sensitive variant of the CreER fusion protein, we

demonstrated an easily achievable dose-response

effect to tamoxifen that may be advantageous for

certain studies, such as cell-fate mapping and tumor-

igenesis. We have successfully generated spontaneous

models for diffuse astrocytomas using our GFAP-

CreERTMA line (L.M.L.C. and S.J.B., unpublished

data). Together, these various CreER mouse lines

provide novel and powerful tools for investigators to

probe normal and pathological astrocyte functions.
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