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Abstract
The status of surface species on solid catalysts during heterogeneous catalysis is often mysterious. Investigations of these 
surface species are crucial to deconvolute the reaction network and design more efficient catalysts. Vibrational spectroscopy 
is a powerful technique to study the interactions between surface species and the catalysts and infrared (IR) and Raman 
spectroscopies have been widely applied to study reaction mechanisms in heterogeneous catalysis. However, IR/Raman 
spectra are difficult to model computationally and important vibrational modes may be IR-, Raman- (or both) inactive due 
to restrictions by optical selection rules. Inelastic neutron scattering (INS) is another form of vibrational spectroscopy and 
relies on the scattering of neutrons by the atomic nucleus. A consequence of this is that INS is not subject to any optical 
selection rules and all vibrations are measurable in principle. INS spectroscopy has been used to investigate surface species 
on catalysts in a wide range of heterogeneous catalytic reactions. In this mini-review, we focus on applications of INS in two 
important fields: petrochemical reactions and C1 chemistry. We introduce the basic principles of the INS technique, followed 
by a discussion of its application in investigating two key catalytic systems: (i) the behaviour of hydrocarbons on metal-
oxide and zeolite catalysts and (ii) the formation of hydrocarbonaceous species on methane reforming and Fischer–Tropsch 
catalysts. The power of INS in studying these important catalytic systems is demonstrated.

Keywords Inelastic neutron scattering (INS) · Hydrocarbon oxidation · Olefin oligomerisation · Methane reforming · 
Fischer–tropsch synthesis

1 Introduction

Global economic development and our daily life heavily 
rely on petroleum resources. Fossil fuels such as gasoline 
and diesel provide power for industrial and social activities; 
light olefins and monoaromatic BTX (i.e., benzene, toluene, 
and xylenes) are feedstocks for producing adhesives, carpet, 
cosmetics, fertilisers, paints, rubber, fabrics and plastics [1]. 

The petrochemical process involves a series of reactions, 
including cracking, oligomerisation, isomerisation, hydro-
gen transformation, aromatisation, coke formation and oxi-
dation [2–5]. The limited reserves of fossil oil places an 
urgent driver to improve the efficiency of these reactions 
to make the best use of fossil oil. These reaction systems 
have been investigated by a wide range of techniques, such 
as infrared (IR) spectroscopy, Raman spectroscopy, X-ray 
diffraction (XRD), nuclear magnetic resonance (NMR) 
spectroscopy and so on. However, these techniques are not 
always sufficient to gain a comprehensive view of the behav-
iour of hydrocarbon molecules.

A sustainable future for our society relies on develop-
ing alternative carbon resources [6–8]. Coal, natural gas 
(87–98% methane) and biomass are abundant resources 
on Earth [9, 10]. Conversion of C1 resources derived from 
coal, natural gas and biomass to olefins and liquid fuels 
is attracting increasing interest [11, 12]. In academia, C1 
chemistry such as methane reforming and Fischer–Tropsch 
synthesis (FTS) are extensively studied. In industry, catalyst 
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deactivation and coke formation are major limitations in 
these processes. To gain a fuller understanding of the mecha-
nism of coke formation, conventional techniques such IR 
and Raman spectroscopy are often inadequate.

Over the past decade or two, inelastic neutron scattering 
(INS) spectroscopy has emerged as a powerful technique to 
study the areas of petrochemical processing and C1 chemis-
try. Catalysts used in these processes such as metals, metal-
oxides and zeolites have strong absorption in the infrared 
region below ~ 1300 cm−1, which severely limits the spectral 
range of such studies [13]. However, these catalysts consist-
ing of metal, Si, O are almost transparent in INS, whereas 
the reactants, intermediates and products are hydrogenous 
compounds which are readily observable by INS. This arises 
because the incoherent neutron scattering cross-section of 
hydrogen is much larger than that of any other element in 
hydrogen-containing materials and hence the INS spectrum 
is dominated by modes involving hydrogen displacement. 
Thus, INS spectroscopy is a uniquely positioned technique 
for studying and developing these processes.

Here, we will review the recent applications of INS to 
reactions involving hydrocarbon species over catalysts 
based upon zeolites, metals and metal oxides in the fields 
of petrochemical process and C1 chemistry. We will show 
how INS provides key information about olefins/aromatics 
reactions on solid catalysts, which are hardly accessible by 
other techniques but are vitally important in understanding 
the reaction mechanisms. The study of surface species over 
catalysts for methane reforming and FTS by INS is discussed 
in detail, which demonstrates INS as a powerful method to 
provide insight into catalyst deactivation and informs future 
catalyst design. A brief introduction to the INS technique is 
firstly presented, followed by examples of INS studies taken 
from the recent literature. We focus on reactions involving 
hydrocarbon species in this mini-review, but the technique 
and approach are applicable to a wide spectrum of hetero-
geneous catalysts [14–34].

2  Fundamental and Technical Aspects 
of the INS Technique

The neutron is an uncharged particle with a mass closely 
matching that of a hydrogen atom (1.0087 atomic mass unit) 
[23]. It has wave-particle duality and for inelastic scatter-
ing processes it is conveniently regarded as a particle in 
incoherent INS [25] (although the wave-like properties are 
exploited for the energy analysis). Inelastic scattering of 
neutrons occurs when they collide with the atomic nucleus 
of the sample and both energy and momentum of the inci-
dent neutron are exchanged with the scattering atom. The 
relative intensity of the scattering from atom l, in the vth 
mode at energy ω is given by [23, 25]:

where Q is the momentum transfer; ωv is the vth mode at 
transition energy ω; n is the order of the transition, for exam-
ple, n = 1 is the fundamental mode, n = 2 is for the first over-
tone or binary combination, n = 3 is for the second overtone 
or ternary combination, and so on; y is a linear scaling factor. 
σ is the inelastic scattering cross section of the atom l. uv is 
the amplitude of motion of atom l in mode v. uTot is a sum of 
the amplitudes of motion of all the atoms over all the modes.

In the harmonic approximation, the amplitude of motion 
uv is given by:

where ħ is the reduced Planck constant (h/2π), μ is the 
reduced mass.

Figure  1 shows an indirect geometry spectrometer, 
TOSCA, at the ISIS Facility [23]. On this type of spectrom-
eter, there is a fixed relationship between the energy and 
momentum transfer [23]. The number of molecules in the 
neutron beam, is subsumed into the scaling factor y. The 
inelastic scattering cross section σ is both element- and iso-
tope-dependent and is measured experimentally [35]. uTot is 
the Debye–Waller factor, the influence of which can be mini-
mised by carrying out the INS measurements at tempera-
tures below 30 K. For TOSCA-like spectrometers, the inten-
sity of the INS spectrum is straightforwardly determined by 
the number of atoms in the neutron beam, the nature of the 
atoms (σ, μ) and the atom vibrational frequency. Thus, INS 
is a powerful technique to monitor the dynamics of mol-
ecules resulting from the change of vibrational frequency 
of a certain chemical bond caused by cleavage or forma-
tion of chemical bonds, which could give crucial insights 
into the reaction mechanisms. Because 1H has the largest 
cross section (σ) and the smallest mass (μ) of any of the ele-
ments (or isotopes), it dominates the scattering, which makes 
INS particularly suitable for investigating the evolution of 
hydrogenous species.

Due to the intrinsic properties of neutrons, INS has multi-
ple advantages of practical value in comparison with optical 
spectroscopies such as IR and Raman [36–38]. (1) IR and 
Raman are optical techniques which obey selection rules, i.e. 
only IR/Raman active vibrations are measurable, whereas 
neutrons are scattered by nuclei, so INS is not subject to any 
optical selection rules and all vibrations (the whole range 
of the molecular vibrational spectrum, 0–4000 cm−1, is 
covered) are allowed and, in principle, measurable. (2) INS 
spectra can be readily and accurately modelled: the inten-
sities are proportional to the concentration of elements in 
the sample and their cross-sections, and the measured INS 
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intensities relate directly to the associated displacements of 
the scattering atoms. This means that the calculation of INS 
spectra by DFT is often a much more reliable process than 
for other techniques, and the features in the spectra can be 
fully assigned. (3) Neutrons penetrate deeply into materials 
and pass readily through the walls of metal containers mak-
ing cell design straightforward and neutrons ideal to measure 
bulk properties of the materials, which is particularly benefi-
cial to detect species on the inner surface of porous catalysts.

3  Conversions of Petrochemical 
Hydrocarbons

3.1  Oxidation of Hydrocarbons

Oxidation of olefins is an important reaction both in aca-
demia and industry [39–41]. The oxidation of styrene 
attracts much interest because it produces useful chemicals, 
such as styrene oxide and benzaldehyde, that are intermedi-
ates in the manufacture of various fine chemicals and fra-
grances [42–44].  MoO2-based nanoparticle materials show 
promising catalytic performance for the oxidation of olefins 
[45]. During the synthesis of  MoO2 nanoparticles, organic 
compounds are introduced as templating and reduction 
agents which would affect the catalytic oxidation perfor-
mance. Calcination is not the preferred method to remove 
these organic reagents since such thermal treatment causes 
severe aggregation of nanoparticles.  MoO2 has IR features 
between 600–1000 cm−1 [46], which may overlap with 
organic surface species, whereas  MoO2 is almost transpar-
ent to INS spectroscopy. INS was deployed to investigate 
the effects of the outer shell of organic compounds on the 
catalysts in order to provide insights into the synthesis of 
efficient catalysts. Nanosized HQMoO2 synthesised by using 
ethylenediamine/hydroquinone, has a significant induction 

period for the catalytic oxidation of styrene, while FeMoO2 
synthesised by using ethylenediamine/Fe2O3 displays fast 
reaction kinetics [39]. The INS spectra of recovered FeMoO2 
and HQMoO2 after reactions of 4 h show significant differ-
ences (Fig. 2a). By comparing the INS of the HQMoO2 before 
and after the reaction, it was found that only small amounts 
of product are formed (Fig. 2b). This is because HQMoO2 
has a strongly surface-interacting organic shell (ethylenedi-
amine/hydroquinone) on the particles, which suppresses the 
reaction. In contrast, the organic shell on FeMoO2 was only 
weakly surface-interacting and can be substituted easily dur-
ing the reaction. As shown in Fig. 2c, recovered FeMoO2 
catalyst showed the spectral features of styrene oxide and 
benzaldehyde. Thus, INS spectroscopy gives key insight 
into the catalysts and the oxidation reactions, promoting 
the future development of efficient catalysts for oxidation 
reactions.

3.2  Olefin Oligomerisation

Oligomerisation of olefins is one of the most important reac-
tions in the petrochemical industry. This reaction attracts 
interest for the valorisation of light hydrocarbons, such as 
production of polypropylene. In addition, fluidised catalytic 
cracking (FCC) process includes a series of reactions, e.g., 
oligomerisation, β-scission and isomerisation, and thus 
oligomerisation critically affects the final products of FCC 
processes. In this context, the investigation of oligomerisa-
tion of olefins over solid acid catalysts is essential for the 
optimisation of petrochemical processes. Olefins and reac-
tion intermediates are visible by INS while solid acids such 
as zeolites are transparent in INS. Moreover, INS spectra 
can be readily and accurately modelled (Sect. 2) which pro-
vides full assignment of INS peaks. Thus, INS has shown 
the ability to access the olefin oligomerisation reactions 
[47–49]. The mechanism of oligomerisation of propene 

Fig. 1  a Schematic of TOSCA 
at ISIS and b a cutaway draw-
ing of an analyser module. 
Reprinted from reference [23] 
with permission from Elsevier
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on HZSM-5 was clearly revealed by INS (Fig. 3) [47]. 
The spectrum of adsorbed propene at 140 K matches that 
of solid propene. Heating to 200 K, the peak at 585 cm−1, 
assigned to the C=CH2 torsion, splits into two peaks at 581 
and 600 cm−1, indicating that the adsorbed propene is hydro-
gen bonded to a Brønsted acid site. On further heating to 
255 K, the intensities of peaks at 429 (C=C–C scissors) and 
584 cm−1 decrease, and a new mode assigned to –CH2– rock-
ing (736 cm−1) appears, suggesting the oligomerisation of 
C=C to longer chains of hydrocarbons. Finally, at 293 K, 
the complete oligomerisation of propene has occurred, and 
the INS spectrum is consistent with that of linear  C44H90. 
Thus, the oligomerisation reaction proceeds via a three-step 
mechanism: (i) initial formation of hydrogen-bonded inter-
mediates followed by (ii) protonation of the bound olefin 
to form a carbocation and (iii) subsequent oligomerisation 
continues through the hydride-shift mechanism to give a 
primarily linear product [47].

4  C1 Chemistry

4.1  Methane Reforming

It is widely acknowledged that fossil fuels on the earth will 
be depleted over the decades to come, enforcing people to 
develop new technologies based on other resources [8, 50, 
51]. Currently, approximately 3900 billion cubic metres of 
natural gas are produced each year [52]. Natural gas mainly 
consists of methane (87–98%) and the reforming of methane 
to syngas (CO/H2), which can be subsequently upgraded to 

Fig. 2  a INS spectra of the FeMoO2 and HQMoO2 recovered catalysts after 
a 4 h styrene oxidation reaction at 353 K. b Comparison of the INS spec-
tra between fresh and recovered HQMoO2 catalysts. The corresponding 
difference spectrum is also shown. c Comparison of the difference INS 
spectrum found for the FeMoO2 catalyst (recovered@4 h—fresh) and both 
styrene oxide and benzaldehyde products. The difference INS spectrum 
also shows labels for the bands assigned to the presence of both products. 
The INS spectra were recorded at 15 K. Reproduced from reference [39] 
with permission from the PCCP Owner Societies

Fig. 3  TOSCA INS spectra of propene after absorption into ZSM-5 
at 140 K a then following further heating to the indicated tempera-
tures: b = 200 K; c = 215 K; d = 225 K; e = 240 K; f = 255 K; g = 270 
and h = 293 K. The INS spectra were recorded at < 25 K. Reproduced 
from reference [47] published by the American Chemical Society
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hydrocarbons by the Fischer–Tropsch process attracts much 
interest. Methane reforming can be carried out using either 
steam or  CO2 as the oxidant, which are denoted as steam 
or dry reforming, respectively. Dry reforming requires less 
energy and has reduced environmental impact due to the 
consumption of  CO2. Ni/Al2O3 is a highly active catalyst 
for both reforming methods. The stability of the catalyst is 
crucially important, and the challenge resides on gaining a 
detailed understanding of coke formation on spent catalysts, 
which is the major cause of deactivation. INS has been used 
to investigate hydrocarbonaceous overlayers on catalysts for 
methane reforming [53–59].

A new method has been developed to quantify the C/H 
ratio of surface species on solid catalysts by INS, which is 
unachievable by IR spectroscopy [54]. Quantitative analysis 

by IR spectroscopy is difficult for adsorbed species which are 
unknown mixtures. Because the intensity of infrared absorp-
tion is determined by the interaction of electromagnetic radi-
ation with the electrons i.e. with the electronic structure the 
extinction coefficient for a particular mode is a characteristic 
of the molecular species. This means that they cannot be 
transferred between molecules. INS spectroscopy overcomes 
this problem because the neutron interacts with the atomic 
nucleus rather than electrons. The observed intensity of an 
INS spectral band depends on density of oscillators and 
vibrational amplitude of oscillators; thus it is purely dynamic 
and the electronic structure is irrelevant. As the vibrational 
frequencies of C–H oscillators in different molecular enti-
ties are similar, from Eq. (2), this means that the intensity 
per oscillator is the same, irrespective of the environment. 
Figure 4 shows the calibration results for the C–H stretch-
ing mode using polystyrene ([–CH2CH(C6H5)–]n) as a refer-
ence material. The peak intensity is directly proportional to 
sample mass and the quality of fitting is highly convincing.

The INS spectrum of the 45% Ni/Al2O3 catalyst after 
undergoing dry reforming of methane at 1073 K for 6 h was 
measured (Fig. 5) [54]. The C–H stretching mode (peak 
center at 2935 cm−1) was observed. Based on the calibra-
tion coefficient (Fig. 4), the amount of hydrogen retained on 
the used Ni/Al2O3 catalyst is 66 µmol g−1

(cat). The amount 
of total carbon was measured by temperature programmed 
oxidation (TPO). The C/H ratio was determined to be 160/1, 
indicating that the catalyst is very efficient at cycling hydro-
gen. Realising the low extent of hydrogen retention on the 
catalyst provides valuable insights on understanding the side 

Fig. 4  a INS spectra of polystyrene recorded at 20  K in the region 
2500–4000 cm−1 for four different masses of polystyrene: (i) 23 mg, 
(ii) 41 mg, (iii) 242 mg and (iv) 969 mg. b A plot of integrated band 
intensity of the n(C–H) mode of polystyrene as a function of the 
number of hydrogen atoms for a given mass. The straight line repre-
sents a linear least squares fit to the data (constrained through the ori-
gin), the slope of which defines the n(C–H) sensitivity factor for the 
spectrometer operating in this configuration. Reproduced from refer-
ence [54] with permission from the PCCP Owner Societies

Fig. 5  The INS spectrum (2500–4000  cm−1) of the 45% Ni/Al2O3 
catalyst after undergoing dry reforming of methane at 1073 K for 6 h. 
The INS spectrum was recorded at 20 K. The experimental data are 
well described by a combination of two Gaussian curves (green lines) 
centred at 2935 and 3339 cm−1, which are obtained from a non-lin-
ear least squares fitting procedure. The solid red line represents the 
overall fit. Reproduced from reference [54] with permission from the 
PCCP Owner Societies
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reactions. As illustrated in Fig. 6, the associated rate coef-
ficients exhibiting the following order:  kb ≫  kd > kc [55]. 
The detailed understanding of coke formation could lead to 
future design of coking-resistant catalysts. 

In order to improve coking-resistance, Co was introduced 
into Ni/Al2O3. After undergoing dry reforming of meth-
ane at 873 K for 6 h, INS spectra of the Ni/Al2O3, Ni(Co)/
Al2O3, and Co/Al2O3 catalysts were collected (Fig.  7) 
[58]. The broad band at around 3000 cm−1 was assigned 
to C–H stretching. The maxima at approximately 2950 and 
3020 cm−1 corresponds to C–H stretching modes of aliphatic 
and olefinic/aromatic hydrocarbon species, respectively [54]. 

The red-shift of the C–H vibrations on used Ni(Co)/Al2O3 
catalysts with respect to that for the used Ni/Al2O3 catalysts 
indicates that the deposited species are mainly aliphatic 
compounds while on used Ni/Al2O3 catalysts they are pre-
dominantly aromatic species. The used Co/Al2O3 has only 
weak features at around 2900 cm−1 due to aliphatic spe-
cies. These INS experiments demonstrated that cobalt in the 
bimetallic catalyst is responsible for depressing the deposi-
tion of aromatic carbons, thus minimising the permanent 
deactivation in dry reforming catalysis.

4.2  Fischer–Tropsch Synthesis (FTS)

FTS is a chemical reaction that converts syngas (CO + H2) 
into hydrocarbons, such as olefins, gasoline and diesel. Syn-
gas may be generated from natural gas, coal,  CO2 or bio-
mass [60, 61] and FTS is considered as an alternative route 
towards the production of liquid fuels from more abundant 
resources, thereby remitting our existing reliance on fossil 
fuel. The most common catalysts for FTS are cobalt, iron, 
and ruthenium based solids [62]. INS has been employed to 
study the surface species on catalysts for CO/H2 conversion 
in order to understand the reaction mechanism [17, 63–70].

Very significant advances in INS for FTS were achieved 
by Lennon et al. To obtain insights into the hydrogenous spe-
cies present on an industrial, used catalyst, the team meas-
ured the INS spectrum of a technical-grade Fe-based FTS 
catalyst taken from a coal-to-liquids FTS plant in Secunda 
(South Africa) [63]. The spectrum of the used catalyst 
(Fig. 8) exhibits a series of distinct bands in the deformation 

Fig. 7  INS spectra of spent catalysts using the MAPS spectrometer 
with an incident neutron energy of 4840 cm−1. The INS spectra were 
recorded at 20  K. Reproduced from reference [58] with permission 
from the PCCP Owner Societies

Fig. 8  Comparison of the measured INS spectrum of a FTS cata-
lyst with simulated INS spectra of partially hydrogenated arenes. a 
Toluene extracted catalyst sample, b 1,2,3,4-tetrahydronaphthalene, 
and c 1,2,3,4-tetrahydroanthracene. The INS spectrum was recorded 
at 20  K. Reproduced from reference [63] with permission from the 
Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 6  Schematic representation of principal reactions affecting 
the partitioning of mass within the reaction system: a dissociative 
adsorption of methane, b re-combinative desorption of adsorbed 
hydrogen atoms, c oxidation of adsorbed carbon atoms and d poly-
merisation of adsorbed carbon to form amorphous carbon. The rate 
coefficients for these processes are respectively denoted  ka,  kb,  kc and 
 kd. Reproduced from reference [55] with permission from the PCCP 
Owner Societies
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region (~ 800–1450 cm−1) and a broad band in the C-H 
stretch region (~ 3000 cm−1). No mode characteristic of 
long-chain –(CH2)n– units was observed at ~ 720–730 cm−1, 
excluding the presence of long-chain aliphatic species. The 
band at 1441 cm−1 was assigned to the –CH2– scissoring 
vibration of a cycloalkane and bands at deformation regions 

(800–1450 cm−1) are comparable to those in the calculated 
spectra of partially hydrogenated arenes. A high resolution 
INS spectrum in the 3000 cm−1 region obtained from the 
HET spectrometer (a direct geometry chopper instrument 
where the resolution is a function of the incident energy), 
implies approximately equal numbers of  sp2 and  sp3 C–H 
oscillators (Fig. 9). Thus, INS clearly revealed that the 
retained hydrocarbonaceous species on industrially rel-
evant FTS catalyst are partially hydrogenated arenes rather 
than long-chain aliphatic species; the latter was previously 
believed to be the major coke component.

In analogy to the concept that hydrocarbonaceous over-
layers can moderate the selectivity of branching in hydro-
genation reactions over supported metal catalysts [71], the 
same team further studied the effects of hydrocarbonaceous 
species on the CO conversion by using lab-prepared FTS 
Fe-catalyst at milder reaction conditions (at 623–723 K and 
atmospheric pressure). The INS spectrum of the used cata-
lyst is comparable to that of an iron catalyst extracted from a 
commercial grade FTS reactor, which validates the relevance 
of the adopted experimental approach [64–68]. Formation 
of the hydrocarbonaceous overlayer as a function of time-
on-stream was monitored by INS (Fig. 10) [67]. Two peaks 
at 2934 and 3052 cm−1 assigned to  sp3 and  sp2 C–H stretch 
modes, respectively, were observed. The aliphatic  sp3 C–H 
mode increases during the initial stages and saturates after 
ca. 8 h while olefinic/aromatic  sp2 C–H species continually 
increase during the reaction.

2200 2400 2600 2800 3000 3200 3400 3600 3800
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Fig. 9  INS spectrum of the toluene extracted catalyst sample in the 
C-H stretch region obtained with the HET spectrometer. The INS 
spectrum was recorded at 20 K. Reproduced from reference [63] with 
permission from the Wiley–VCH Verlag GmbH & Co. KGaA, Wein-
heim

ω

Fig. 10  a INS spectra (recorded at 600  meV, 20  K) of the α-Fe2O3 
after CO hydrogenation at 623  K in the large scale reactor. b 
The quantified hydrogen content of the 2934  cm−1 (hollow) and 

3052 cm−1 (solid) features identified in part (a). Reproduced from ref-
erence [67] published by the Royal Society of Chemistry
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A complete scheme of FTS catalyst evolution during the 
reaction was proposed by virtue of the insightful informa-
tion provided by INS in combination with ex situ XRD, 
TPO and TEM (Fig. 11) [67]. Firstly, iron carbide forms 
which is the active phase in the reaction. Then a hydro-
carbonaceous overlayer forms at the surface of the iron 
carbide. The coverage of the hydrocarbonaceous overlayer 
is partial, leaving two distinct ‘open’ sites A and B, which 
are associated with the dissociative adsorption of hydro-
gen and carbon monoxide to provide sources of hydrogen 
and chemisorbed carbon, respectively. Depending on the 
hydrogen supply from site A, hydrocarbon products were 
formed where there is a rich and dynamic hydrogen supply 
(site  B1) and amorphous/graphitic carbon is formed under 
hydrogen lean conditions (site  B2). Therefore, the hydro-
carbonaceous overlayer characterised by INS may represent 
the precursor to both the desired FTS products and the 
undesired carbonaceous, or hard carbon.

5  Conclusions

The INS technique is ideally positioned to study hydroge-
nous species in heterogeneous catalysis owing to the remark-
ably high scattering cross-section of hydrogen. This mini-
review has presented recent achievements in characterising 
the hydrocarbon species with metal, metal-oxides and zeolite 
catalysts through INS and DFT calculations. These stud-
ies provide key information on the status of hydrocarbons 
adsorbed on catalysts during the reaction, which is hardly 
accessible by other techniques. Key steps within hydrocar-
bon reactions, such as adsorption, activation, cleavage and 
formation of chemical bonds, have been studied in detail 
by the INS technique. This new understanding provides 
insights into the reaction mechanisms and new perspectives 
to develop new, more efficient catalysts. With the rapid 
development of high performance computing facilities and 
flexible sample environment, INS spectroscopy combined 
with computational modelling will continue to reveal the 
mysteries of surface species on solid catalysts in wider fields 
of heterogeneous catalysis and promote the development of 
efficient catalytic processes.
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