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Abstract
Nano zero-valent iron (nZVI), bimetallic Nano zero-valent iron-copper (Fe0- Cu), and fava bean activated carbon-supported 
with bimetallic Nano zero-valent iron-copper (AC-F e0-Cu) were prepared and characterized by DLS, FT-IR, XRD, and 
SEM. The influence of the synthesized adsorbents on the adsorption and removal of soluble anionic methyl orange (M.O) 
dye was investigated using UV-V spectroscopy. The influence of numerous operational parameters was studied at varied pH 
(3–9), time intervals (15–180 min), and dye concentrations (25–1000 ppm) to establish the best removal conditions. The 
maximum removal efficiency of M.O. using the prepared adsorbent materials reached about 99%. The removal efficiency is 
modeled using response surface methodology (RSM). The Bimetallic Fe0-Cu, the best experimental and predicted removal 
efficiency is 96.8% RE. For the H2SO4 chemical AC-Fe0-Cu, the best experimental and removal efficiency is 96.25% RE. The 
commercial AC-Fe0–Cu, the best experimental and predicted removal efficiency is 94.93%RE. This study aims to produce 
low-cost adsorbents such as Bimetallic Fe0-Cu, and Fava Bean Activated Carbon-Supported Bimetallic AC-Fe0-Cu to treat 
the industrial wastewater from the anionic methyl orange (M.O) dye and illustrate its ability to compete H2SO4 chemical 
AC-Fe0-Cu, and commercial AC-Fe0-Cu.

Keywords Adsorption · Response surface methodology (RSM) · Artificial neural network (ANN) · Moth search algorithm 
(MSA)

Abbreviations
nZVI  Nano zero-valent iron
mZVI  Modified microscale zero-valent iron
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DEO  Differential evolution optimization
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XRD  X-ray diffraction
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1 Introduction

Various methods like adsorption, chemical precipita-
tion, membrane filtration and electrodialysis were used to 
treat wastewater. Adsorption is one of the most efficient 
techniques for treating wastewater because of its advan-
tages of high removal efficiency and ease of operation [1]. 
Heavy metals and colors are removed from wastewater 
using several adsorbents such as activated carbon, agri-
cultural wastes, sawdust, zeolite, and clay [2]. However, 
these adsorbents frequently need additional separation 
stages with high, which limited their applicability. Nano 
zero-valent iron (nZVI) gained a lot of attention for envi-
ronmental applications, because of its high reactivity, low 
cost, availability, ease of separation, and presence of many 
active sites [3]. NZVI has various physical features that 
enable it to remove heavy metals and colors from indus-
trial effluent. It was discovered that nZVI outperformed 
both mZVI and iron oxide particles when evaluating how 
well they remove dyes. This was illustrated in depth using 
a critical physical feature, the available active surface area. 
Where nZVI has a surface area of roughly (29.67 m2/g) 
and mZVI has a substantially smaller sur- face area (2.55 
m2/g). Using these particles, it was revealed that the effi-
ciency of nZVI was 90%, but the efficiency of mZVI was 
just 25% [4]. Additionally, nZVI particles have a strong 
tendency to destroy textile colors [5, 6] and also have a 
number of chemical features that make them more efficient 
at degrading colors found during industrial wastewater. 
The nZVI particles have a vital reaction that degraded 
the dyes and formed of other simpler chemicals or related 
compounds. The connection between nZVI and dyes 
formed when the nZVI (electron donor) lost electrons, 
which were subsequently taken up by the dye molecules 
(electron acceptor) [7]. In aqueous environments, the nZVI 
particles transformed to ferrous Fe2+ and ferric Fe3+ ions, 
which subsequently reacted with hydroxyl ions in those 
solutions as a result of oxidation and reduction re- actions 
between them and also reacted with the dyes to break the 
chromophore (− N = N −) link [8]. The auxochrome con-
nection was likewise broken by the nZVI particles, which 
removed the color of dye molecules [9].

Bimetallic nanoparticles were in a nanoscale, which 
consisted of mixtures of two different metals. When two 
metals were combined, they can retain the properties of 
their constituents while also gaining better attributes as 
a result of the joining process. Bimetallic nanoparticles’ 
properties were influenced by their size, structure, and 
morphology [10]. The presence of a small fraction of tran-
sition metals with nZVI acted as a reducing agent, speed-
ing up the surface reaction to remove organic molecules 
and other contaminants [11]. Researchers used different 

transition elements in recent years to see the most efficient 
for re-moving colors and heavy metal ions from industrial 
effluent. Bimetallic Nano zero-valent iron-copper (Fe0-Cu) 
attracted much attention due to the high efficiency seen in 
their performance to remove colors [12].

The initial concentration of dyes was one of the most 
important aspects for selecting the adsorption technique 
used to treat industrial wastewater. The adsorption effi-
ciency decreased with increasing the dye content [13]. 
Pores, charges, hydrophilic or hydrophobic character, size, 
and distribution all affected adsorption effectiveness. It 
also depended on the surface area and whether functional 
groups were present or not [14, 15]. The magnetic property 
inherent in particular adsorbents provided outstanding and 
remarkable efficiency. This found in various treatments, 
such as using Nano ilmenite FeTiO3 to remove cationic 
dyes like methylene blue with high effectiveness of up to 
71.9 mg/g [16]. The contact time of the adsorbent materi-
als with the industrial wastewater was critical in remov-
ing as many contaminants as feasible. By extending the 
contact time, the adsorption capacity of the adsorbent 
increased [17, 18].

Fava bean was widely consumed in several regions, 
including the Mediterranean region of Europe and Africa, 
as well as Latin America, China, and India. Fava bean peels 
were thrown out in large amounts. Just the small portion 
of such waste was used as animal feed by farmers [19]. 
Fava bean is one of Egypt’s most important winter crops, 
being planted from the north to the south [20]. According 
to Egypt’s Ministry of Agriculture and Land Reclama-
tion, 194.259 tons of fava bean seeds were produced across 
41.975 hectares in 2012/2013 [21]. For instance, the num-
ber of Egyptian beans imports was expected to in- crease 
from nearly 410 thousand tons in 2018 to about 500 thou-
sand tons in 2025. The domestic production would decrease 
from about 144 thousand tons to about 16 thousand tons. 
Hence, beans consumption was expected to decrease from 
approximately 281 thousand tons in 2018 to about 72.5 thou-
sand tons in 2025 [22]. Different activation techniques were 
used to produce activated carbon with different properties. 
In prior research, fava bean activated carbon powder was 
employed to remove heavy metal ions with high removal 
efficiencies [23]. Neural networks are considered one of the 
most important deep learning techniques, which are a subset 
of machine learning and are also known as artificial neu-
ral networks (ANNs) or simulated neural networks (SNNs) 
[24]. Their structure and nomenclature are modeled after 
the human brain, mirroring organic neuron communication. 
Each node, or artificial neuron, is linked to others and has its 
own weight and threshold. Any node whose output exceeds 
the defined threshold value is activated and begins sending 
data to the network’s top layer. Otherwise, no data is trans-
ferred to the next network layer.
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The artificial neural network (ANN) node layer is divided 
into three main types of layers, an input layer, an output 
layer, and one or more hidden layers. The concentration, 
dose, and time are considered the three main neurons of the 
input layer. The removal efficiency is considered a desired 
value and the only neuron inside the output layer. The hidden 
layer contains (3 to 15) neurons, the tenth neuron detected 
the least error of the most adsorption processes.

The input data are analyzed to be in the 0 to 1 range. The 
network’s input variables were dosage, contact time, and 
temperature, while the network’s output layer was removal 
efficiency. The experimental data set obtained by using the 
RSM was appropriate for evaluating the ANN model. The 
data set was split into three categories: 70% of the data is 
used to train the network, 15% for validation, and the bal-
ancing for testing the results. The network’s performance 
was evaluated independently by the test set. The validation 
set altered the network’s bias, variance, and generalization.

Response Surface Methodology (RSM) and Artificial 
Neural Network (ANN) combined with optimization algo-
rithm are considered more effective for the opti- mization 
process [24]. The ANN model can learn linear, nonlinear 
and complex relationships between process variables [25]. 
ANN model is implemented to predict removal efficiency. 
The Moth search algorithm (MSA) is a metaheuristic algo-
rithm applied to the ANN model to get optimum conditions 
that achieve maximum removal efficiency. Methyl Orange 
(M.O) removal by polyaniline- based nano-adsorbent was 
investigated in [26]. RSM was implemented to predict 
removal efficiency. Furthermore, ANN was integrated with 
differential evolution optimization (DEO) for the predic-
tion of removal efficiency. ANN-DEO had better accuracy 
in prediction than RSM. However, the maximum removal 
efficiency was not evaluated. Furthermore, the polyaniline 
nano-adsorbent was used to adsorb M.O in [27]. ANN was 
implemented to predict the removal efficiency. OFAT was 
implemented to get the maximum removal efficiency. The 
M.O removal by lignin-derived zeolite templated carbon 
materials was optimized by RSM with Box–Behnken design 
[28]. RSM was used to find the most influential factor on the 
removal efficiency.

This study aims to produce low-cost adsorbents such as 
nZVI, Bimetallic Fe0-Cu, and Fava Bean Activated Car-
bon-Supported Bimetallic AC-Fe0-Cu to treat the industrial 
wastewater from the anionic methyl orange (M.O) dye. RSM 
and ANN models predict the removal efficiency for differ-
ent values for the factors. The maximum removal efficiency 
is evaluated by optimizing these mod- els. ANN is optimized 
by Moth Search Algorithm (MSA). These optimization tech-
niques predict the maximum removal efficiency and the corre-
sponding factor values. The optimization results are validated 
experimentally. Isotherm and kinetic models are implemented 
to understand the chemical characteristics. They provide 

information about the type of adsorption and the adsorbent 
surface. Furthermore, the maximum amount adsorbed can be 
estimated by them.

2  Experimental Work

2.1  Chemicals and Reagents

All used chemicals and reagents in the present work are high-
grades, including ferric chloride hexahydrate (FeCl3.6H2O 
97% pure, LOBA Chemie), sodium borohydride (NaBH4 95% 
pure, ADVENT), copper chloride dihydrate (CuCl2.2H2O, 
BIOCHEM), charcoal activated (LOBA Chemie), ethanol 
(C2H5OH 96% pure), and methyl orange. Deionized H2O is 
used for all experiments Fig. 1.

2.2  Preparation of Nano Zero Valent Iron (nZVI)

As shown in Eq. 1, the preparation procedure is based on the 
chemical reduction of ferric chloride hexahydrate FeCl3.6H2O 
by sodium borohydride NaBH4. Equivalent volumes of 0.1 M 
FeCl3.6H2O solution and 0.5 M NaBH4 solution are prepared 
in the laboratory for this approach. The ferric chloride solution 
in the conical flask is stirred constantly at 250 rpm. In contrast, 
a sodium borohydride solution is added drop by drop from 
the burette. After mixing, the solution is stirred for another 
20 min. To ensure that the reduction reaction for the iron ions 
in the solution is finished. Following that, filtration is used 
to separate the produced precipitate, as shown in Fig. 2. The 
isolated precipitate is rinsed with deionized water three times 
and then with ethanol once. Finally, the product is dried at 70 
and stored at room temperature under an ethanol layer [29].

2.3  Preparation of Bimetallic  (Fe0–Cu)

Using the co-precipitation method, a 0.002 M copper chloride 
dihydrate CuCl2.2H2O solution is added to the FeCl3.6H2O 
solution before adding the NaBH4 solution from the burette 
under the same conditions [30]. The redox reaction between 
Cu2+ and nZVI is mostly determined by the reaction Eq. 2.

2.4  Preparation of Fava Bean Activated Carbon (AC)

Fava bean peel waste is collected from local markets in 
Egypt. It is then washed, dried overnight at 105 °C, and 
ground into tiny pieces. Physical and chemical activation 

(1)
2
(

FeCl
3
.6H

2
O
)

+ 6NaBH
4
+ 6H

2
O

→ 2Fe
0 + 21H2 + 6B(OH)

3
+ 6NaCl

(2)Fe0 + Cu2+ → Fe2+ + Cu0
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techniques are both accessible. Physical activation consists 
of a two-step process that begins with high-temperature 
carbonization and ends with activation. Chemical activa-
tion is a combined carbonization and activation process 
that takes one step at a low temperature.

2.4.1  Physical Activation

The fava bean peel waste is heat-treated at a high tem- per-
ature after grinding thoroughly in the physical activation 
technique. 50 g of fava bean is placed in a muffle at 400 
°C for one h, then at 600 °C for two h. Finally, for 15 min., 
the temperature is lowered to 300 °C. It is kept in a sealed 
bottle until it is used to protect the activated carbon (AC) 
from humid- ity [31, 32].

2.4.2  Chemical Activation

Different chemical activators are used in the chemical activa-
tion process. H3PO4 or H2SO4 are used as activators in two 
forms of activated carbon. 250 ml of 85% H3PO4 is added 
to 50 g fava bean peel waste, which is then mixed for 4 h at 
85 °C on a magnetic stirrer before drying for 24 h at 110 °C 
[33]. The sample was then placed in a muffle for one hour at 
600 °C, washed many times to obtain pH 7, and dried in an 
oven at 110 °C [34].

In the case of H2SO4 activation, 150 ml of 4 M H2SO4 is 
added to 50 g of fava bean peel waste and mixed at room 
temperature to make a homogeneous mix- ture [35]. After 
that, the mixture is placed for two h at 110 °C, then carbon-
ized for three h at 400 °C, washed with deionized water until 
pH  7 is obtained, and dried in an oven at 110 °C [36].

Fig. 1  The graphical abstract 
illustrates the main steps of the 
brand-new manufacture technol-
ogy of the low-cost adsorbents 
(nZVI)

Fig. 2  Preparation steps of 
nZVI a Materials, b Titration & 
Stirring, c Filtration
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2.5  Preparation of Fava Bean Activated 
Carbon‑Supported Bimetallic (AC‑F  e0‑ Cu)

Before adding sodium borohydride, activated carbon-sup-
ported bimetallic (AC-F e0-Cu) is made by adding activated 
carbon to a ferric chloride solution (1 g/L of AC per a solu-
tion of 0.1 M FeCl3.6H2O and 0.002 M CuCl2.2H2O) [37]. 
Physically activated carbon, H2SO4 chemically activated 
carbon, H3PO4 chemically activated carbon, and commer-
cial charcoal are used to make the (AC-F e0-Cu); moreover, 
the bimetallic particles are supported on the raw fava bean 
after grinding.

2.6  Adsorption Experiments

The efficiency of the produced compounds is tested using 
1000 ppm methyl orange (MO) dye. The (MO) concen-
tration is measured using a UV-V spec- trophotometer set 
at 465 nm. The removal efficiency is investigated using a 
pH range of 3 to 9, a contact time between the adsorbent 
material and MO ranging from 15 to 180 min., and methyl 
orange concentrations ranging from 25 to 1000 ppm. Shak-
ing at 120 rpm and room temperature is used to carry out all 
adsorption processes [38]. The percentages of removal are 
computed using the equation below (Eq. 3):

where C0 represents the initial concentration of M.O solution 
(mg/L) and Ce represents the equilibrium concentration of it 
(mg/L). The following Eq. 4 is used to compute the quantity 
of M.O dye extracted by the adsorbent material:

where qe represents the equilibrium adsorption capacity 
(mg/g), V repre- sents the dye solution volume (L), and m 
represents the adsorbent mass (g).

2.7  Characterization of nZVI,  Fe0‑Cu and AC‑Fe0‑Cu

The size and charge of adsorbent material particles are 
determined using dynamic light scattering (DLS). The func-
tional groups are identified using Fourier transition infrared 
(FT-IR). The structural groups of the adsorbent materials 
are demonstrated using X-ray diffraction (XRD) analysis. 
A scanning electron microscope (SEM) shows the surface 
morphology.

2.8  Adsorption Isotherms and Adsorption Kinetics 
Optimization

Models are built using response surface methodology 
(RSM) by setting up a series of experiment runs and fitting 

(3)Sorption[%] =
[

C
0
− Ce

]

∕C
0
× 100

(4)qe[mg∕g] = [[C0 − Ce] × V]∕m

empirical models to data received under the specified design. 
Equation 5 is used to derive the anticipated responses.

where Y represents the expected response,  xi represents 
the input variable, k represents the number of variables, β0 
represents the constant term, βi repre- sents the linear coef-
ficient, and ϵ represents the experimental residual.

MATLAB (R2019a) fits the kinetics using the pseudo-
first-order, pseudo- second-order, Elovich, and intra-particle 
diffusion models. The isothermal mod- els of diverse materi-
als are investigated by Langmuir, Temkin, Freundlich, Du- 
binin Radushkeivch, and Harkins–Jura.

3  Results and Discussion

3.1  Adsorption STUDIES and EFFECT of Operating 
Parameters

The removal efficiency of the produced adsorbents tests 
against 1000 ppm M.O dye. In addition, the removal effi-
ciency is investigated at pH levels ranging from 3 to 9, con-
tact times between the adsorbent and M.O ranging from 
15 to 180 min., and M.O concentration ranging from 25 to 
1000 ppm. Shaking at 120 rpm and room temperature is used 
to carry out all adsorption processes.

3.1.1  Screening Test and Effect of pH

In this section, the screening experiment is combined with 
the effect of pH to get the best adsorbent materials, as shown 
in Fig. 3. The various produced materials of nZVI, Fe0-Cu, 
and different AC-Fe0-Cu are screened by treating 10 ml of 
1000 ppm of the synthetic M.O solution with 0.01 g of the 
adsorbent. Different pH values of 3, 5, 7, and 9 are used 
simultaneously to determine the best pH value of which 
adsorbent. The obtained results indicate that as the pH 
value is decreased, the removal efficiency of M.O increases. 
That is due to the positive surface charges and more robust 
interactions with anionic M.O dye (pH = 3). At pH = 3, the 
removal efficiency of the adsorbent materials varied from 
93.44% to 97.34%

3.1.2  Effect of Contact Time

The bimetallic Fe0-Cu, H2SO4 chemical AC-Fe0-Cu, and 
commercial AC-Fe0-Cu are selected from the screening 
test, which has the best removal efficiencies among the 
produced adsorbent materials, with removal capacities of 
678.66, 666.65, and 679.47 mg/g, respectively. The impact 

(5)Y = �
0
+

k
∑

i=1

�ixi+ ∈
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of contact time is investigated by combining the same dose 
of 0.01 g of adsorbent material and 10 ml of 1000 ppm 
dye solution at room temperature with shaking at 120 rpm 
and various contact times of 15, 30, 60, 90, 120, 150, and 
180 min, as shown in Fig. 4. The optimum residence time to 
reach the highest removal efficiency by Bimetallic F e0-Cu, 
H2SO4 chemical AC-Fe0-Cu, and commercial AC-Fe0- 
Cu is 180 min. science, 97.2%, 94.3%, and 99.1% are the 
achieved removal efficiency by Bimetallic F e0-Cu, H2SO4 
chemical AC-Fe0-Cu, and commercial AC-Fe0-Cu, respec-
tively. The contact time tests show that as the contact time 
increases, the removal efficiency increases. Bimetallic Fe0-
Cu, H2SO4 chemical AC-Fe0-Cu, and commercial AC-Fe0-
Cu have equilibrium removal capacities of 779.62, 759.59, 
and 786.03 mg/g, respectively.

3.1.3  Effect of Concentration

The chosen adsorbent materials are tested to absorb different 
concentrations of M.O dye of 25, 50, 100, 250, 500, 750, and 

1000 ppm at the optimal time and pH values (3 h and pH 3), 
as shown in Fig. 5. The Adsorption capacity increases as the 
initial concentration of dye increases. Raising the initial con-
centration increases the moving power of the dye molecules 
from the bulk to the adsorbent material surface.

3.2  Characterization of Adsorbent Materials

DLS, FT-IR, XRD, and SEM are used to Characterize the 
selected adsor- bents (bimetallic Fe0-Cu, H2SO4 chemical 
AC-Fe0-Cu, and commercial AC- Fe0-Cu) as follows:

3.2.1  Dynamic Light Scattering (DLS) Results

The particle size and charge of the chosen adsorbents are 
determined using DLS, as illustrated in Fig. 6 and summa-
rized in Table 1. At pH = 3, these charges neutralize and 
become positive, which may be owing to the protonation of 
the adsorbents’ amino groups to be more suitable to adsorb 
and remove the anionic M.O dye. All prepared adsorbents 
are in nanoscale, with dimensions of 37.84, 458.66, and 
341.9 nm for Fe0-Cu, H2SO4 chemical AC-Fe0-Cu, and com-
mercial AC-Fe0-Cu, respectively.

Fig. 3  Screening experiment 
with applied different pH values 
for Methyl orange removal 
using different prepared adsor-
bent materials

Fig. 4  Contact time experiment for Methyl Orange removal using 
bimetallic Fe0-Cu, H2SO4 chemical AC-Fe0-Cu, and commercial 
AC-Fe0-Cu

Fig. 5  Effect of different Methyl orange concentrations on the adsorp-
tion capacity using bimetallic Fe0-Cu, H2SO4 chemical AC-Fe0-Cu, 
and commercial AC-Fe0-Cu
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3.2.2  Fourier Transition Infrared (FT‑IR) Results

FTIR is considered one of the most important characteriza-
tion methods used to detect functional groups on the surface 
of adsorbent materials: Fig. 7 and Table 2 represent the FTIR 
analysis and the copious functional groups detected on the 
surface of the three types of adsorbents bimetallic Fe0-Cu, 
H2SO4 chemical AC-Fe0 -Cu, and commercial AC-Fe0-Cu. 
A copious functional group detected for both bimetallic Fe0
-Cu, and commercial AC-F e0 -Cu adsorbent materials state 
their highest capacity for M. orange removal than H2SO4 
chemical AC-Fe0-Cu as represented in Fig. 6.

The spectra of the bimetallic Fe0 -Cu showed a strong 
peak at 3383.1 Cm−1 associated with OH and NH stretch-
ing polyphenols, and the one at 2975.43 Cm−1 is assigned 
to CH-CH2 stretching aliphatic group. The peak that 
appeared within the range 2100–2550 Cm−1 is associ-
ated with the C = C conjugated C–C. Another beak that 
appeared at 1923.41 Cm−1 is associated with Carboxyl 
acid. The peak that appeared at 1650.28 Cm−1 is associ-
ated with the C = O Amide I band. The peak that appeared 
within the range (1400–1460) Cm−1 is associated with the 
stretching inorganic carbonate C = O. Another beak that 
appeared at 1381.87 Cm−1 is associated with CH and CH2 
aliphatic bending groups. The peak that appeared within 
the range (1240–1340) Cm−1 is associated with the C-N 
Amide III band. The peak that appeared at 1088.01 Cm−1 
is associated with the P = O from phospholipids. The 
peak that appeared at 1048.24 Cm−1 is associated with the 

Alkyl amine. Another beak that appeared within the range 
(800–900) Cm−1 is associated with C = C, C = N, C–H in 
the ring structure. The peak that appeared at 655.75 Cm−1 
is associated with the C = O bending. Another beak that 
appeared at 434.58 Cm−1 is associated with Alkyl halides. 
The spectra of the H2SO4 chemical AC-F e0 -Cu showed 
a strong peak at 3442.54 Cm−1 is associated with the OH 
of carbohydrates. The peak that appeared at 2984.81 Cm−1 
is associated with the CH of the aromatic ring. The peak 
that appeared at 2090.19 Cm1 is associated with the C = C 
conjugated and C ≡ C. The peak that appeared at 1635.13 
Cm1 is associated with the 1635.13. Another beak that 
appeared within the range (1400–1460) Cm−1 is associ-
ated with stretching –C = O inorganic carbonate. The peak 
that appeared at 1166.88 Cm1 is associated with C–O–C 
polysaccharide a. The peak that appeared at 1082.34 Cm−1 
is associated with the P = O from phospholipids. The peak 
that appeared at 1044.54 Cm−1 is associated with the Alkyl 
amine group. Another beak that appeared at 568.54 Cm−1 
is associated with the Alkyl halides.

The spectra of commercial AC-Fe0 -Cu showed a strong 
peak at 3650.45 Cm1 is associated with the OH stretching 
vibration. The peak that appeared at 3423.58 Cm−1 is associ-
ated with the OH of carbohydrates. The peak that appeared 
at 2962.25 Cm−1 is associated with the CH3 stretching 
asym. The peak that appeared at 2923.5 Cm−1 is associated 
with CH and CH2 aliphatic stretching groups. The peak 
that appeared at 2853.53 Cm−1 is associated with the C-H 
stretching sym. of > CH2 in fatty acid chains, -CH2 stretch-
ing sym. methylene chains in membrane lipids Saturated 
fatty acids. Another beak that appeared at 1662.59 Cm1 
and 1637.73 Cm−1 is associated with Amide I of proteins. 
The peak that appeared at 1379.63 Cm−1 is associated with 
the C = O stretching sym. of COO-: fatty acids and amino 
acids. The peak that appeared at 1166.79 Cm−1 is associ-
ated with the ester C–O–C str., asym. -C–O ester str., single 
bond mainly phospholipids. Another beak that appeared at 

Fig. 6  DLS results of a bimetallic Fe0-Cu, b H2SO4 chemical AC-Fe0-Cu, and c commercial AC-Fe0-Cu

Table 1  DLS potential of the prepared adsorbent materials

Material name DLS (nm)

Bimetallic Fe0-Cu 37.84
H2SO4 chemical AC-Fe0-Cu 458.66
Commercial AC-Fe0-Cu 341.9
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1044.97 Cm−1 is associated with the Glycogen band due to 
OH str. coupled with -C-O str.-C-O of C OH groups of car-
bohydrates. Another beak that appeared at 839.81 Cm−1 is 
associated with an Aromatic plane ring with 2 neighboring 
C-H groups. A small peak that appeared at 491.73 Cm−1 is 
associated with the Alkyl halide groups.

3.2.3  X‑Ray Diffraction (XRD) Analysis Results

The amorphous shape appears in different images of Fig. 8. 
The peak at 2θ = 44.5◦ proves the existence of zero-valent 
iron Fe0 [39]. The peak of activated carbon is at 2θ =  24◦. 

However, the nZVI surface peaks at 2θ =  35◦, which cor-
responds to the iron oxides Fe2O3 and Fe3O4. The presence 
of Fe2O3 and Fe3O4 is induced by partial oxidation of nZVI 
during processing and transfer, which produces oxides on 
the surface of adsorbents [40].

3.2.4  Scanning Electron Microscope (SEM) Results

The surface morphology of the adsorbents is investigated by 
a scanning elec- tron microscope (SEM), as shown in Fig. 9. 
The synthesized bimetallic Fe0-Cu particles (Fig. 8a) have 
a semi-spherical shape with an average size of 434.03 nm. 
It looks like a huge nanocluster, which might be owing to 

Fig. 7  FT-IR spectrum of a bimetallic Fe0-Cu, b H2SO4 chemical AC-Fe0-Cu, and c commercial AC-Fe0-Cu
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magnetic forces between the nanoparticles. Many pores 
in the bimetallic Fe0-Cu nanoparticles allow the M.O dye 
impurities to be transported better. (Fig. 8b) The H2SO4 
chemical AC has a huge semi-continuous surface with a 
spraying of Fe0-Cu nanoparticles with numerous fractures 
to absorb the M.O dye impurities. (Fig. 8c) shows a com-
mercial AC that has been covered with Fe0-Cu nanoparticles 
with an average size of 314.23 nm. There is a broad surface 
area with numerous holes to facilitate the absorption of MO 
dye contaminants.

3.3  Kinetics Study

The Pseudo-first-order, Pseudo-second-order, and Intra-
particle diffusion mod- els are applied to fit the results of 
bimetallic Fe0-Cu, H2SO4 chemical AC- Fe0-Cu, and com-
mercial AC-Fe0-Cu adsorption using MATLAB(R2019a) 
as illustrated in Tables 3, 4, and 5. By identifying char-
acteristics and employing kinetic models, the adsorp-
tion kinetics study seeks to characterize and quantify 
the adsorption process. The kinetics of adsorption is 

Table 2  FT-IR spectrum of (a) bimetallic Fe0-Cu, (b) H2SO4 chemical AC-Fe0-Cu, and (c) commercial AC-Fe0-Cu

FT-IR peak  (cm−1) Assigned functional group

(a) Bimetallic Fe0-Cu
 3383.1 OH, NH stretching polyphenols
 2975.43 CH-CH2 stretching aliphatic group
 2100–2550 C = C conjugated C–C
 1923.41 Carboxyl acid
 1650.28 C = O Amide I band
 1400–1460 stretching inorganic carbonate C = O
 1381.87 CH and CH2 aliphatic bending group
 1240–1340 C-N Amide III band
 1088.01 P = O from phosopholibids
 1048.24 Alkyl amine
 800–900 C = C, C = N, C–H in ring structure
 655.75 C = O bending
 434.58 Alkyl halides

(b) H2SO4 chemical AC-Fe0-Cu
 3442.54 OH of carbohydrates
 2984.81 CH of aromatic ring
 2090.19 C = C conjugated and C ≡ C
 1635.13 C = O Amide I band
 1400–1460 stretching –C = O inorganic carbonate
 1166.88 C–O–C polysaccharide a
 1082.34 P = O from phosopholibids
 1044.54 Alkyl amine
 568.54 Alkyl halides

(c) Commercial AC-Fe0-Cu
 3650.45 OH stretching vibration
 3423.58 OH of carbohydrates
 2962.25 CH3 str., asym
 2923.5 CH and CH2 aliphatic stretching group
 2853.53 C-H str., sym. of > CH2 in fatty acid chains, -CH2 str., sym. methylene chains in membrane lipids 

Saturated fatty acids
 1662.59 Amide I of proteins
 1637.73 Amide I of proteins
 1379.63 C = O str., sym. of COO-: fatty acids and amino acids
 1166.79 ester C–O–C str., asym. -C–O ester str., single bond mainly phospholipids
 1044.97 Glycogen band (due to OH str. coupled with σ) -C-O str. -C-O σ of C − OH groups of carbohydrates
 839.81 Aromatic-out-of plane ring with 2 neighbouring C-H group
 491.73 Alkyl halides
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determined using various kinetic models that are tailored 
to the experimental data. To determine which kinetic 
model best fits the experimental data, the computed results 
from the kinetic models are contrasted with the data, and 
the highest correction factor is detected. For example, for 
adsorption kinetic, pseudo-first-order kinetic, and intra-
particle diffusion models, which are implemented for each 
type of adsorbent [41]. The experimental data were fit by 

pseudo-first-order (PFO), pseudo-second-order (PSO), and 
intra-particle models. As shown in Tables 3, 4, and 5, The 
pseudo-second-order is the best fit for bimetallic F e0–Cu 
with R2 = 0.9913. The pseudo-first-order is the best fit for 
H2SO4 chemical AC-F e0-Cu with R2 = 0.902. The Intra-
particle diffusion is the best fit for commercial AC-F e0 
-Cu with R2 = 0.94. Table 6 shows the evaluation of the 
kinetic model parameters.

Fig. 8  XRD analysis of a bimetallic Fe0-Cu, b H2SO4 chemical AC-Fe0-Cu, and c commercial AC-Fe0-Cu

Fig. 9  SEM images of a bimetallic Fe0-Cu, b H2SO4 chemical AC-Fe0-Cu, and c commercial AC-Fe0-Cu

Table 3  Comparison between 
nonlinear kinetic models for 
M.O removal by bimetallic Fe0 
Cu 

Name Model Math. model Curve fitting R2

Pseudo first order Nonlinear qt = qe(1 − e−K1
t) y = 767.6(1 − e−0.1243x)0.9852

Pseudo second order Nonlinear qt =
K
1
tq2

e

1+K
1
tqe

y =
774.2x

x+0.9986
0.9913

Intra- particle diffusion Nonlinear qt = Kint

√

t + Cint y = 3.024
√

x + 734.10.914
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3.3.1  The Pseudo‑First‑Order and The 
Pseudo‑Second‑Order Adsorption Kinetic Models

Most of the adsorption kinetic research conducted over the 
last two decades modeled their kinetic datasets using the 
traditional PFO and PSO rate laws. These two models have 
been used to investigate a variety of adsorption systems. 
As contaminants or adsorbates, biomass, nanomaterials, 
heavy metals, and medicines are all possible. Ho and McKay 
(1999) evaluated several literature datasets using the linear 
versions of these two models. Since then, the models have 
grown in popularity, PSO more so than PFO because it can 
fit most kinetic datasets and is thus regarded as the better 
of the two. Because these models are so widely used, they 
have generated a modeling practice cul- ture that introduces 
uncertainty and inaccuracies that are frequently ignored or 
dismissed. The pseudo-first-order and pseudo-second-order 
Adsorption kinetic models are introduced mathematically 
[42].

3.3.2  Intra‑Particle Diffusion Model

The absorption mechanism is either particle diffusion con-
trol or film diffusion control. Before adsorption, several dif-
fusion mechanisms are known to influence the adsorption 

process to occur. Before entering the sorbent’s micropores 
and macrospores, the sorbate must diffuse through most of 
the solution to the film surrounding the adsorbent. The first 
is bulk diffusion resistance, which naturally decreases with 
enough agitation to reduce the concentration gradient. The 
resistance to external mass transfer is the second, and intra-
particle mass transfer is the third. When the rate-limiting 
step is the last, intraparticle diffusion controls the sorption 
mechanism. The Intra particle diffusion model’s mathemati-
cal form is introduced [43].

3.4  Isotherm Models

Isothermal models include Temkin, Freundlich, Dubinin-
Radushkeivch (DR), and Nonlinear Langmuir models. The 
state of equilibrium of an adsorption isotherm describes the 
process of a substance being adsorbed on a surface while the 
temperature remains constant. It shows how much substance 
is bonded to the surface of the substance in the solution. 
The adsorbate is the substance that must be removed during 
the adsorption process, and the adsorbent is the material 
onto which it is adsorbed. Adsorption isotherms are used to 
calculate the affinity of the adsorbate for the adsorbent. To 
provide experimental data, the nonlinear Langmuir, Tem-
kin, Freundlich, and Dubinin-Radushkeivch(DR) models 

Table 4  Comparison between 
nonlinear kinetic models 
for M.O removal by H2SO4 
chemical AC − Fe0 − Cu 

Name Model Math. model Curve fitting R2

Pseudo first order Nonlinear qt = qe(1 − e−K1
t) y = 748.9(1 − e−0.1701x)0.902

Pseudo second order Nonlinear qt =
K
1
tq2

e

1+K
1
tqe

y =
751.2x

x+0.2646
0.847

Intra- particle diffusion Nonlinear qt = Kint

√

t + Cint y = 0.809
√

x + 7410.6354

Table 5  Comparison between 
nonlinear kinetic models for 
M.O removal by commercial 
AC − Fe0 − Cu 

Name Model Math. model Curve fitting R2

Pseudo first order Nonlinear qt = qe(1 − e−K1
t) y = 765.9(1 − e−0.1405x)0.4918

Pseudo second order Nonlinear qt =
K
1
tq2

e

1+K
1
tqe

y =
774x

x+0.8379
0.7801

Intra- particle diffusion Nonlinear qt = Kint

√

t + Cint y = 3.256
√

x735.6 0.94

Table 6  Kinetic parameters 
for different models for the 
adsorption process of M.O 
using bimetallic Fe0 − Cu, 
H2SO4 chemical AC−Fe0–Cu, 
and commercial AC−Fe0 − Cu 

Kinetic models Parameters Values

Bimetallic Fe0–Cu H
2
SO

4
 chemical 

AC–Fe0–Cu
Commercial 
AC –Fe0–Cu

Pseudo 1storder qe(mg/g) 767.6 748.9 765.9
K
1
(1/min) 0.1243 0.1701 0.1405

Pseudo 2nd order qe(mg/g) 774.2 751.2 774
K
1
(1/min) 0.0013 0.005 0.0015

Intra-particle diffusion Kint(mg/gmin0.5) 3.024 0.809 3.256
Cint(mg/g) 734.1 741 735.6
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are chosen [44]. The Dubinin-Radushkeivch (DR) model is 
the best fit for the bimetallic Fe0Cu, as shown in Table 7. 
The concentration experiments’ results are consistent with 
the isotherm models. As illustrated in Tables 7, 8, and 9. 
Langmuir, Freundlich, Temkin, and Dubinin Radushkeivch 
(DR) mod- els are used to fit the data for M.O removal by 
bimetallic Fe0-Cu, H2SO4 chemical AC-Fe0-Cu, and com-
mercial AC-Fe0-Cu. Freundlich and DR models are the 
best fit results for bimetallic Fe0-Cu and H2SO4 chemical 
AC-Fe0- Cu, with R2 = 0.9367 and R2 = 0.9908 for bimetallic 
Fe0-Cu, and with R2 values of 0.9996 and 0.9995, respec-
tively. Freundlich is the best fit model for M.O removal by 
commercial AC-Fe0-Cu, with R2 = 0.9674. The adsorption 

is physisorption for the three different adsorbents. The iso-
therm parameters are evaluated as shown in Table 10. The 
Freundlich and the DR models have a high R-square; how-
ever, the mean free energy (E) is higher than 8, as shown in 
Table 10. Therefore, adsorption is Physisorption. The maxi-
mum amount adsorbed qe equals 1174 calculated from the 
DR model for the bimetallic Fe0 Cu. The maximum amount 
adsorbed qe equals 1200 calculated from the Langmuir 
model for the bimetallic Fe0 Cu, as shown in 10.

Table 7  Comparison between Isothermal models for M.O removal by bimetallic Fe0 − Cu 

Type Name Adsorbent surface Math. model Curve fitting R2

Chemisorption Langmuir Homogeneous qe =
qmKLCe

1+KLCe

y =
1200x

x+32.48
0.6431

Temkin The binding energy is 
uniformly distributed

qe =
RT

b
ln(KTCe) y = 468.8ln(0.1602x) 0.8521

Physisorption Freundilch Heterogeneous
qe = KF × C

1

n

e
y = 2.204X1.794 0.9367

Dubinin-Radushkeivch Heterogeneous
qe = qme

−Kad
[

RTln
(

1+
1

Ce

)]2

y = 1174e
−299.8ln2

(

1+
1

x

)

0.9908

Table 8  Comparison between Isothermal models for M.O removal by H2SO4 chemical AC − Fe0 − Cu 

Type Name Adsorbent surface Math. model Curve fitting R2

Chemisorption Langmuir Homogeneous qe =
qmKLCe

1+KLCe

y =
1020x

x+697.7
0.5169

Temkin The binding energy is 
uniformly distributed

qe =
RT

b
ln(KTCe) y = 72.62 ln (0.05567x) 0.575

Physisorption Freundilch Heterogeneous
qe = KF ∗ C

1

n

e
y = 9.982 × 10

−10xX6.229 0.9996

Dubinin-Radushkeivch Heterogeneous
qe = qme

−Kad
[

RTln
(

1+
1

Ce

)]2

y = 1014e
−7711ln2

(

1+
1

x

)

0.9995

Table 9  Comparison between Isothermal models for M.O removal by commercial AC-Fe0 − Cu

Type Name Adsorbent surface Math. model Curve fitting R2

Chemisorption Langmuir Homogeneous qe =
qmKLCe

1+KLCe

y =
600x

x+112.2
0.6255

Temkin The binding energy is 
uniformly distributed

qe =
RT

b
ln(KTCe) y = 72.59ln (0.1868x) 0.5654

Physisorption Freundlich Heterogeneous
qe = KF ∗ C

1

n

e
y = 0.0005037xX3.788

e
−7711ln2

(

1+
1

x

)

0.9674

Dubinin-Radushkeivch Heterogeneous
qe = qme

−Kad
[

RTln
(

1+
1

Ce

)]2

y = 1014e
−7711ln2

(

1+
1

x

)

0.9663
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3.4.1  Temkin Model

Temkin’s isotherm model considers the effect of indirect 
adsorbate/adsorbate interactions on the adsorption process 
and assumes that increasing surface coverage results in a 
linear decrease in the heat of adsorption for all molecules in 
the layer. The Temkin isotherm is only applicable at interme-
diate ion concentrations. The Temkin model’s mathematical 
form is introduced [45].

3.4.2  Freundlich Model

The Freundlich isotherm governs adsorption activities on 
heterogeneous sur- faces. This isotherm provides an equation 
that characterizes the exponential distribution of energy and 
surface heterogeneity at active sites. The linear form of the 
Freundlich isotherm, as well as the adsorption capacity and 
intensity, show how the energy is distributed relatively and 
how heterogeneous the adsorbate sites are [45].

3.4.3  Dubinin‑Radushkeivch (DR) Model

The Dubinin-Radushkeivch isotherm model, an empirical 
adsorption model, is frequently used to represent adsorption 
mechanisms with Gaussian energy distribution onto hetero-
geneous surfaces. This isotherm is only suitable for mid-
dle ranges of adsorbate concentrations due to its unrealistic 
asymptotic behavior and failure to anticipate Henry’s laws 
at low pressure. In a semiempirical equa tion, adsorption is 
modeled as a pore-filling process. It is a fundamental equa-
tion that characterizes the adsorption of gases and vapors 
on microporous sorbents qualitatively. It has a multilayer 

structure that involves Van Der Waal’s forces, which are 
important in physical adsorption processes. Langmuir 
adsorption, which was developed to characterize gas–solid 
phase adsorption, is used to measure and compare the 
adsorption capacity of various adsorbents. By balancing, 
the Langmuir isotherm explains surface coverage [45].

Table 10  Isothermal adsorption 
parameters for different models 
for the adsorption process of 
M.O using bimetallic Fe0 − Cu, 
H2SO4 chemical AC − Fe0 − Cu, 
and commercial AC- Fe0- Cu 

Isotherm models Parameters Values

Bimetallic Fe0–Cu H2SO4 chemical 
AC –Fe0–Cu

Commercial 
AC –Fe0–Cu

Langmuir q(max) 1200 1020 600
KL(L/mg) 0.030788 0.00143 0.0089

Freundlich n 0.55741 0.16054 0.264
KF(L/g) 2.204 9.982 ×  10−10 0.0005037

Dubinin-Radushkevich qs(mg/g) 1174 1014 576.9
Kad(mol2/KJ2) 0.000048 0.00124 0.00017
E(kJ/mol) 102.1 20.08 54.233

Temkin �T 468.8 72.62 72.59
KT(L/g) 0.1602 0.05567 0.1868

Table 11  The FCCD design matrix for the adsorption using bimetal-
lic Fe0-Cu

Run Space type Concentration Dose Time Removal 
efficiency

1 Axial 1000 0.75 97.5 96.8
2 Axial 512.5 0.75 15 88.9
3 Axial 512.5 0.5 97.5 89.56
4 Factorial 25 1 15 57.74
5 Center 512.5 0.75 97.5 88.74
6 Factorial 25 0.5 180 54.24
7 Center 512.5 0.75 97.5 88.74
8 Axial 512.5 0.75 180 93.36
9 Factorial 1000 1 180 96.72
10 Axial 25 0.75 97.5 90.98
11 Factorial 1000 0.5 15 95.01
12 Center 512.5 0.75 97.5 88.74
13 Center 512.5 0.75 97.5 88.74
14 Factorial 1000 0.5 180 96.8
15 Factorial 1000 1 15 95.63
16 Center 512.5 0.75 97.5 88.74
17 Factorial 25 1 180 52.49
18 Center 512.5 0.75 97.5 88.74
19 Factorial 25 0.5 15 40.24
20 Axial 512.5 1 97.5 91.05
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3.5  Response Surface Methodology (RSM) 
Optimization for M.O Removal by Bimetallic 
 Fe0‑Cu,  H2SO4 Chemical AC‑Fe0‑Cu, 
and Commercial AC‑Fe0‑ Cu

3.5.1  RSM for the Adsorption Using the Bimetallic  Fe0‑Cu

The data in Table 11 fits the quadratic model, and the model 
is generated as follows:

whereby, x1, x2, x3 are the removal efficiency, concentra-
tion, dose, and time, re- spectively. The quadratic and linear 
models are suggested due to the results of the fit statistics, as 
shown in Table 12. The quadratic model is not aliased as in 
the cubic model, and it has R2 = 0.8371, as shown in Fig. 10.

The ANOVA analysis is used to identify the essen-
tial factors that affect the removal efficiency, as shown 
in Table 13. Model terms with P-values less than 0.0500 
are significant. In this situation, A is an effective model 
term, and A is the concentration. The model terms are 
not important if the value is bigger than 0.1000. Model 
reduction may enhance the model if there are numerous 
inconsequential model terms.

3.5.2  RSM for the Adsorption using  H2SO4 Chemical 
AC‑Fe0‑Cu

The data in Table 14 fits the quadratic model, and the model 
is generated as follows:

whereby, x1, x2, x3 are the removal efficiency, concentration, 
dose, and time, re- spectively. The quadratic model is recom-
mended based on the fit statistics, as illustrated in Table 15. 

(6)

y = −28.45 + 0.0673x
1
+ 200.852x

2

+ 0.30356x
3
− 0.0156x

1
x
2
− 0.000018x

1
x
3

− 0.12091x
2
x
3
− 0.000015x

2
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2

2
− 0.000944x
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y = 3.478 + 0.2498x
1
+ 3.8515x
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− 0.0225x
3
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1
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2
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x
3

+ 0.08882x
2
x
3
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2

1
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2

2
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Table 12  The fit summery for the adsorption using bimetallic Fe0-Cu

Source Sequential 
p-value

Adjusted  R2 Predicted  R2

Linear 0.0011 0.5524 0.3024 Suggested
2FI 0.9099 0.4707 − 1.5308
Quadratic 0.0394 0.6904 − 0.2205 Suggested
Cubic 0.0699 0.8551 − 55.2238 Aliased

Fig. 10  The predicted removal efficiency versus the actual for the 
adsorption using bimetallic Fe0-Cu

Table 13  ANOVA analysis for 
the adsorption using bimetallic 
Fe0-Cu

Source Sum of Squares df Mean Square F-value p-value

Model 4688.86 9 520.98 5.71 0.0059 significant
A-concentration 3432.50 1 3432.50 37.61 0.0001
B-Dose 31.61 1 31.61 0.3464 0.5692
C-Time 25.89 1 25.89 0.2837 0.6059
AB 28.92 1 28.92 0.3168 0.5859
AC 4.31 1 4.31 0.0472 0.8324
BC 49.75 1 49.75 0.5451 0.4773
A2 36.90 1 36.90 0.4043 0.5391
B2 144.47 1 144.47 1.58 0.2369
C2 113.46 1 113.46 1.24 0.2909
Residual 912.69 10 91.27
Lack of Fit 912.69 5 182.54
Pure Error 0.0000 5 0.0000
Cor Total 5601.55 19
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The quadratic model is not aliased as in the cubic model, and 
it has R2 = 0.9984, as shown in Fig. 11.

The ANOVA analysis is used to identify the essential fac-
tors that affect the removal efficiency, as shown in Table 16. 
Model terms with P-values less than 0.0500 are significant. 
A, C, AC, BC, and  A2 are crucial model terms in this sce-
nario, where A denotes concentration, B denotes dosage, and 
C denotes time. The model terms are not important if the 
value is bigger than 0.1000. Model reduction may enhance 
the model if there are numerous inconsequential model 
terms.

3.5.3  RSM for the Adsorption Using the Commercial 
AC‑Fe0‑Cu

The data in Table 17 fits the quadratic model, and the model 
is generated as follows:

whereby, x1, x2, x3 are the removal efficiencies with different 
concentration, dose, and time, respectively. The quadratic 
model is recommended based on the fit statistics, as illus-
trated in Table 18. The quadratic model is not aliased as in 
the cubic model, and it has R2 = 0.999, as shown in Fig. 12.

The ANOVA analysis is used to identify the essential fac-
tors that affect the removal efficiency, as shown in Table 19. 
Model terms are significant if their P-values are less than 
0.0500. A, C, AC,  A2, and  C2 are important model variables 
in this situation, where A represents concentration and C 
represents time. The model terms are not significant if their 
values exceed 0.1000. Model reduction may enhance the 
model if there are a lot of inconsequential model terms.

3.6  Artificial Neural Network (ANN)

Deep learning techniques depend on neural networks, also 
known as artificial neural networks (ANNs) or simulated 
neural networks (SNNs), which are a subset of neural net-
works. AI stands for machine learning. Their structure and 
nomenclature are modeled after the human brain, mirroring 
organic neuron communication. Each node, or artificial neu-
ron, is linked to others and has its own weight and thresh-
old. Any node whose output exceeds a predefined threshold 
value is activated and sends data to the network’s top layer. 
If not, information from the next network level is retained. 
An artificial neural network (ANN) node layer consists of an 
input layer, one or more hidden layers, and an output layer.

(8)

y = −1.656 + 0.2243x
1
+ 15.274x

2

+ 0.1282x
3
+ 0.0021x

1
x
2
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2
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3
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2
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2

2
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Table 14  The FCCD Centered design matrix for the adsorption using 
H2SO4 chemical AC-Fe0-Cu

Run Space type Concentration Dose Time Removal 
efficiency

1 Factorial 1000 0.5 180 95.47
2 Factorial 25 1 15 10.5
3 Center 512.5 0.75 97.5 91.71
4 Center 512.5 0.75 97.5 91.71
5 Axial 1000 0.75 97.5 95.71
6 Center 512.5 0.75 97.5 91.71
7 Axial 512.5 0.75 15 92.04
8 Factorial 1000 1 180 96.18
9 Factorial 25 1 180 27.99
10 Axial 512.5 0.5 97.5 91.38
11 Center 512.5 0.75 97.5 91.71
12 Factorial 25 0.5 15 12.25
13 Factorial 1000 0.5 15 96.1
14 Center 512.5 0.75 97.5 91.71
15 Center 512.5 0.75 97.5 91.71
16 Axial 512.5 0.75 180 92.04
17 Axial 25 0.75 97.5 15.75
18 Factorial 1000 1 15 96.25
19 Axial 512.5 1 97.5 91.38
20 Factorial 25 0.5 180 15.75

Table 15  The fit summery for the adsorption using H2SO4 chemical 
AC-Fe0-Cu

Source Sequential 
p-value

Adjusted  R2 Predicted  R2

Linear 0.0001 0.6569 0.5084
2FI 0.9769 0.5841 − 0.7061
Quadratic  < 0.0001 0.9969 0.9716 Suggested
Cubic  < 0.0001 1.0000 0.9919 Aliased

Fig. 11  The predicted removal efficiency versus the actual for the 
adsorption using H2SO4 chemical AC-Fe0-Cu
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Three neurons make up the input layer: concentration, 
dose, and time. The removal efficiency is represented by one 
neuron in the output layer. The hidden layer’s neuron count 
ranged from 3 to 15, and in most adsorption techniques, ten 
is the best number that achieves a minor error. The input 
data is normalized to be in the 0 to 1 range. The network’s 
input variables were dosage, contact time, and temperature, 
while the network’s output variable was removal efficiency. 

the layer from which the network output. It was claimed that 
the experimental data set obtained by using the RSM was 
enough to properly assess the ANN model. ANN is applied 
to the same data of RSM that is shown in Tables 11, 14, and 
17. ANN is implemented using MATLAB (R2019a), and the 
feed-forward network is selected. The network is made up 
of three layers: an input layer, a hidden layer, and an output 
layer, where the input and output layer contain three neurons 
and one neuron, respectively. The number of neurons in the 
hidden layer is ten after experimenting with other values. 

Table 16  ANOVA analysis 
for the adsorption for H2SO4 
chemical AC-Fe0-Cu

Source Sum of Squares df Mean Square F-value p-value

Model 22,256.56 9 2472.95 680.48  < 0.0001 significant
A-concentration 15,798.24 1 15,798.24 4347.17  < 0.0001
B-Dose 12.88 1 12.88 3.54 0.0891
C-Time 41.17 1 41.17 11.33 0.0072
AB 11.59 1 11.59 3.19 0.1044
AC 58.81 1 58.81 16.18 0.0024
BC 26.46 1 26.46 7.28 0.0224
A2 3518.34 1 3518.34 968.13  < 0.0001
B2 0.0387 1 0.0387 0.0107 0.9198
C2 0.8060 1 0.8060 0.2218 0.6478
Residual 36.34 10 3.63
Lack of Fit 36.34 5 7.27
Pure Error 0.0000 5 0.0000
Cor Total 22,292.90 19

Table 17  The FCCD Centered design matrix for the adsorption using 
commercial AC-Fe0-Cu

Run Space type Concentration Dose Time Removal 
efficiency

1 Factorial 25 0.5 180 20
2 Axial 512.5 0.75 15 85.93
3 Center 512.5 0.75 97.5 90.06
4 Center 512.5 0.75 97.5 90.06
5 Factorial 1000 1 180 94.93
6 Axial 512.5 1 97.5 92.04
7 Factorial 1000 0.5 15 92.67
8 Axial 512.5 0.5 97.5 88.24
9 Factorial 25 1 15 10
10 Center 512.5 0.75 97.5 90.06
11 Axial 25 0.75 97.5 21
12 Factorial 1000 0.5 180 92.83
13 Axial 1000 0.75 97.5 94.93
14 Factorial 25 0.5 15 10
15 Axial 512.5 0.75 180 90.06
16 Factorial 25 1 180 19.25
17 Center 512.5 0.75 97.5 90.06
18 Factorial 1000 1 15 91.82
19 Center 512.5 0.75 97.5 90.06
20 Center 512.5 0.75 97.5 90.06

Table 18  The fit summery for the adsorption using commercial 
AC-Fe0-Cu

Source Sequential 
p-value

Adjusted  R2 Predicted  R2

Linear 0.0001 0.6543 0.4966
2FI 0.9949 0.5768 − 0.8673
Quadratic  < 0.0001 0.9985 0.9927 Suggested
Cubic 0.0043 0.9997 0.8946 Aliased

Fig. 12  The predicted removal efficiency versus the actual for the 
adsorption using com- mercial AC-Fe0-Cu
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That has the smallest mean square error. Tansig is the trans-
fer function between the input and hidden layers, while a 
pure line (Purline) is the transfer function between the hid-
den and output layers. The ANN has a higher R2 values than 
the RSM models, as confirmed in the regression plots shown 
in supplementary figures (S-1,S-2,S-3).

The data set was split into three groups; 70% of them 
were used to train the network, 15% to validate it, and the 
remaining 15% to test the results. The test set independently 
assessed the performance of the network. The validation set 
modified the network’s bias, variance, and generalization. 
R2019b MATLAB was utilized as the programming lan-
guage, and TensorFlow was used for the ANN calculations. 
The training, validation, testing, and overall correction fac- 
tors are obtained in supplementary figures (S-1,S-2,S-3).for 
bimetallic F e0 -Cu, H2SO4 chemical AC-F e0 -Cu, and 
commercial AC-F e0–Cu, respectively.

Table  11 indicates experimental removal efficiency, 
RSM predicted removal efficiency, RSM residual, ANN 
predicted removal efficiency, and ANN residual for the 
bimetallic F e0–Cu. Tables 14 and 17 obtain experimen-
tal removal efficiency, RSM predicted removal efficiency, 
RSM residual, ANN pre dicted removal efficiency, and ANN 
residual for H2SO4 chemical AC-F e0 -Cu, and commercial 
AC-F e0–Cu, respectively. The previous values in all these 
Tables 11, 14, and 17 are obtained through 20 runs with 
three different space types (factorial, axial, and center). Five 
neurons are the best number in the case of using Bimetallic 
F e0–Cu. In Table 11 for the Bimetallic F e0 -Cu, the best 
experimental and predicted removal efficiency is 96.8% RE 
(through runs 1, and 14). In Table 14 for H2SO4 chemical 
AC-F e0 -Cu, the best experimental and predicted removal 
efficiency is 96.25% RE (through run 18). In Table 17 for 
the commercial AC-F e0–Cu, the best experimental and 
predicted removal efficiency is 94.93%RE (through run 5).

The use of artificial neural networks (ANN) for mapping, 
regression, modeling, clustering, classification, and multi-
variate data analysis is gaining popularity. The ANN is a 
multivariate statistical technique used to describe a wide 
range of mathematical objects and processes. Nonlinearity, 
which allows for a better fit to the data; noise insensitiv-
ity, which provides accurate prediction in the presence of 
uncertain data and measurement errors; high parallelism, 
which implies fast processing and hardware failure toler-
ance; learning and adaptability, which allows the system to 
update (modify) its internal structure in response to chang-
ing environment and generalization are the main advantages 
of ANN. artificial neural networks (ANNs) have been rou-
tinely used to predict dye adsorption. This research applies 
the uses of ANN approaches for dye adsorption, including 
multilayer feedforward neural networks (MLFNN). These 
ANNs models are gaining prominence as techniques that 
can be used successfully for dye adsorption with acceptable 
accuracy.

3.7  Optimization Results

The maximum removal efficiency is achieved at optimum 
conditions, which are evaluated by optimizing RSM quad-
ratic model and the ANN model. First, numerical optimiza-
tion is applied to the RSM model using Design-Expert soft- 
ware. Then, the Moth Search Algorithm (MSA) is applied 
to the ANN model to get the optimum conditions that maxi-
mize the removal efficiency. A metaheuris- tic algorithm is 
used to optimize ANN. Metaheuristic combines one main 
word (heuristic) and suffix (meta) that have roots in Greek. 
The term (heuristic) is an old Greek word that means dis-
covering new rules in dealing with different problems, and 
the term (meta) means some upper-level methodologies in 
na- ture. The metaheuristics use higher-level approaches to 

Table 19  ANOVA analysis 
for the adsorption using 
commercial AC-Fe0-Cu

Source Sum of Squares df Mean Square F-value p-value

21,205.51 9 2356.17 1362.03  < 0.0001 significant
A-concentration 14,971.48 1 14,971.48 8654.59  < 0.0001
B-Dose 1.85 1 1.85 1.07 0.3256
C-Time 71.02 1 71.02 41.06  < 0.0001
AB 0.5000 1 0.5000 0.2890 0.6026
AC 31.92 1 31.92 18.45 0.0016
BC 0.6050 1 0.6050 0.3497 0.5674
A2 2965.37 1 2965.37 1714.20  < 0.0001
B2 1.21 1 1.21 0.6982 0.4229
C2 21.68 1 21.68 12.53 0.0054
Residual 17.30 10 1.73
Lack of Fit 17.30 5 3.46
Pure Error 0.0000 5 0.0000
Cor Total 21,222.81 19
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implement a searching process that can avoid the optimum 
local result and find the global optimum [46]. Many appli-
cations use these algorithms, such as extracting optimized 
bio- impedance model parameters using different typologies 
of oscillators and Plant stem tissue modelling and parameter 
identification using metaheuristic opti- mization algorithms 
[47, 48]. Moth Search Algorithm (MSA) is selected to be 
combined with ANN (ANN + MSA). The nocturnal behavior 
of moths inspires MSA [49]. The results of these optimiza-
tion methods are shown in supplementary table (S-1), which 
are validated experimentally as shown in the confirmation 
column. The maximum removal efficiency is 98.66% by 
using Bimetallic Fe0-Cu according to the confirmation of 
ANN + MSA results. The error of ANN + MSA is 1.8%, and 
the RSM model error is 4.2% in the case of using Bimetallic 
Fe0-Cu. RSM and ANN + MSA give almost the same result 
when using the chemical AC-Fe-Cu. However, RSM gives 
better results than ANN + MSA when using commercial 
AC-Fe-Cu.

4  Conclusion

The anionic M.O dye was used to screen the prepared 
adsorbents of nZVI, bimetallic Fe0-Cu, physical AC-Fe0-
Cu, H2SO4 chemical AC-Fe0-Cu, H3PO4 chemical AC-Fe0-
Cu, commercial AC-Fe0-Cu, and raw fava bean-Fe0-Cu. 
The most significant removal efficiencies were obtained by 
bimetallic Fe0-Cu, H2SO4 chemical AC-Fe0-Cu, and com-
mercial AC-Fe0-Cu. The most efficient adsorbent materials 
were characterized using DLS, FT-IR, XRD, and SEM.

Bimetallic Fe0-Cu has a removal capacity of 
995.96  mg/g at (pH = 3, 180  min. contact time under 
shaking at 120 rpm at room temperature, 1000 ppm of 
M.O, and 1 g/l dose of bimetallic Fe0-Cu adsorbent). The 
pseudo-second-order is the best fit for bimetallic Fe0-Cu 
with R2 = 0.9913. H2SO4 chemical AC-Fe0-Cu adsor-
bent has a removal capacity of 990.35 mg/g at (pH = 3, 
180 min. contact time under shaking at 120 rpm at ambient 
temperature, 1000 ppm of M.O, and 1 g/l dose of H2SO4 
chemical AC-Fe0-Cu adsorbent).

The pseudo-first-order is the best fit for H2SO4 chemi-
cal AC-Fe0-Cu with R2 = 0.902. At (pH = 3, 180 min. con-
tact time under shaking at 120 rpm at room temperature, 
1000 ppm M.O, and 1 g/l dose of commercial AC-Fe0-Cu 
adsorbent), the removal capacity of commercial AC-Fe0-
Cu adsorbent is 977.53 mg/g. Intra-particle diffusion is 
the best fit for commercial AC-Fe0-Cu with R2 = 0.94. The 
isothermal results show that physisorption is involved in 
adsorption and that multi-layers develop on the adsorbent 
surface.

The experimental data were fit by pseudo-first-order 
(PFO), pseudo-second-order (PSO), and intra-particle 

models. The pseudo-second-order is the best fit for bime-
tallic F e0 -Cu with R2 = 0.9913. The pseudo-first-order 
is the best fit for H2SO4 chemical AC-Fe0-Cu with R2 = 
0.902. The Intra-particle diffusion is the best fit for com-
mercial AC- Fe0-Cu with  R2 = 0.94. The Dubinin-Radush-
keivch (DR) model is the best fit for the bimetallic Fe0Cu. 
The Freundlich and the DR models have a high R-square; 
however, the mean free energy (E) is higher than 8 There-
fore, adsorption is Physisorption.

The maximum amount adsorbed qe equals 1174 was 
calculated from the DR model for the bimetallic Fe0Cu. 
The maximum amount of adsorbed material qe equals 1200 
calculated from the Langmuir model for the bimetallic 
Fe0Cu. The Bimetallic Fe0-Cu, the best experimental 
and predicted removal efficiency is 96.8% RE (through 
runs 1, and 14). For the H2SO4 chemical AC-Fe0-Cu, 
the best experimental and removal efficiency is 96.25% 
RE (through run 18). The commercial AC-Fe0–Cu, the 
best experimental and predicted removal efficiency is 
94.93%RE (through run 5). That is clear low-cost adsor-
bents such as Bimetallic Fe0-Cu, and Fava Bean Activated 
Carbon-Supported Bimetallic AC-Fe0-Cu can remove the 
Methyl orange dye with a high removal efficiency which 
is competed for the commercial and chemical adsorbents.
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