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Abstract
We demonstrate how a full QM/MM derivatization of the recently developed GOCAT model can be utilized in the global 
optimization of molecular embeddings. To this end, we provide two distinct examples: An S

N
2 reaction, and one enzymatic 

example of recent interest, the ketosteroid isomerase. These serve us to highlight the advantages of such an approach and 
sketch the roadmap for further improvements.

Keywords  Catalysis design · Oriented external electric fields · Global optimization · Evolutionary algorithms · Enzymes · 
QM/MM

1  Introduction

Computational catalyst design has made impressive progress 
in recent years [1]. Since reliable ways of finding specific 
catalysts have been a long-standing goal in synthetic chem-
istry, their in silico design has even been called a “Holy 
Grail” [2]. With the ever-growing and ever-improving theo-
retical toolset our community has at its disposal and with the 
advance of sophisticated machine-learning approaches, this 
has certainly become a bustling field of opportunity.

Our recently developed Globally Optimized Cata-
lyst (GOCAT) scheme [3] joins several other promising 
approaches to inverse, in silico design of catalysts [4–8] (also 
see the discussion in Ref. [1] and in the remainder of this 
contribution). In the GOCAT scheme, we employ genetic 
algorithms (GA) to find globally optimal embeddings for the 
reaction paths of arbitrary reactions, to lower their energy 
barrier via electric fields (which is one important influence 
of electric fields on chemistry [9]). These embeddings, up 
until now, have been exclusively made up of abstract point 
charges of optimized values, signs and spatial position, but 

remained unchanged throughout the whole reaction. In a 
first iteration in the development of this idea, the catalysis 
of these fixed point charges was evaluated on a pre-defined 
minimum energy path (MEP), and the transferability to 
dynamic reactions was implied by introducing restrictions 
on the residual gradient at each point in the MEP. Following 
a recent extension [10], this is no longer the case. Instead, 
we allow the recalculation of the MEP at each step in the 
global optimization, yielding far more effective and certainly 
more transferable embeddings. With this strategy, we could 
confirm external electric field effects on a Diels-Alder reac-
tion that not only lead to strong catalysis, but also to mecha-
nistic changes from a concerted pathway to a zwitterionic, 
step-wise one, as predicted earlier [11–13] and confirmed by 
different experimental single-molecule techniques [14, 15]. 
Although the MEP recalculation dramatically improves the 
GOCAT approach, it also highlights one of its downsides: 
The complex electric fields generated by the point charges 
are often wildly inhomogeneous and thus become hard to 
cast into chemical counter-parts. However, since these com-
plex electric fields constitute an abstractly defined global 
optimum in terms of catalytic effects, it can be expected 
that less complex fields that approximate them but can be 
realized more simply by actual chemical frameworks will 
still lead to substantial catalysis. While this is one way of 
exploiting our GOCAT scheme, which we currently follow 
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in our lab, another way of derivatizing the original GOCAT 
idea is presented here.

When thinking of a way to manipulate electric fields at 
sub-molecular level and guaranteeing the right orientation of 
the reactant during the reaction, enzymes spring to mind. An 
example of recent interest is the ketosteroid isomerase (KSI). 
By employing Stark spectroscopy on KSI, Wu and Boxer 
[16] suggested that the extraordinary catalytic proficiency 
of KSI is owed to the strong electric field generated within 
the active site of the enzyme.

Consequentially, the question is: How to bridge the gap 
between catalytic embedding and enzymatic design? As has 
been shown in the past [17], the in silico design of new 
enzymes has made huge steps forward, and certainly war-
rants the search for ever new ways of fueling its success 
[18, 19]. An intuitive way of extracting enzymatic design 
improvement from a GOCAT result would be to start from 
a known catalytically active basis and then improve upon it 
by finding point mutations resulting in a more favourable 
electrostatic field. A similar approach has been recently sug-
gested by Beker and Sokalski [20].

Given the remarkable universal applicability of the 
GOCAT scheme, we aspire to a different way of utilizing it. 
Since our point charge embeddings are handled via a sim-
plified QM/MM approach, the transition to full QM/MM 
embeddings using actual atoms is both intuitive and easily 
realized. With enzymes in mind, this could become a tool 
to automatically find an optimal active site for any arbitrary 
reaction. The very concept of predicting catalytic structures 
using protein building blocks is nothing new – in fact, it has 
been around and refined for more than two decades, with the 
Houk group being a central driving force [21, 22]. But our 
approach could significantly refine the process of finding 
these theozymes, as Houk calls them, for a given reaction. 
Both the fact that we can easily incorporate not only amino 
acid side chains but also transition metal ions, water and any 
other entities in arbitrary numbers, as well as the fact that we 
globally optimize both these entities and the reaction path 
itself hold great promise to this effect.

1.1 � Using Actual Molecules

Owing to the recalculation of MEPs in every global opti-
mization step, the required input can be as minimalistic as 
only two structures, reactant and product. Together with a 
library of molecules (e.g. amino acid side chains, solvent 
molecules, etc.) and an efficient genetic algorithm, this pro-
duces increasingly proficient active site candidates, with the 
promise of eventually obtaining the objectively best (global 
optimum). One of the huge benefits of this approach is that 
it not only automatically generates appropriate candidates, 
but it also provides the entire MEP, including the transi-
tion state, right out of the box. On the downside, the size 

of the search space (depending on the supplied molecule 
library and desired amount of entities) and computational 
effort put heavy limits on the underlying quantum mechani-
cal methods. However, using efficient codes such as the new 
semi-empirical methods of the GFN-xTB family [23] for 
the QM part and the very simple non-polarizable OPLS-AA 
force field [24] for the MM part, global optimizations with 
reactants of up to 30-50 QM atoms and upwards of 200 MM 
atoms are absolutely feasible.

2 � Methodology

Going from an abstract concept such as point charges to 
actual molecules, one has to consider several challenges: 

1.	 The point charges in the GOCAT model are fixed in 
space, magnitude and sign throughout the full MEP, 
which could be argued to be a valid approach for cataly-
sis by abstract electric fields. With molecules, this is 
harder to justify. In fact, the ability for molecules to 
move and rearrange during the reaction can be seen as 
one of the vital advantages this approach has over the 
rigid point charges.

2.	 However, including the molecular degrees of freedom 
in the MEP optimization will necessarily increase the 
time spent in MEP and fitness evaluation and must be 
balanced cautiously.

3.	 Another point of consideration is the search space: 
While point charges only impact the electrostatic inter-
actions of the reaction centre, molecules will also impact 
the dispersion interactions (in the MM picture), and thus 
open up an additional multitude of optimizable degrees 
of freedom, possibly increasing the search space radi-
cally.

4.	 It is thus intuitive to stick to embeddings that have a 
limited selection of building blocks, such as solvents, 
crystal- or surface structures and enzymes.

5.	 In superstructures such as enzymes, the overall geometry 
of active sites is also determined and restrained by the 
structures not involved in the reaction itself (i.e., the 
backbone). However, in our current global optimiza-
tion approach, only individual fragments of the super-
structure (like the side chains of amino acids) can be 
included, in order to preserve practicality of the global 
optimization operators. This is in contrast to many of 
the computational enzyme design projects (e.g., Refs. 
[17, 18, 22]), in which including the backbone often 
constitutes a significant part of the overall effort, while 
possibly limiting the predictive power due to computa-
tional protein folding not being perfect yet.
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Despite these challenges, we found it worthwhile to pur-
sue this avenue; In the following, the modifications made 
to our Ogolem [25] code will be explained in more detail. 
The modified global optimization cycle is shown in Fig. 1.

The overall process remains largely the same as previ-
ously. The most important differences are highlighted in the 
following:

Random initialization Instead of initializing point 
charges with random values in Cartesian space, the ini-
tialization randomly draws N molecules from the library to 
form the initial candidates. A candidate thus contains the 
structural information of the desired reaction reactant and 
product, as well as the structure of N random molecular 
fragments. This also includes the force field parameters, 
as well as the bonding information.

Crossover/Mutation The most important crossover 
operator in this genetic algorithm scheme is still defined 
by cutting two structures along a randomly oriented plane 
and then exchanging the pieces to obtain two new struc-
tures. In applications of  Ogolem to heterogeneous atomic/
molecular clusters consisting of two (or more) particle 
types A and B, we had to post-adjust this cutting plane or 
to convert A-particles to B-particles or vice versa, in order 
to avoid changing the cluster composition by a crossover 
operation. Here, however, a change in the nature of one or 
more individual molecular fragments is an allowed and 
possibly desired event. Along this line also comes a new 
mutation operator that switches individual molecular frag-
ments in candidates for a random new one drawn from the 
library.

Fitness Evaluation This is the heart of the global opti-
mization; The fitness evaluation first locally optimizes the 

candidate reactant and product structures individually. 
This includes optimization of the molecular fragments, 
which will in most cases then differ between the two end 
points of the reaction. Afterwards, a Nudged Elastic Band 
(NEB) [26] calculation is done between the two structures 
and finally, the fitness is calculated from the finished path. 
The fitness includes: 

1.	 The residual mean square gradient (RMSG) of the reac-
tant, transition state and product structures. This ensures 
that these points remain close to actual minima on the 
potential energy surface.

2.	 The sum of all energy barriers in the path. This is the 
main driver to produce catalysis and will favour candi-
dates with small energy barriers.

3.	 The sum of the residual mean square distance (RMSD) 
between the individual frames. This will favour indi-
viduals that are well pre-organized and do not need 
extensive structural reorganization during the reaction.

In principle, the minimum energy path (MEP) thus defines 
the fitness exclusively and finding it in a reasonably short 
time is highly desirable. In our preliminary tests, we made 
extensive use of the GFN-xTB Hamiltonians for the QM 
part, as they allow for very quick electronic potential gra-
dient evaluations. We are aware that xTB is not specifically 
parametrized to deliver accurate total energies. However, 
we are mostly interested in relative energies and are thus 
less limited in our choice of QM Hamiltonians. As long as 
the relative energies are accurate enough between different 
solution candidates, our global optimization scheme will 
be able to find optima that will be transferable to higher 
quality ab initio calculations.

Niching In past implementations of the GOCAT model, 
the atom electrostatic potential (ESP) values were used as 
a criterion to preserve structural diversity in the candi-
date pool. Although this is technically still a valid niching 
parameter, we have also considered more structurally-
aware approaches such as SOAPs (smooth overlaps of 
atomic positions) [27]. The advantages of SOAPs in this 
application are their inherent independence on atom count 
and type ordering, facilitating the comparison between 
structures with wildly differing molecular typing. How-
ever, as of now, we lack sufficient data on whether or not 
this approach can benefit the global optimization process 
in the long run.

Molecular Fragment Library Depending on the particu-
lar system one wants to optimize, the molecular library 
can include any arbitrary number of different molecules. 
For our SN2 example, we included only the solvent mol-
ecule. For the enzyme example, we included amino acid 
side chains of 17 amino acids. They were all capped at the 
α-carbon atom, removing both the carboxylate as well as 

Fig. 1   A scheme of the modified global optimization cycle used in 
Ogolem 
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the amine group. Because of the way they are capped, we 
chose to omit Glycine, which would essentially become a 
methane molecule, as well as Leucine, because of its simi-
larity to Isoleucine, and lastly Proline, because it can not 
be capped in this particular way without losing its main 
structural feature.

3 � Results and Discussion

3.1 � Solvated S
N
2 Reaction

For a first foray into the use of actual molecules, we went 
back to the well-understood SN2 Menshutkin reaction,

which was also used in our first GOCAT publication. But 
instead of point charges, we added actual solvent molecules 
into the QM/MM approach. Aprotic, polar solvents are 
ideal for reactions such as this, and thus we chose to add 
20 explicit acetone molecules (s. Fig. 2).This approach is 
very similar to a cluster optimization problem, and in an 
earlier publication [28] we treated it as such (with explicit 
water molecules as solvent). Here, the difference is in the 
optimization goal: It is not the overall energy of the cluster, 
but the energy barrier of the reaction taking place inside. 
By extension, this usage of the model also provides plenty of 
interesting avenues for further exploration, such as optimiza-
tion of dynamic reaction solvation shell structures. For now, 
however, the focus is on the catalytic picture; The reaction 
in question is quite easily catalysed by a linear electric field 
pointing along the emerging bond axis. As is expected, we 
retrieve precisely this picture in the case of using molecules. 

(1)CH
3
Cl + NH

3
→ CH

3
NH

+

3
+ Cl

−

Fig. 3 shows the electrostatic potential (ESP) values on the 
individual atoms in the transition state generated by the 
optimized solvent cluster. They are, at each reactant atom 
i, calculated from the point charges qj assigned to the atoms 
j in the OPLSAA Force Field (with e being the elementary 
charge) by:

These values allow a visualization of how the electric 
field generated by the embedding influences the individual 
atoms. Greater negative values result from more negatively 
charged entities while less negative or positive values cor-
respond to more positively charged entities in the atom’s 
environment. The difference between the ESP values at the 
individual atoms then corresponds to how the electronic 
structure is polarized in consequence. The energy path 
for the optimized individual shown here can be found in 
Fig. 4. As expected, the linear polarization resulting from 
the solvent embedding catalyses this reaction significantly 

(2)ESP(ri) = e2
∑

j

qj

rij

Fig. 2   Globally optimized structure for the acetone solvated S
N
2 sys-

tem at the transition state. The MM part is displayed as sticks-only

Fig. 3   Central quantum-mechanical part of the transition state for the 
globally optimized 20-acetone S

N
2 reaction system. The atoms have 

been colourized according to their ESP values (cf. main text)

Fig. 4   Shown are the energies at the individual frames along the MEP 
of the (vacuum) reference and the globally optimized acetone-20 S

N
2 

reaction system
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in comparison to the reaction in vacuum, its energy barrier 
is almost quartered.

Under the hood, the optimization problem thus remains 
very similar to the original GOCAT approach; it is still the 
electrostatics that are the driving force of catalysis (as they 
remain the only thing that enters via the QM/MM ansatz). 
The difference lies in the constraints that are put on the 
positions of the charged entities, as they now have become 
chemically intuitive molecules surrounding the reaction.

Of course, the implication of this example for the Men-
shutkin reaction in acetone is neither that one should attempt 
to manipulate solvent molecules into such globally optimal 
arrangements around the reaction centre, nor that freely 
moving solvent molecules will arrange themselves in this 
way each and every time a reactive event is about to occur. 
Instead, this example shows that surrounding acetone mol-
ecules can be arranged in a way that a catalytically relevant 
electric field results at the reaction centre, that a global 
optimization provides the qualitatively expected result, and 
what the maximally possible effect of this kind can be in 
quantitative terms. When this reaction actually happens in 
this solvent, a distribution of solvent molecule arrangements 
will occur, between this maximally favourable one and oth-
ers that may actually disfavour the reaction, as shown before 
[28]. A large-scale, long-time molecular dynamics study 
could reveal the probabilities for such arrangements to occur, 
allowing for an estimation of the true catalytic effect obtain-
able in this way, which will likely be lower than the one 
shown in Fig. 4. However, other groups [29, 30] have already 
investigated how external electric fields could order solvent 
molecules around a reaction center or could lead to catalysis 
despite solvent molecules counteracting the external field.

A different way to exploit the result shown here for cataly-
sis design would be to design a hollow molecular framework 

decorated with functional groups similar to acetone mole-
cules (e.g., with similar dipole moments) and approximating 
the spatial distribution obtained here.

3.2 � Ketosteroid Isomerase

The second reaction we are addressing in an ongoing study 
is that of KSI. A reaction catalysed by this enzyme is shown 
on the example of 5-androstene-3,17-dione in two separate 
reaction steps [31] in Scheme 1.

For a reference, we started with the crystal structure of 
1OH0 [32]. We removed all the water molecules, replaced 
the inhibitor with a simplified reactant (cf. Fig. 5) and then 
manually selected 20 side chains in close proximity of the 
active site. These were extracted, capped and then, using 

Scheme 1   Step I (top) and II 
(bottom) for the reaction cata-
lysed by KSI

Fig. 5   The inset on the left shows only the QM region, which is made 
up of the simplified reactant as well as the capped Asp. The right 
structure shows the entire QM/MM system, with the MM molecules 
shown as sticks-only
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GFN0-xTB, relaxed with their �-carbon atoms fixed. This 
was repeated for the intermediate structure (product of reac-
tion step I). Then, a MEP was calculated between those two 
structures. The reaction energy profile is shown in Fig. 6. 
The same Figure also includes the energy profiles of two 
QM/MM variants of this system, where all side chains 
except the Asp residue involved in the proton exchange enter 
as MM atoms. Both of these QM/MM profiles were obtained 
by passing the reference structure into the fitness function 
that is used in the global optimization later, in order to obtain 
a comparable reference to optimize against. The difference 
between the two systems is that in one, the �-carbons of 
the side chains were held fixed (as in the full QM system), 
whereas in the other, they were allowed to move freely. This 
is important, because during the global optimization, we do 
not constrain or fix the alpha carbon atoms. This turns out 
to be non-detrimental, since while the unfrozen QM/MM 
energy path features energy wells before and after the reac-
tion (these are exclusively rearrangements in the MM sub-
system, see SI for more details), the overall barrier remains 
almost exactly identical when measured from lowest point 
to highest. Both of the QM/MM systems (the structure of the 
frozen one is shown in Fig. 5) thus adequately reproduce the 
full QM energetics well enough for our purposes.

We want to finally present some of our early findings 
when globally optimizing this system with freely inter-
changeable side chains as described in the Methodology 
section. The input for this optimization is the Asp residue 
together with the simplified reactant as the QM subsystem 
(same as in Fig. 5) and our molecular library of side chains 
for the MM embedding. As of now, we can only base our 
analysis on very early individuals (generated in the first 

10000 global optimization cycles, which, considering the 
size of the search space, is certainly not enough to be even 
close to convergence), but even from very early on, our fit-
ness function performs quite admirably. One good (or fit in 
terms of the fitness function) example from our pool of can-
didates is shown in Fig. 7. In this zoomed-in view, one of the 
main features is visible: without any bias in the population 
or distribution of side chains, a hydrogen-bonding network 
somewhat similar to the original enzymatic structure has 
emerged. It is only somewhat similar in the sense that if 
the ESP values are compared to the reference (Fig. 8), one 

Fig. 6   This graph shows the MEP profiles of three distinct variants of 
the KSI active site reference: (1) The all-QM system where all atoms 
of the system are optimized in xTB during the MEP calculation, 
with the � carbon atoms fixed. (2) A QM/MM system where, with 
the exception of the Asp involved in the proton abstraction, all side 
chains enter as MM atoms instead, with their �-carbon atoms fixed. 
(3) A QM/MM system with the �-carbons not fixed. More info in the 
main text

Fig. 7   The region around the reactive QM site in an example (good) 
candidate produced by our global optimization algorithm. MM atoms 
are shown as sticks-only

Fig. 8   Shown are the QM regions at the transition state for the (not-
frozen) reference and an example (good) candidate. Atoms are col-
ourized according to the respective ESP values at their positions



287Topics in Catalysis (2022) 65:281–288	

1 3

can see that there is still a long ways to go; While the gen-
eral trend is very similar, the reference boasts an intricate 
and distinct polarization scheme, with a strong stabilization 
of the emerging negative charge at the oxygen atom and 
a tryptophan hydrogen bond stabilizing the position of the 
reactive Asp. On the other hand, the energy profile (Fig. 9) 
for this (good) candidate already looks astonishingly similar 
to the reference and the energy barriers themselves are only 
0.74 kcal ⋅mol

−1 apart. While there are certainly individuals 
in the candidate pool that have a lot higher energy barriers, 
the ease by which (almost) equally good embeddings are 
found tells us that we could be missing an important ingre-
dient to how the catalytic activity is achieved; This could 
certainly be tied to the backbone we have omitted, or the 
lack of thermodynamic considerations, which will definitely 
have to be addressed in future studies.

4 � Outlook

We have demonstrated that the extension of our GOCAT 
model with full QM/MM molecular entities already holds 
some interesting potential and opportunity. The most impor-
tant parameter in our modified scheme remains the fitness 
function: As the entire success depends on its general valid-
ity, it becomes very important to manufacture it just right, so 
that it does not produce artefacts, systematic errors or over-
fitting – which, in a complex setting such as this, turns out 
to be intricate. We are, however, determined and optimistic 
that it is, indeed, possible. Admittedly, the fitness function 
itself is not the only thing that can still be readily improved 
upon. As discussed earlier, we must certainly explore other 
force field options, as well as more sophisticated QM/MM 
embedding schemes (such as linking atoms) to allow for 
optimization of reactive molecular fragments, which is a 
feature that we are already currently working on. Closely 

related to this is the facilitation of proton transfers between 
individual molecular fragments, as well as the inclusion of 
explicit water molecules, as recent studies [33] have sug-
gested and reiterated their importance for catalytic pathways 
in, e.g., KSI.

Once our initial setup produces satisfactory results, 
we are looking to apply the model to cases like the Kemp 
Isomerase [17, 34], where we think lies its eventual strength: 
Finding optimal active sites for reactions that do not yet 
have specialized enzymes provided by biological evolution. 
As indicated above, linking our isolated side chains with a 
protein backbone that folds deterministically in the desired 
fashion is a major issue, but we view it as a major strength of 
our approach that we need not do that. In fact, in our lab we 
are currently developing an automated assembly of molecu-
lar frameworks that can be combined with an optimization 
towards placing catalytically active functional groups close 
to the spatial positions and orientations determined by the 
methods presented here. As discussed in the introduction of 
Ref. [10], this breaks down the hard task of de novo catalyst 
design into two more accessible steps: (1) Optimization of 
the immediate, catalytically active surrounding of the reac-
tion center, done with abstract point charges in Ref. [10] or 
with concrete molecular fragments here; and (2) construc-
tion of a support structure for these charges or fragments, to 
be reported in future work.
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