Skip to main content

Advertisement

Log in

Controllable Synthesis of Metallic Ni3P–Ni Spheres on Graphitic Carbon Nitride Nanosheets to Promote Photocatalytic Hydrogen Generation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

To achieve the construction of efficient photocatalytic H2 generation systems, developing highly active and durable earth-abundant H2 generation cocatalyst is still a challenge. In this paper, we construct a noble-metal-free Ni3P–Ni composite, which displays strong chemical stability and high-efficiency as a cocatalyst to enhance the visible-induced photocatalytic activities in H2 generation of g-C3N4. Ni3P–Ni/g-C3N4 is prepared by one-step annealing of amorphous Ni–P nanoparticles and g-C3N4. The result verifies that both Ni3P and metallic Ni worked as electron cocatalysts and significantly enhanced the visible light H2 generation over g-C3N4. The optimum composite 2.0 wt.% Ni3P–Ni/g-C3N4 exhibits a high H2 generation rate of 203.3 μmol g−1 h−1, which is 1.6, 2.7, and 53.5 times as much as those obtained on Ni3P/g-C3N4, Ni/g-C3N4, and pure g-C3N4 respectively. Photoluminescence and photoelectrochemical analysis confirm that the metallic Ni plays multifunctional roles in boosting the H2 generation under visible light, which could both accept the photo-generated electrons from g-C3N4 and enhance the electron transfer to Ni3P for further H2 generation. This investigation provides a route to the rational design and development of earth-abundant metal phosphide and metal composites, which could be utilized as noble-metal-free cocatalysts for the improvement of H2 generation activity.

Graphic Abstract

Spherical Ni3P–Ni particles with metallic Ni spread over the inner and outer surface of Ni3P sphere was synthesized and hybrid with g-C3N4. The specific structure of spherical Ni3P–Ni leads to adequate contact area between ternary Ni3P, Ni, and g-C3N4. Ni with high electrical conductivity could act as an electron transfer bridge between g-C3N4 and Ni3P, leading to effective charge separation and enhanced photocatalytic hydrogen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article (and its supplementary information fles).

References

  1. Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45(6):1529–1541. https://doi.org/10.1039/c5cs00434a

    Article  CAS  PubMed  Google Scholar 

  2. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37

    Article  CAS  PubMed  Google Scholar 

  3. Pan Z, Zheng Y, Guo F, Niu P, Wang X (2017) Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. Chemsuschem 10(1):87–90. https://doi.org/10.1002/cssc.201600850

    Article  CAS  PubMed  Google Scholar 

  4. Ye S, Wang R, Wu MZ, Yuan YP (2015) A review on g-C3N4 for photocatalytic water splitting and CO2 reduction. Appl Surf Sci 358:15–27

    Article  CAS  Google Scholar 

  5. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329

    Article  CAS  PubMed  Google Scholar 

  6. Fang YX, Li XC, Wang XC (2018) Synthesis of polymeric carbon nitride films with adhesive interfaces for solar water splitting devices. ACS Catal 8(9):8774–8780

    Article  CAS  Google Scholar 

  7. Li SN, Dong GH, Hailili R, Yang LP, Li YX, Wang F, Zeng YB, Wang CY (2016) Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl Catal B 190:26–35

    Article  CAS  Google Scholar 

  8. Wen JQ, Xie J, Chen XB, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    Article  CAS  Google Scholar 

  9. Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan HJ (2016) Transition metal carbides and nitrides in energy storage and conversion. Adv Sci 3(5):1500286. https://doi.org/10.1002/advs.201500286

    Article  CAS  Google Scholar 

  10. Ran JR, Zhang J, Yu JG, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812

    Article  CAS  PubMed  Google Scholar 

  11. Zhai CY, Zhu MS, Bin D, Wang HW, Du YK, Wang CY, Yang P (2014) Visible-light-assisted electrocatalytic oxidation of methanol using reduced graphene oxide modified Pt nanoflowers-TiO2 nanotube arrays. ACS Appl Mater Interfaces 6(20):17753–17761

    Article  CAS  PubMed  Google Scholar 

  12. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180. https://doi.org/10.1039/c4cs00448e

    Article  CAS  PubMed  Google Scholar 

  13. Xu DF, Hai Y, Zhang XC, Zhang SY, He RA (2017) Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2. Appl Surf Sci 400:530–536

    Article  CAS  Google Scholar 

  14. Raziq F, Qu Y, Humayun M, Zada A, Yu HT, Jing LQ (2017) Synthesis of SnO2/B-P codoped g-C3N4 nanocomposites as efficient cocatalyst-free visible-light photocatalysts for CO2 conversion and pollutant degradation. Appl Catal B 201:486–494

    Article  CAS  Google Scholar 

  15. Kumar DP, Hong S, Reddy DA, Kim TK (2017) Ultrathin MoS2 layers anchored exfoliated reduced graphene oxide nanosheet hybrid as a highly efficient cocatalyst for CdS nanorods towards enhanced photocatalytic hydrogen production. Appl Catal B 212:7–14

    Article  CAS  Google Scholar 

  16. Xu Y, Xu R (2015) Nickel-based cocatalysts for photocatalytic hydrogen production. Appl Surf Sci 351:779–793

    Article  CAS  Google Scholar 

  17. Bi LL, Xu DD, Zhang LJ, Lin YH, Wang DJ, Xie TF (2015) Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending. Phys Chem Chem Phys 17(44):29899–29905

    Article  CAS  PubMed  Google Scholar 

  18. Wang JJ, Li ZJ, Li XB, Fan XB, Meng QY, Yu S, Li CB, Li JX, Tung CH, Wu LZ (2014) Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. Chemsuschem 7(5):1468–1475

    Article  CAS  PubMed  Google Scholar 

  19. Indra A, Menezes PW, Kailasam K, Hollmann D, Schroder M, Thomas A, Bruckner A, Driess M (2016) Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species? Chem Commun 52(1):104–107

    Article  CAS  Google Scholar 

  20. Liu RX, Yoshida H, Fujita S, Arai M (2014) Photocatalytic hydrogen production from glycerol and water with NiOx/TiO2 catalysts. Appl Catal B 144:41–45

    Article  CAS  Google Scholar 

  21. Yan ZP, Yu XX, Han A, Xu P, Du PW (2014) Noble-metal-free Ni(OH)2-modified CdS/reduced graphene oxide nanocomposite with enhanced photocatalytic activity for hydrogen production under visible light irradiation. J Phys Chem C 118(40):22896–22903

    Article  CAS  Google Scholar 

  22. Xue C, Li H, An H, Yang BL, Wei JJ, Yang GD (2018) NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.25 photocatalytic system via an rGO nanosheet “Bridge” toward visible-light-driven hydrogen evolution. ACS Catal 8(2):1532–1545

    Article  CAS  Google Scholar 

  23. Luo XL, He GL, Fang YP, Xu YH (2018) Nickel sulfide/graphitic carbon nitride/strontium titanate (NiSig-C3N4/SrTiO3) composites with significantly enhanced photocatalytic hydrogen production activity. J Colloid Interface Sci 518:184–191

    Article  CAS  PubMed  Google Scholar 

  24. Sun ZC, Zhu MS, Fujitsuka M, Wang AJ, Shi C, Majima T (2017) Phase effect of NixPy hybridized with g-C3N4 for photocatalytic hydrogen generation. ACS Appl Mater Interfaces 9(36):30583–30590

    Article  CAS  PubMed  Google Scholar 

  25. Indra A, Acharjya A, Menezes PW, Merschjann C, Hollmann D, Schwarze M, Aktas M, Friedrich A, Lochbrunner S, Thomas A, Driess M (2017) Boosting visible-light-driven photocatalytic hydrogen evolution with an integrated nickel phosphide-carbon nitride system. Angew Chem Int Edit 56(6):1653–1657

    Article  CAS  Google Scholar 

  26. Xu Y, Yin XG, Huang Y, Du PW, Zhang B (2015) Hydrogen production on a hybrid photocatalytic system composed of ultrathin CdS nanosheets and a molecular nickel complex. Chem Eur J 21(12):4571–4575

    Article  CAS  PubMed  Google Scholar 

  27. Sun ZJ, Zheng HF, Li JS, Du PW (2015) Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ Sci 8(9):2668–2676

    Article  CAS  Google Scholar 

  28. Kumar DP, Choi J, Hong S, Reddy DA, Lee S, Kim TK (2016) Rational synthesis of metal-organic framework-derived noble metal-free nickel phosphide nanoparticles as a highly efficient cocatalyst for photocatalytic hydrogen evolution. ACS Sustain Chem Eng 4(12):7158–7166

    Article  CAS  Google Scholar 

  29. Zhao H, Sun SN, Jiang PP, Xu ZJ (2017) Graphitic C3N4 modified by Ni2P cocatalyst: an efficient, robust and low cost photocatalyst for visible-light-riven H2 evolution from water. Chem Eng J 315:296–303

    Article  CAS  Google Scholar 

  30. Liu X, Zhao YX, Yang XF, Liu QQ, Yu XH, Li YY, Tang H, Zhang TR (2020) Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Appl Catal B 275:10. https://doi.org/10.1016/j.apcatb.2020.119144

    Article  CAS  Google Scholar 

  31. Li CM, Wu HH, Hong SH, Wang Y, Song N, Han ZH, Dong HJ (2020) 0D/2D heterojunction constructed by high-dispersity Mo-doped Ni2P nanodots supported on g-C3N4 nanosheets towards enhanced photocatalytic H2 evolution activity. Int J Hydrog Energy 45(43):22556–22566. https://doi.org/10.1016/j.ijhydene.2020.06.185

    Article  CAS  Google Scholar 

  32. Wen P, Zhao KF, Li H, Li JS, Li J, Ma Q, Geyer SM, Jiang L, Qiu YJ (2020) In situ decorated Ni2P nanocrystal co-catalysts on g-C3N4 for efficient and stable photocatalytic hydrogen evolution via a facile co-heating method. J Mater Chem A 8(6):2995–3004. https://doi.org/10.1039/c9ta08361h

    Article  CAS  Google Scholar 

  33. Meng SC, An PF, Chen LJ, Sun SC, Xie ZK, Chen M, Jiang DL (2021) Integrating Ru-modulated CoP nanosheets binary co-catalyst with 2D g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution activity. J Colloid Interface Sci 585:108–117. https://doi.org/10.1016/j.jcis.2020.11.066

    Article  CAS  PubMed  Google Scholar 

  34. Li T, Wang K, Fang QT, Zhang Y, Wang B, Li R, Lin YZ, Liu KC, Xie HQ, Li K (2020) Conductive polymer supported and confined iron phosphide nanocrystals for boosting the photocatalytic hydrogen production of graphitic carbon nitride. J Mater Chem C 8(41):14540–14547. https://doi.org/10.1039/d0tc03348k

    Article  CAS  Google Scholar 

  35. Oyama ST, Gott T, Zhao HY, Lee YK (2009) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143(1–2):94–107

    Article  CAS  Google Scholar 

  36. Fert A, Campbell IA (1976) Electrical-resistivity of ferromagnetic nickel and iron based alloys. J Phys F 6(5):849–871

    Article  CAS  Google Scholar 

  37. Oyama ST (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 216(1–2):343–352

    Article  CAS  Google Scholar 

  38. Jin LH, Xia H, Huang ZP, Lv CC, Wang J, Humphrey MG, Zhang C (2016) Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution. J Mater Chem A 4(28):10925–10932

    Article  CAS  Google Scholar 

  39. Zhou K, Zhou WJ, Yang LJ, Lu J, Cheng S, Mai WJ, Tang ZH, Li LG, Chen SW (2015) Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: a general and effective approach. Adv Funct Mater 25(48):7530–7538

    Article  Google Scholar 

  40. Yang YF, Chen JJ, Mao ZY, An N, Wang DJ, Fahlman BD (2017) Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis. RSC Adv 7(4):2333–2341

    Article  CAS  Google Scholar 

  41. Quiros C, Prieto P, Fernandez A, Elizalde E, Morant C, Schlogl R, Spillecke O, Sanz JM (2000) Bonding and morphology study of carbon nitride films obtained by dual ion beam sputtering. J Vaccum Sci Technol A 18(2):515–523

    Article  CAS  Google Scholar 

  42. Yang PJ, Ou HH, Fang YX, Wang XC (2017) A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis. Angew Chem Int Ed 56(14):3992–3996

    Article  CAS  Google Scholar 

  43. Kudo A, Sekizawa M (2000) Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem Commun 15:1371–1372

    Article  Google Scholar 

  44. Yuan YP, Ruan LW, Barber J, Loo SCJ, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ Sci 7(12):3934–3951

    Article  CAS  Google Scholar 

  45. Zhai CY, Zhu MS, Pang FZ, Bin D, Lu C, Goh MC, Yang P, Du YK (2016) High efficiency photoelectrocatalytic methanol oxidation on CdS quantum dots sensitized Pt electrode. ACS Appl Mater Interfaces 8(9):5972–5980

    Article  CAS  PubMed  Google Scholar 

  46. Zhu MS, Cai XY, Fujitsuka M, Zhang JY, Majima T (2017) Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angew Chem Int Edit 56(8):2064–2068

    Article  CAS  Google Scholar 

  47. Xiang JY, Tu JP, Wang XL, Huang XH, Yuan YF, Xia XH, Zeng ZY (2008) Electrochemical performances of nanostructured Ni3P-Ni films electrodeposited on nickel foam substrate. J Power Sources 185(1):519–525

    Article  CAS  Google Scholar 

  48. Zhao JJ, Liu PF, Wang YL, Li YH, Zu MY, Wang CW, Wang XL, Fang LJ, Zeng HD, Yang HG (2017) Metallic Ni3P/Ni Co-catalyst to enhance photocatalytic hydrogen evolution. Chem Eur J 23(66):16734–16737

    Article  CAS  PubMed  Google Scholar 

  49. Ledendecker M, Calderon SK, Papp C, Steinruck HP, Antonietti M, Shalom M (2015) The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew Chem Int Ed 54(42):12361–12365

    Article  CAS  Google Scholar 

  50. Wang XG, Kolen’ko YV, Bao XQ, Kovnir K, Liu LF (2015) One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew Chem Int Ed 54(28):8188–8192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (21603024, 21972014), the International S&T Cooperation Program of China (2016YFE0109800), the Fundamental Research Funds for the Central Universities (DUT19GJ205), and the Liaoning Province Doctor Startup Fund (201601038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjie Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

The authors declare that this manuscript is original and has not been published and will not be submitted elsewhere for publication while being considered by Topics in Catalysis. This study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal. No data have been fabricated or manipulated (including images) to support our conclusions. No data, text, or theories by others are presented as if they were our own. The submission has been received explicitly from all co-authors. All authors in this study have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Yan, R., Yu, Z. et al. Controllable Synthesis of Metallic Ni3P–Ni Spheres on Graphitic Carbon Nitride Nanosheets to Promote Photocatalytic Hydrogen Generation. Top Catal 64, 521–531 (2021). https://doi.org/10.1007/s11244-021-01440-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01440-1

Keywords

Navigation