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Abstract
Linear α-olefins or LAOs are produced by the catalytic oligomerisation of ethylene on a multimillion ton scale annually. 
A range of LAOs is typically obtained with varying chain lengths which follow a distribution. Depending on the catalyst, 
various types of distributions have been identified, such as Schulz–Flory, Poisson, alternating and selective oligomerisations 
such as ethylene trimerisation to 1-hexene and tetramerisation to 1-octene. A comprehensive mathematical analysis for all 
oligomer distributions is presented, showing the relations between the various distributions and with ethylene polymerisa-
tion, as well as providing mechanistic insight into the underlying chemical processes.
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1 Introduction

Linear alpha olefins (LAOs, or 1-alkenes) find extensive use 
as co-monomers in olefin polymerisation and as intermedi-
ates to detergents, lubricants, and plasticisers [1–3]. Global 
consumption of LAOs grew at an average annual rate of 
5.6% from 2012 to 2016, and global capacity for LAO pro-
duction has been estimated at 6.2 million tonnes per year 
(mtpy) for 2018 [4, 5]. LAOs are generally prepared via the 
oligomerisation of ethylene, as is shown below in Scheme 1 
[6].

LAO processes may be grouped into two types: wide-
range and on-purpose [7]. Wide-range processes give a 
distribution of LAO products from  C4 to  C20+, whilst on-
purpose processes predominantly give  C4,  C6 or  C8 LAOs 
[7]. Examples of catalytic systems used in industry are given 
in Figs. 1 and 2 [6–9].

Three of the most common types of distributions from 
ethylene oligomerisation and polymerisation processes—
namely Schulz–Flory, selective-LAO, and Poisson—are 
observed with the systems in Figs. 1 and 2. In addition, a 

number of alternating LAO distributions with chromium-
based systems have been reported in the literature [11–17]. 
These four types of ethylene product distribution are 
depicted in Fig. 3.

Following on from the ground-breaking work 80 years 
ago by Schulz and Flory [18, 19], novel mathematical 
approaches for analysing product distributions from ethylene 
oligomerisation and polymerisation processes are presented 
in this paper. These approaches provide straightforward, 
applicable methods for characterising key mechanistic fea-
tures of underlying catalytic processes, and demonstrate how 
Schulz–Flory, alternating, selective-LAO, and Poisson dis-
tributions may be considered as parts of a connected product 
distribution landscape.

2  Modelling Steady‑State Oligomerisation 
Processes

2.1  First‑Order Oligomerisation Processes

In 1935, Schulz characterised the mathematics behind first-
order oligomerisation processes [18]. He noted the direct 
proportionality between mol(n)% (mol percentage for an 
oligomer of n ethylene units) and the product of a sequence 
featuring a constant propagation probability α:

(1a)mol(n)% = c1�
n
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Scheme 1  Generic scheme for 
LAO synthesis via the oligom-
erisation of ethylene

Fig. 1  Wide-range indus-
trial processes giving LAO 
distributions from  C4 to  C20+ 
(X = appropriate anion). Note: 
INEOS’s process gives a 
Poisson distribution of LAOs, 
whilst the SHOP and Gulfene 
processes give Schulz–Flory 
distributions of LAOs
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Fig. 2  On-purpose industrial 
processes predominantly giving 
 C4,  C6 or  C8 LAOs (X = appro-
priate anion)
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Fig. 3  Clockwise from top-left: illustrations of Schulz–Flory, alternating, selective-LAO, and Poisson distributions
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Following a continuous function approximation, this 
implies (see SI.1.1 for derivation):

The relationship between wt(n)%, mol(n)% and n is:

where (RFM  C2H4) is the Relative Formula Mass of 
ethylene.

Using the expression for mol(n)% from Eq.  1a and 
condensing:

Again making use of a continuous function approxima-
tion (see SI.1.2 for derivation), this implies:

The following year, in 1936, Flory presented precise deri-
vations without making use of continuous function approx-
imations [19]. Flory noted the dependence of mol(n), the 
amount of moles for each oligomer of n ethylene units, on 
the product of (n − 1) propagation steps and 1 elimination 
step along with R, the total mol of oligomers produced dur-
ing the reaction time:

Consequently:

It follows that:

which gives (see SI.1.3 for derivation):

Comparing Eq. 1b with Eq. 3b, it is evident that both 
Schulz’s equation and Flory’s equation express:

The two Eqs. 1b and 3b are subtly different, as shown 
in Fig. 4, because −(ln�) is the proportionality constant 
for Schulz and (1 − �)∕� is the proportionality constant 
for Flory. However, in practice, this makes little difference 
because � is typically determined by taking natural loga-
rithms to each side of Eq. 5a, plotting ln(mol(n) %) vs. n, 
performing a linear regression analysis to find the gradient 
lnα and then exponentiating the result as a power of e [20]. 

(1b)mol(n)% = −(ln �)�n

(2a)wt(n)% ∝ mol(n)%
(
RFMC2H4

)
n

(2b)wt(n)% = c2n�
n

(2c)wt(n)% = (ln�)2n�n

(3a)mol(n) = (1 − �)�n−1R

(3b)mol(n)% =
(1 − �)�n−1R

R
= (1 − �)�n−1

(4a)
wt(n) = n

(
RFMC2H4

)
mol(n) = n

(
RFMC2H4

)
R(1 − �)�n−1

(4b)wt(n)% = n(1 − �)2�n−1

(5a)mol(n)% = c�n

The value for � determined in this way will be the same in 
both cases.

By comparing Eq. 2c with Eq. 4b, it may be seen that:

with (ln�)2 as the proportionality constant for Schulz 
and (1 − �)2∕� as the proportionality constant for Flory 
(Table 1).

In the next section, a new derivation for Eq. 3a will be 
presented which utilises recurrence relations, followed by 
the presentation of a new back-solving method to determine 
α and R. The analysis lays the groundwork for an analogous 
consideration of second-order oligomerisation processes.

2.1.1  Derivation of the Schulz–Flory Equation 
via Recurrence Relations

Catalyt ic  ol igomer isat ion systems which give 
Schulz–Flory LAO distributions propagate either via a 
Cossee chain growth mechanism or via a metallacyclic 
mechanism (Schemes 2 and 3). Both mechanisms may be 
generically represented by Scheme 4. Deuterium labelling 
studies have shown that many chromium systems operate 
via the metallacyclic pathway [21–23].  

In Scheme 4:

• R is the total amount in mol of oligomers produced 
(from  T1 onwards) during the reaction time i.e. the rate 
at which intermediate species arrive at M(C2)n , in units 
of mol  t−1.

• α is the propagation probability from M(C2)n  
to M(C2)n+1  etc.
• So (1 − α) is  the elimination probabil i ty 

from M(C2)n  etc.

(5b)wt(n)% = c�n�n
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Fig. 4  Oligomer distribution in mol(n) % vs. n using Eqs. 1b (Schulz) 
and 3b (Flory) ( � = 0.70)
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• Tn is the total mol of a particular LAO with chain length 
 (C2)n produced during the reaction time (i.e. the rate 
at which that particular LAO is eliminated, in units of 
mol  t−1), with T1 as the starting point in the sequence.

Expressions for each LAO fraction may be found by 
inspection of Scheme 4, or by using a recurrence relation 
methodology. These two techniques are demonstrated in 
the centre and right columns of Table 2 respectively.

The aim is to express Tn in terms of α and R. From inspec-
tion of the central column of Table 2, it may be inferred that 
the expression is:

Table 1  Comparison of 
Schulz’s equations and Flory’s 
equations

Schulz Flory Schulz and Flory

Derivation approach Continuous function 
approximation

Direct (i.e. no continuous 
function approximation)

–

mol(n)% mol(n)% = −(ln�)�n mol(n)% = (1 − �)�n−1 mol(n)% = c�n

c = −(ln�) for Schulz
c = (1 − �)∕� for 

Flory
wt(n)% wt(n)% = (ln�)2n�n wt(n)% = n(1 − �)2�n−1 wt(n)% = c�n�n

c� = (ln�)2 for Schulz
c� = (1 − �)2∕� for 

Flory

Scheme 2  Cossee-type chain 
growth mechanism for Schulz–
Flory LAO distributions. Active 
species and monomer shown 
in black, eliminated products 
shown in blue

etc.

etc.

M H M Et
M Bu M Hex

Scheme 3  Metallacyclic 
mechanism for Schulz–Flory 
LAO distributions. Active 
species and monomer shown 
in black, eliminated products 
shown in blue

C2H4 etc.

etc.

M C4H8M C6H12MM

Scheme 4  Generic scheme for Schulz–Flory LAO distributions. Active species shown in black, rates and eliminated products shown in blue, 
probabilities of propagation and elimination pathways shown in green

Table 2  Expressions for Tn via inspection (centre) or via recurrence 
relation (right)

Term Via inspection [18, 19] Via recur-
rence relation 
[16]

T1 (1 − )

Rate at which 
species arrive

Probability of 
elimina
on

T1

T2 (1 − �)�R �T1

T3 (1 − �)�2R �T2

… … …
Tn+1 (1 − �)�nR �Tn
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Equation 6 is exactly the unnormalised Schulz–Flory equa-
tion, as per Eq. 3a.

Via the recurrence relation method, the general expres-
sion is:

Following a derivation (see SI.1.4), the general solution 
for this expression is:

i.e. the unnormalised Schulz–Flory equation, as per Eqs. 3a 
and 6.

With constant values for α and R, it is implicitly assumed 
that: 

• The sequence begins at a suitable T1 (e.g. a longer 1-alk-
ene).

• The oligomerisation proceeds under steady state condi-
tions (i.e. negligible change in ethylene pressure, reaction 
temperature and quantity of catalytic species).
• Under steady state conditions, the standing quanti-

ties of each catalytic species are constant. The sum 
of rates to any particular active species “box” in 
Scheme 4 are equal to the sum of rates from that 
“box”. This is equivalent to saying that the sum  
of probabilities for any particular active species 
“box” is 1 e.g. for M(C2)n  R = �R + (1 − �)R ↔

1 = � + (1 − �) ,      for M(C2)n+1     �R = �2
R + �(1 − �)R ↔

1 = � + (1 − �) , etc.

2.1.2  Back‑Solving to Determine ̨  and R, and Checking 
for the Best Fit

In practice, the Tn terms are known (i.e. the amount in mol 
of each oligomer produced during the reaction time), and 
the aim is to find α and R. See SI.1.5 for a discussion on the 
method used to determine α and R, as well as a checking 
method to determine that the best fit has been found.

2.1.3  Application of the Fitting Procedure to Experiment

Bis(benzimidazole)pyridine chromium(III) chloride, in com-
bination with MAO co-catalyst, gives a Schulz–Flory distri-
bution of LAOs via a metallacyclic mechanism (Fig. 5) [24]. 
Fitting α either via a ln(mol(n)%) vs. n plot or via the recur-
rence relation method gives a resulting value of α = 0.84.

(6)
Tn+1 = (1 − �)�nR ↔ Tn = (1 − �)�n−1R ↔ mol(n) = (1 − �)�n−1R

(7)Tn+1 = �Tn ↔ Tn+1 − �Tn = 0

(8)Tn = mol(n) =
(1 − �)

�
R�n = (1 − �)�n−1R

It is worth noting that the determination of α via the 
recurrence relation method offers a subtle advantage over 
ln(mol(n)%) vs. n plots, in that accurate fits can only be 
obtained for distributions with reasonably constant α val-
ues as per Scheme 4. Linear regression analysis via the 
ln(mol(n)%) vs. n method may permit adequate fits for 
data sets displaying non-constant α behaviour, leading to 
Schulz–Flory equations which deviate from experimental 
plots.

2.1.4  Derivations of Further Experimentally‑Relevant 
Metrics

For polymer distributions, Mn, Mw, and PDI are defined 
as follows:

These definitions can be applied to Schulz–Flory distribu-
tions. Using Eq. 3a, 4a and 4b the following expressions are 
obtained (see SI.1.6 for derivations):

(9a)Mn =

∑n=∞

n=1
wt(n)

∑n=∞

n=1
mol(n)

(9b)Mw =

n=∞∑

n=1

wt(n)%n
(
RFMC2H4

)

(9c)PDI =
Mw

Mn

(9d)Mn =

(
RFMC2H4

)

(1 − �)

Fig. 5  Schulz − Flory LAO distribution as mol(n)  % vs n (units of 
ethylene) obtained with bis(benzimidazole)pyridine chromium(III) 
chloride (1 μmol) [16, 24]. Inset: ln(mol(n)%) vs. n plot. Conditions: 
4 bar of ethylene pressure, 30 °C, MAO (8 mmol), toluene (220 mL), 
70 min. Activity = 5314 g mmol−1  h−1  bar−1
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Note that α values are between 0 and 1. Consequently, PDI 
values are between 1 and 2 for Schulz–Flory distributions.

2.2  Second‑Order Oligomerisation Processes

In 2006, Tomov et al. discovered a highly active chromium-
based oligomerisation system, with activities in excess of 
100,000 g mmol−1  h−1  bar−1, which gave an alternating distri-
bution of 1-alkenes via a metallacyclic mechanism (Fig. 6) [15].

The shape of this distribution cannot be described by 
first-order linear homogeneous recurrence relations with 
constant coefficients e.g. the Schulz–Flory equation. Vari-
ations on the first-order theme with orderly coefficients are 
likewise unable to accurately describe the experimentally-
observed results. For instance, in a hypothetical alternating 
coefficients case, the quantities of the series of oligomers 
1-hexene, 1-decene, 1-tetradecene etc. always decrease with 
n. Yet the distribution in Fig. 6 evidently displays some sort 
of periodicity.

(9e)Mw =

(
RFMC2H4

)
(1 + �)

(1 − �)

(9f)PDI = (1 + �)

All oligomerisations may be mathematically considered 
in terms of recurrence relations, so from an analytic point of 
view it is logical to proceed from a first-order treatment to a 
second-order treatment. Chemically speaking, this implies 
a mechanism involving both single and double coordina-
tion and insertion of ethylene. The double coordination and 
insertion of olefins has been proposed previously. Ystenes 
proposed a “trigger” mechanism whereby a coordinated 
olefin only inserts once a second olefin has coordinated to 
the metal [25]. Lemos and co-workers proposed a related 
mechanism based on kinetic studies of Ziegler–Natta cata-
lysts [26], and a similar mechanism has been implicated in 
other oligomerisation processes [27, 28].

Building on the analysis from Sect. 2.1, a new “alternat-
ing equation” is derived here, which may be viewed as a 
direct analogue to the Schulz–Flory equation for second-
order oligomerisation processes and which accurately 
describes alternating distributions as per Fig. 6. This is fol-
lowed by the presentation of a new back-solving method for 
the determination of key mechanistic parameters.

2.2.1  Derivation of the Alternating Equation via Recurrence 
Relations

In Scheme 5:

• R1 is the rate at which intermediate species arrive 
at M(C2)n , in units of mol  t−1.

• R2 is the rate at which intermediate species originating 
from before M(C2)n  arrive at M(C2)n+1 , in units of mol 
 t−1.
• So the total amount in mol of oligomers, R, pro-

duced (from  T1 onwards) during the reaction time is 
expressed by R = R1 + R2

• α is the propagation probability from M(C2)n  
to M(C2)n+1 etc.

• β is the propagation probability from M(C2)n  
to M(C2)n+2  etc.
• So (1 − α − β) is the probability of elimination 

from M(C2)n  etc.
• Tn is the total mol of a particular 1-alkene with chain 

length  (C2)n produced during the reaction time (i.e. the 

Fig. 6  Distribution of 1-alkene oligomers as mol(n)% vs n (units of eth-
ylene) produced via N,N-bis((1H-benzimidazol-2-yl)methyl)-N-meth-
ylamine chromium(III) chloride/MAO [16, 17]. Conditions: 32  nmol 
Cr, 4 bar continuous ethylene pressure, 50 °C, MAO (7 mmol), toluene 
(200 mL), 1 h. Activity = 102,300 g mmol−1  h−1  bar−1

Scheme 5  Catalytic scheme for 
the production of alternating 
1-alkene oligomer distributions. 
Active species shown in black, 
rates and eliminated products 
shown in blue, probabilities of 
propagation and elimination 
pathways shown in green

etc.M(C2)n M(C2)n+1 M(C2)n+2

(1- )

(C2)n (C2)n+1 (C2)n+2

etc.

T1 T2 T3

R1

R2

(1- ) (1- )

M(C2)0

β β
β

β β β

α α α

α _ α_ α _
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rate at which that particular 1-alkene is eliminated, in units 
of mol  t−1), with T1 as the starting point in the sequence.

With reference to Scheme 5, Table 3 expresses each 
LAO via inspection (central column) or via recurrence 
relation (right column). The aim is to express Tn in terms 
of α, β, R1 and R2. In contrast to Sect. 2.1, obtaining a 
general expression via inspection is no longer feasible. The 
method of solving via a recurrence relation is much more 
straightforward, as will be demonstrated below.

The recurrence relation is:

Following a derivation (see SI.2.1), the general solution 
to this expression is: [16] 

with:

i.e. the unnormalised alternating equation.
With constant values for α, β, R1 and R2, it is implicitly 

assumed that:

(10)Tn+2 = �Tn+1 + �Tn ↔ Tn+2 − �Tn+1 − �Tn = 0

Tn = mol(n) = c1r
n
1
+ c2r

n
2

r1 =
� +

√
�2 + 4�

2

r2 =
� −

√
�2 + 4�

2

c1 =
(1 − � − �)

(
R1r1 + R2

)

r1
(
r1 − r2

)

(11)c2 =
(1 − � − �)

(
R1r2 + R2

)

r2
(
r2 − r1

)

• The sequence begins at a suitable T1 (e.g. a longer 
1-alkene)

• The oligomerisation proceeds under steady state condi-
tions (i.e. negligible change in ethylene pressure, reac-
tion temperature and quantity of catalytic species)

• Under steady state conditions, the standing quantities 
of each catalytic species are constant. The sum of rates 
to any particular active species “box” are equal the sum 
of rates from that “box”. This is equivalent to  
saying that the sum of probabilities from any  
particular active species “box” is 1 e.g. for M(C2)n
R1 = �R1 + �R1 + (1 − � − �)R1 ↔ 1 = � + � + (1 − � − �) , 
for M(C2)n+1 �R1 + R2 = �

(
�R1 + R2

)
+ �

(
�R1 + R2

)

+(1 − � − �)
(
�R1 + R2

)
↔ �R1 = �2

R1 + ��R1 + (1−

� − �)�R1 ↔ 1 = � + � + (1 − � − �) , etc.

To convert the unnormalised alternating equation, Eq. 11, 
into the normalised form:

or equivalently (see SI.2.2):

Converting Eq. 11 into an unnormalised wt(n) equivalent:

which gives (see SI.2.3):

2.2.2  Back‑Solving to Determine α, β, R1, and R2, 
and Checking for the Best Fit

In practice, the Tn terms are known (i.e. the amount in mol 
of each oligomer produced during the reaction time), and the 
aim is to find α, β, R1, and R2. See SI.2.4 for a discussion on 
the method used to determine α and R, as well as a checking 
method to determine that the best fit has been found.

2.2.3  Application of the Fitting Procedure to Experiment

See Sect.   2.4 for examples of f i t t ings using 
the descr ibed recurrence relation method with 

(12)mol(n)% =
mol(n)

∑n=∞

n=1
mol(n)

=
c1r

n
1
+ c2r

n
2

R1 + R2

(13)mol(n)% =
c1r

n
1
+ c2r

n
2

c1r1

1−r1
+

c2r2

1−r2

(14)
wt(n) = n

(
RFMC2H4

)
mol(n) = n

(
RFMC2H4

)
(c1r

n
1
+ c2r

n
2
)

(15)wt(n)% =
n(c1r

n
1
+ c2r

n
2
)

c1r1

(1−r1)
2 +

c2r2

(1−r2)
2

Table 3  Expressions for Tn via inspection (centre) or via recurrence 
relation (right)

Term Via inspection Via recur-
rence relation 
[16]

T1 (1 − − )

Rate at which
species arrive

Probability of 
elimina
on

T1

T2 (1 − � − �)
(
�R1 + R2

)
�T1 + T �

1

T3 (1 − � − �)
[
�
(
�R1 + R2

)
+ �R1

]
�T2 + �T1

… … …
Tn+2 − �Tn+1 + �Tn
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N,N-bis((1H-benzimidazol-2-yl)methyl)-N-methylamine 
chromium(III) chloride/MMAO-12 systems.

2.2.4  Derivations of Further Experimentally‑Relevant 
Metrics

As per Schulz–Flory distributions, the definitions of Mn, Mw 
and PDI in Eqs. 9a, 9b, 9c can be applied to alternating dis-
tributions. Using Eqs. 11, 14 and 15, and Eqs. 12ii and 14iii 
in SI, the following expressions are obtained (see SI.2.5 for 
derivations):

with:

Note that with q = 0, y = 1, and r1 = � , PDI matches the 
expression previously obtained with Schulz–Flory distribu-
tions (see Eq. 9f):

As with Schulz–Flory distributions, PDI values for alternat-
ing distributions lie between 1 and 2. This may be demon-
strated by examining four limiting cases (see SI.2.6).

2.3  Connecting First‑Order and Second‑Order 
Oligomerisation Processes

By inspection of Eq. 11, two cases may be identified where 
the second-order general solution collapses to a first-order 
solution as per Eq. 10. In the first case, if β = 0, then from 
Eq.  10iv r1 = � and from Eq.  10v r2 = 0 . With r2 = 0 , 
Eq. 10xiii gives R2 = 0 . Then, using Eqs. 10x and 10xi (in 
SI.2.1 and SI.2.4):

(16a)Mn =

(
RFMC2H4

)

c1r1

1−r1
+

c2r2

1−r2

[
c1r1

(
1 − r1

)2 +
c2r2

(
1 − r2

)2

]

(16b)

Mw =

(
RFMC2H4

)

c1r1

(1−r1)
2 +

c2r2

(1−r2)
2

[
c1r1

(
1 + r1

)

(
1 − r1

)3 +
c2r2

(
1 + r2

)

(
1 − r2

)3

]

PDI =
py + qx

[
py2 + qx2

]2
[
py3(2 − x) + qx3(2 − y)

]

p = c1r1

q = c2r2

x = 1 − r1

(16c)y = 1 − r2

PDI =
p

p2
p(2 − x) = 2 − x = 1 + r1 = 1 + �

Since R2 = 0 , then R1 = R . Using Eq. 11, the general 
solution is therefore:

i.e. the unnormalised Schulz–Flory equation.
In the second, more general case, if c2 = 0 but � is not 

necessarily 0, then with Eqs. 10xii and 10xiii in Supplemen-
tary Information (SI.2.4):

Using Eq.  10v (Supplementary Information  SI.2.1), 
Eq. 19 becomes:

Using Eq. 19 with Eqs. 10x and 10xi (in SI.2.1):

From Eq. 11, the general solution is therefore:

which gives the unnormalised Schulz–Flory equation if 
β = 0. The second case may be summarised by stating that 
given particular values for α and β, R2/R1 may be tuned to 
generate first-order behaviour.
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In this sub-section, the mathematics of the second case 
is illustrated, followed by a method to describe the degree 
of similarity between second-order recurrence relations 
and first-order ones. This analysis has important implica-
tions for the fitting of more “gently” alternating oligomer 
distributions.

2.3.1  The First‑Order Surface in R2/R1, α and β Space

Equation 20 features three variables, R2/R1, � and β, which 
are physically interpretable as per Scheme 5. Conveniently, 
then, it is possible to plot in 3D space the combinations of 
R2∕R1 , � and β values which give rise to first-order behav-
iour. Furthermore, since r2 does not feature in Eq. 22 and 
since β is not necessarily 0, Eq. 10iv (Supplementary Infor-
mation SI.2.1) now operates as a parametric equation where 
different combinations of α and β may give the same result 
for r1. A visualisation of the first-order surface in R2/R1, � 
and � space, constructed by lines along which r1 is constant, 
is shown in Fig. 7 and 8. Note that first-order distributions 
following Eq. 18 are restricted to the alpha axis with β = 0 
and R2/R1 = 0. 

2.3.2  Degree of Alternation

By sight, it is evident that second-order distributions can 
possess varying degrees of alternating character. To arrive 
at a definition for the degree of alternation in a second-order 
distribution, we need to consider the pictorial representation 
of Eq. 11.

Figure  9 illustrates how an alternating distribution 
is mathematically constructed by adding a constantly 
decreasing first-order recurrence relation to an alter-
nating first-order recurrence relation (recall that with 
0 ≤ α < 1, 0 ≤ β < 1, and 0 < (1 − α − β) < 1, then 0 < r1 < 1, 
−1 < r2 < 0, and also||r2|| ≤ ||r1|| ). The degree of alternation 
is defined as:

Absolute values are taken in the numerator to avoid can-
cellation of terms on summation (refer to Fig. 9). 0 < c1 
(see Eq. 10viii in SuppIementary Information SI.2.1) so 
0 <

∑n=∞

n=1
c1r

n
1
 . Given that −1 < r2 < 0 , then ||r2||

n
=
(
−r2

)n.
Evaluation of Eq. 23a (in SI.3.1) gives the following 

result:

(23a)Deg. of Alt. =

∑n=∞

n=1
��c2����r2��

n

∑n=∞

n=1
c1r

n
1

=
��c2��
c1

∑n=∞

n=1

�
−r2

�n
∑n=∞

n=1
rn
1

Fig. 7  Visualisation of the first-order surface in R2∕R1 , � and � space along the � axis (left) and along the � axis (right). Colours correspond to 
particular values of r1 (key centre)
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Since  0 < r1 < 1 ,  −1 < r2 < 0, and ||r2|| ≤ ||r1|| ,  t hen 
0 ≤ Deg. of Alt. < 1 (i.e. Deg. of Alt. may be considered as 
a percentage).

As r1 and r2 may be expressed in terms of α and β, 
Eq. 23b gives the degree of alternation as a function of 
R2/R1,� and β. In other words, every point in R2/R1,� and 
β space has an associated degree of alternation. A visuali-
sation of the degree of alternation map in R2/R1,� and β 

(23b)Deg. of Alt. =

+

√(
r2 +

R2

R1

)2(
1 − r1

)

(
r1 +

R2

R1

)(
1 + r2

)

space is shown in Fig. 10. Note that although 0 ≤ R2∕R1 , 
for convenience Fig. 10 runs only from 0 ≤ R2

R1

≤ 1.
The red areas in Fig. 10 represent those areas with the 

largest degree of alternation, i.e. where R2∕R1 or � are high-
est. The light blue layer corresponds to the first-order sur-
face shown in Figs. 7 and 8, where distributions display no 
degree of alternation. This layer acts as a crossing-point, 
above which distributions display “normal” alternating 
behaviour, and below which distributions display “inverse” 
alternation. Figure 11 illustrates these results. Note that in 
Fig. 11, � and � remain constant while R2∕R1 varies. While 
experimentally so far only “normal” alternating distributions 

Fig. 8  Visualisation of the first-order surface in R2∕R1 , � and � space along the R2∕R1 axis. Optically identical first-order distributions with 
r1 = 0.50 illustrated

( ) = +

= +

Fig. 9  Pictorial representation of Eq. 11
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Fig. 10  Front (left) and back (right) view of the degree of alternation map in R2∕R1 , � and � space. Colours correspond to particular values for 
degree of alternation (key centre)

Fig. 11  Examples of distributions obtained above the first-order surface (top) showing “normal” alternating behaviour, on the first-order surface 
(middle), and below the first-order surface (bottom) showing “inverse” alternating behaviour
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have been found, the discovery of “inverse” alternating 
behaviour is theoretically possible.

2.3.3  Implications for Second‑Order Fitting with “Gently” 
Alternating Distributions

“Gently” alternating distributions display significantly less 
c2r

n
2
 character than c1rn1 character. Such distributions lie close 

to the first-order surface in R2∕R1 , � and � space as illus-
trated in Figs. 7 and 8. In back-solving to determine � , � , R1 , 
and R2 , “gently” alternating distributions present a unique 
difficulty in the fitting process when experimental error is 
taken into account.

The first-order surface in Figs. 7 and 8 is constructed by 
lines along which r1 is constant and along which distribu-
tions appear identical. Second-order distributions which are 
similar in appearance, but which lie close to the first-order 
surface, may accurately be described using quite different 
R2∕R1 , � and � values.

By way of illustration, consider the hypothetical second-
order distribution shown in Fig. 12, as may be detected via 
GC from 1-hexene onward. If, due to experimental error, a 
quantity of 1-hexene evaporates prior to GC measurement, 
then the back-solving method produces a different fit for the 
data set slightly perturbed at  C6.

Comparing the fitted parameters in Fig. 12 with those 
in Fig. 13, there are significant differences between values 
for � , � , R2∕R1 , c2 and r2 . The only reliable metric for “gen-
tly” alternating distributions is the first-order c1rn1 term. In 
borderline cases where a second-order distribution lies too 
close to the first-order surface to obtain reliable values for � , 

� , R1 , and R2 , pressure studies (see Sect. 2.4) and/or repeat 
experiments will be necessary.

2.4  The Effect of Pressure in Second‑Order 
Steady‑State Oligomerisation

In Sect. 2.2, a catalytic scheme (Scheme 5) for the produc-
tion of alternating 1-alkene oligomer distributions was pre-
sented. The terms M

(
C2

)
n
 , M

(
C2

)
n+1

 etc. group together all 
intermediates involving n ethylene units. In order to inves-
tigate the effect of changing ethylene pressure on � and � , 
it is necessary to propose a more detailed scheme with the 
individual elementary reaction steps that occur within each 
active species “box” (i.e. between each type of M

(
C2

)
n
 spe-

cies). This so-called candidate scheme is kept as general as 
possible, for application to any processes proceeding via a 
metallacyclic mechanism (Scheme 6):

Following a derivation (see SI.4.1), it can be shown 
that the ratio between the probabilities for double ethylene 
insertion β and single insertion α is defined as:

So long as k2, k7 ≠ 0 , the relationship between the proba-
bilities � and � and ethylene pressure Pet can be expressed as:

(24a)
p(2Etinserted)

p(1Etinserted)
=

k2k7Pet

kH

k5
(
k3 + k6 + k7 + k10

)
+

k2k6Pet

kH

(24b)
�

�
=

Pet

g1 + g2Pet
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R
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ol

(n
)

Ethylene units in 1-alkene (n)
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Fig. 12  Hypothetical second-order “gently” alternating distribution
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Fig. 13  Hypothetical second-order “gently” alternating distribution with some 1-hexene missing
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where:

g1 =
k5
(
k3 + k6 + k7 + k10

)
kH

k2k7
= a constant acrossPet

g2 =
k6

k7
= a constant acrossPet

Scheme 6  Candidate scheme 
proposed for individual reaction 
steps occurring between each 
type of metallacyclic M

(
C2

)
n
 

species, with selected rate con-
stants labelled

M n M

n
M nM (n-1)

M

(n-1)

M

(n-2)

M (n+1)

M (n+2)

M (n+1)From

From From

To

To

To

Elimination Elimination

Elimination

k1

k4

k2

k3

k7

k6

k10

k5k9k8

- -

++

Table 4  Key parameters in the fitting of second-order oligomerisation parameters vs. ethylene pressure

a Conditions: 30 nmol Cr, continuous ethylene pressure, 50 °C, MMAO-12 (5 mmol), toluene (200 mL), 1 h
b  x barg = 1 bar N2 + x bar ethylene (barg = gauge pressure)
c n = 4 + oligomers
d Data from  C8 onwards,  C6 as T1
e R2 indicates the goodness of fit between experimental and calculated data sets

Pressure/bargb Olig/gc mol(n) %d α β 1 − α − β β/α c2/c1 Deg. of Alt. R2  fite

0.3 0.04 Tn = (0.26)*(0.874)n + (0.15)*(− 0.443)n 0.43 0.39 0.18 0.90 0.56 0.06 0.997
0.5 0.10 Tn = (0.22)*(0.874)n + (0.07)*(− 0.611)n 0.26 0.53 0.20 2.03 0.34 0.08 0.993
0.7 0.09 Tn = (0.24)*(0.854)n + (0.10)*(− 0.642)n 0.21 0.55 0.24 2.59 0.43 0.13 0.996
1 0.35 Tn = (0.19)*(0.883)n + (0.15)*(− 0.674)n 0.21 0.60 0.20 2.86 0.80 0.22 0.997
2 0.65 Tn = (0.18)*(0.883)n + (0.15)*(− 0.711)n 0.17 0.63 0.20 3.64 0.82 0.27 0.996
3 1.52 Tn = (0.17)*(0.887)n + (0.14)*(− 0.734)n 0.15 0.65 0.20 4.26 0.80 0.28 0.997
4 2.30 Tn = (0.18)*(0.883)n + (0.15)*(− 0.740)n 0.14 0.65 0.20 4.57 0.87 0.33 0.996

Fig. 14  Experimentally deter-
mined �∕� values vs. pres-
sure, together with fitted curve 
according to Eq. 24b
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2.4.1  Comparison of Experimentally Determined Results 
vs. Fitted Data

A series of oligomerisation experiments have been per-
formed at different ethylene pressures, using N,N-bis((1H-
benzimidazol-2-yl)methyl)-N-methylamine chromium(III) 
chloride/MMAO-12 as the catalyst (experimental details as 
per ref. 17). The � and � values for each run were obtained 
using the back-solving method described in Sect. 2.2, and 
the values of �∕� were plotted vs. ethylene pressure. A curve 
following Eq. 24b was fitted to these calculated values, using 
a minimisation of the sum of squared differences to deter-
mine the most suitable values for g1 and g2 . The results are 
given in Table 4 and Fig. 14. 

The fitting of the data in Table 4 with Eq. 24b gives val-
ues for g1 = 0.177 and g2 = 0.176 . Note that g2 is equivalent 
to the ratio of rate constants for single insertion vs. double 
insertion from a double-ethylene associated intermediate. 
There is a good degree of correlation between experimen-
tally determined and the fitted values of �∕� in Fig. 14 
(goodness of fit  R2 = 0.974).

A final note should be added, that for ethylene oligomeri-
sations at lower pressures with these catalysts, it is possible 
that the most abundant oligomeric product, 1-butene in this 
case, is incorporated during the oligomerisation reaction. 
We have observed this with some of the most active cata-
lysts, resulting in a minor distribution of 2-ethyl-1-alkenes 
with the opposite alternating pattern, alongside the major 
distribution of 1-alkenes with the normal alternating behav-
iour [17].

2.5  Steady‑State Oligomerisation with Nonconstant 
Propagation Probabilities

In assuming constant values for the propagation probabilities 
� and � in Schemes 4 and 5 (Sects. 2.1 and 2.2 respectively), 
recurrence relations with constant coefficients are generated. 

The solution of these may be expressed in equation format 
(see Eqs. 8 and 11). If, however, the propagation probabili-
ties adopt nonconstant values in the catalytic cycle, then 
recurrence relations with variable coefficients are generated. 
The aim in such cases is to determine a unique value for each 
unknown parameter, and/or to elucidate the key mechanistic 
features of the system.

In this sub-section, a method for handling first-order 
recurrence relations with variable coefficients is presented. 
The method finds application in oligomerisation systems 
where � changes at some point in the catalytic cycle. Sec-
ond-order systems with nonconstant propagation prob-
abilities will be discussed later, with a particular focus on 
selective-tetramerisation.

2.5.1  First‑Order Recurrence Relations with Nonconstant 
Propagation Probabilities

Experimental LAO distr ibutions which deviate 
from Schulz–Flory have been observed, for example 
chromium(III) bis(carbene)pyridine systems reported by 
McGuinness and co-workers (Fig. 15) [29]. The observa-
tion has been rationalised by less favourable elimination at 
the early stages of metallacyclic growth [29]. In Fig. 15, � 
is variable before  C8, then adopts a constant value from  C8 
onwards.

Data from  C8 (n = 4) onward may be treated with the 
back-solving method described in Sect. 2.1 to find the con-
stant � value and R, the total mol of  C8+ oligomers produced 
during the reaction time (i.e. the rate at which intermediate 
species arrive at M(C2)4  . Adapting Scheme 4 to show 
rates, the first nonconstant term T ′

1
 (i.e.  C6) may be appended, 

along with R′ , the rate at which intermediate species arrive 
at M(C2)3  (Scheme 7).

To find �′ (i.e. the � value at  C6) and R′ , two distinct equa-
tions involving the two unknown variables may be identified 
(note that T ′

1
 is the experimental data point for 1-hexene):

0 2 4 6 8 10 12 14 16 18 20

R
el

. m
m

ol
(n

)

Ethylene units in 1-alkene (n)

Cr
Cl

Cl
N

Cl N

NN

N
2,6-iPr2C6H32,6-iPr2C6H3

/ MAO

Fig. 15  Distribution of 1-alkene oligomers as relative mol(n) vs 
n (units of ethylene) produced with complex 2,6-bis(1-(2,6-diiso-
propylphenyl)imidazol-2-ylidene)pyridine chromium(III) chlo-
ride. Conditions: 10  μmol Cr, 5  bar continuous ethylene pressure, 

25  °C, MAO (5 mmol), toluene (50 mL), 30 min. Activity  (C4–C20 
LAOs) = 159 g mmol−1  h−1  bar−1. Variable � and constant � regions 
indicated
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These equations sum to give:

Given that there are two distinct equations for two 
unknowns ( �′ and R′ ), a unique solution does exist. R′ may 
be found with Eq. 25c, then substituted into Eqs. 25a or 25b 
to find �′ . The second non-constant term T ′

2
 (i.e.  C4) may 

now be appended to Scheme 7, and the � value at  C4 found 
using the same methodology. The � values calculated for 
Fig. 15 via this methodology are 0.86, 0.65 and 0.54 from 
 C4,  C6 and  C8+ respectively. In other words, for this particu-
lar chromium catalyst, the termination probability is less 
favourable at the early stages and increases as the metalla-
cycle grows from a metallacyclopentane to—heptane and—
nonane. Once the metallacycle has reached a certain size, the 
termination probability becomes constant.

2.5.2  Second‑Order Recurrence Relations 
with Nonconstant Propagation Probabilities

McGuinness, Britovsek and co-workers produced a detailed 
experimental and theoretical study of single- and double-
coordination mechanisms in ethylene tri- and tetramerisa-
tion with Cr/PNP catalysts [30]. With PNP = Ph2PN(iPr)
PPh2, high selectivity for 1-octene is observed (~ 70 mol%), 
together with approximately 16 mol% 1-hexene, 3 mol% 
 C10+ α-olefins, and various other coproducts (Fig. 16).

Computational studies employing the M06L functional 
on simplified model compounds have indicated that a single- 
and double-coordination mechanism operates (see Fig. 17) 
[30–33]. Elimination from a chromacyclopentane intermediate 
to give 1-butene is calculated to be energetically unfavourable 
[30]. Competing processes to 1-hexene and 1-octene formation 
diverge at a singly-coordinated chromacyclopentane intermedi-
ate 7, with 1-hexene formed predominately via single insertion 

(25a)��R� = R

(25b)
(
1 − ��

)
R� = T �

1

(25c)R� = T �
1
+ R

from intermediate 7, and 1-octene formed predominantly via 
a bis(ethylene) metallacyclic intermediate 17, with additional 
involvement of a mono(ethylene) route through intermediate 18 
[30].

Given the varying differences in energy between the early 
intermediates in Fig. 17, the selective-tetramerisation process 
in Fig. 16 may be mathematically considered as a second-order 
recurrence relation with variable coefficients. Data from  C16 
onwards corresponds to the tail end of an alternating distribu-
tion, where � and � values are constant by virtue of negligible 
geometry and energy differences between larger chromacyclic 
species. For the purpose of the present discussion, setting aside 
the difficulties in fitting gently alternating distributions as out-
lined in Sect. 2.3, the region from  C16 onwards may conceiv-
ably be treated with the back-solving method described in 
Sect. 2.2 to find the constant values for � and � as well as R1 , 
the rate at which intermediate species arrive at M(C2)8  , and 
R2 , the rate at which intermediate species originating from 
before M(C2)8  arrive at M(C2)10  . Adapting Scheme 5 to 
show rates, the first non-constant term T ′

1
 (i.e.  C14) may be 

appended, along with R′
1
 , the rate at which intermediate species 

arrive at M(C2)7  , and R′
2
 , the rate at which intermediate spe-

cies originating from before M(C2)7  arrive at M(C2)8  
(Scheme 8).

In an effort to find �′ and �′ (i.e. the � and � values at  C14) 
and R′

1
 and R′

2
 , three distinct equations involving the four 

unknown variables may be identified (note that T ′
1
 is the experi-

mental data point for 1-tetradecene):

These equations sum to give:

(26a)��R�
1
= R2

(26b)��R�
1
+ R�

2
= R1

(26c)
(
1 − �� − ��

)
R�
1
= T �

1

etc.M(C2)3 M(C2)4

(1- ')R'

etc.
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'R' RR'

(1- )R
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'

(C2)3
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(C2)4
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ConstantVariable

α α
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α α

Scheme 7  Catalytic scheme for Fig. 15 at the boundary of the vari-
able � and constant � regions. Active species shown in black, rates 
and eliminated products shown in blue

Fig. 16  Selective α-olefin distribution as mol(n)% vs n (units of 
ethylene) obtained with Cr/Ph2PN(iPr)PPh2/MAO [16, 30]. Condi-
tions: 10 μmol Cr, 30 bar, 30 °C, MAO (3 mmol), toluene (100 mL), 
30 min. Inset: enlargement of distribution from  C16+. Inset: Expanded 
mol(n)% vs. n for the  C16–C32 fraction
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Given that there are three distinct equations for four 
unknowns ( �′, �′,R′

1
and R′

2
 ), a unique solution does not exist 

in this case. If no further information is available/applied from 
e.g. theoretical studies, an assumption (such as �

�

��
=

�

�
 ) is 

required as a fourth equation to determine unique solutions for 
the four unknown variables.

(26d)R�
1
+ R�

2
= R1 + R2 + T �

1

3  Modelling Non‑Steady‑State 
Polymerisation Processes

3.1  Connecting Schulz–Flory Distributions 
and Poisson Distributions

The mathematics behind Schulz–Flory ethylene oligomer 
distributions was first accurately described in 1936 [19]. 
In 1940, Flory went on to give a kinetic derivation of Pois-
son’s equation for polymer distributions obtained from a 
monofunctional monomer (ethylene oxide) [34]. Yet the 
mathematical connection between Schulz–Flory distribu-
tions and Poisson distributions has not been fully eluci-
dated. In this section, the relationship between the two is 
made explicit from first principles.

It should be noted that the treatment presented below is 
described with ethylene as the monomer, but is generally 
applicable to oligomerisation and polymerisation processes 
involving the sequential incorporation of monomers in form-
ing linear product chains.

3.1.1  First Principles

The mechanics of a first-order ethylene oligomerisation 
or polymerisation process whereby propagation proceeds 

Fig. 17  Condensed energy 
profiles for 1-hexene and 
1-octene formation from the 
singly-coordinated chromacy-
clopentane intermediate 7 [30]. 
Gaussian09, M06L/quadruple-ζ 
valence def2-QZVP basis 
set and SDD ECP on Cr, 
6-311 + G(2d,p) basis set on all 
other atoms

etc.M(C2)7 M(C2)8

(1- '- ')R1'

etc.
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'R1' R1

(1- )R1
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(C2)7
R1'+R2'
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R1+R2
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Scheme 8  Catalytic scheme for Fig. 16 at the boundary of the vari-
able �, � and constant �, � regions
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via metal alkyl or metallacyclic species is summarised in 
Scheme 9. In this model and the following mathematical 
treatment, we assume that the rate constants  kp and  ke are 
constant over time and independent of chain length. Fur-
thermore, all active species must start the polymerisation 
instantaneously and there is no catalyst deactivation.

M(n) represents catalyst intermediates involving n ethylene 
units (e.g. M(0) = metal hydride species, M(1) = metal ethyl 
or metallacyclopropane species, M(2) = metal butyl or metal-
lacyclopentane species etc.), kp is the rate constant of propa-
gation, ke is the rate constant of elimination, and L is the total 
precatalyst loading.

A general expression for M(n) , as a function of time, may 
be derived (see SI.5.1):

The label “non-steady-state” refers to time dependent terms, 
whilst the label “steady-state” refers to time independent 
terms. It is worth noting again that Scheme 9 assumes kp and ke 
are constant over time and independent of M(n) , i.e. no distinc-
tion in propagation or elimination kinetics is made between the 
various intermediate groups in the catalytic scheme. In addi-
tion, by combining M(n) species in forming the kinetics equa-
tions, it is implicitly assumed that a single species within each 
M(n) group dominates. For instance, the M(0) group includes 
both metal hydrides with a vacant site and ethylene-associated 
metal hydrides. This assumption is no longer required for the 
Schulz–Flory case, given that steady-state kinetics operate.

3.1.2  Derivation of the Schulz–Flory Equation 
for First‑Order Steady‑State Oligomerisation

Referring to Scheme 9, the scenario where steady state is 
achieved from t0 (i.e. instantaneously from the beginning of 
reaction) with ke ≠ 0 corresponds to the limiting case of first-
order steady-state oligomerisation. In such a case, by ignoring 
non-steady-state terms, Eq. 27simplifies to:

( ) =
! ( + )( )

[( + ) ] −
!

( − )!
[( + ) ]( ) + !

Non-steady-state term Steady-state term

(27)

Given that elimination occurs at a constant rate, the interest 
lies only in the sum of linear alpha olefins of chain length n 
ethylene units continuously eliminated from t0 to tend:

Equation 29a is the unnormalised Schulz–Flory equation, 
and Eq. 29b is the normalised Schulz–Flory equation. Note 
in Eq. 29a that the total mol of oligomers produced during 
the reaction time R = L�ketend . Given that both Lk

2
e
tend

kp
 (where 

L and tend are known) and � may be fitted, kp and ke may be 
inferred.

(28)M(n) =
Lkn

p
ke

(kp + ke)
(n+1)

(29a)

mol(n)tend = ke

tend

∫
0

M(n)dt =
Lkn

p
k2
e
tend

(kp + ke)
(n+1)

=

Lk2
e
tend

kp
�(n+1)where � =

kp(
kp + ke

)

mol(n)% =

Lk2
e
tend

kp
�(n+1)

Lk2
e
tend

kp

[
�2 + �3 + �4 +…

] =
�(n+1)

�2 + �3 + �4 +…

𝛼2 + 𝛼3 + 𝛼4 +… =
𝛼2

(1 − 𝛼)
when|𝛼| < 1, so ∶

(29b)mol(n)% =
(1 − �)

�2
�(n+1) = (1 − �)�(n−1)

Scheme 9  Catalytic scheme for 
first-order propagation

∞

∑
= 0

=   =  ―3)

,  = ―1

M(0) M(1) M(2)
kp

ke

kp kp

ke

...

...
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3.1.3  Derivation of Poisson’s Equation for First‑Order Living 
Polymerisation

Referring again to Scheme 9, setting ke = 0 , i.e. there is 
no chain termination process, corresponds to the limiting 
case of first-order non-steady-state living polymerisation. 
In such a case, Eq. 27 simplifies to:

Given that no termination occurs throughout, the inter-
est lies only in the distribution of intermediate species at 
tend (i.e. the end of reaction), which would give n-alkene 
products on thermal termination (as per the INEOS (Ethyl) 
process [8]) or n-alkane products upon hydrolysis. At this 
point:

Equation 31a is Poisson’s equation scaled by the precata-
lyst loading L , and Eq. 31b is Poisson’s equation scaled 
by the factor 

(
1 − e−�

)−1 (which quickly approaches 1 as � 
increases). Note that � is the mean number of ethylene units 
per chain. Given that � may be fitted (where tend is known), 
kp may be inferred.

3.2  Non‑Steady‑State Living Polymerisation 
with Catalysed Chain Growth

In 1952, Ziegler et al. reported the Aufbaureaktion involving 
the formation of long chain trialkylaluminium species via 
stepwise insertion of ethylene monomers into Al–C bonds 
(starting with triethylaluminium, for instance) [35]. The 

(30)

M(n)t =
L

n!kp

[
e−kpt

(
k(n+1)
p

tn
)]

↔ M(n)t =
L(kpt)

n

n!
e−kpt

(31a)M(n)tend = mol(n)tend =
L(kptend)

n

n!
e−kptend =

L�n

n!
e−�

(31b)mol(n)tend% =

L�n

n!
e−�

∑n=∞

n=1

L�n

n!
e−�

=
L�ne−�

n!Le−�
∑n=∞

n=1

�n

n!

=
�ne−�

n!e−�
�
e� − 1

� =
�ne−�

n!
�
1 − e−�

�

effect of transition metals, such as colloidal Ni, in suppress-
ing chain growth in the Aufbaureaktion to selectively form 
1-butene was subsequently discovered [36]. This prompted 
a screening of the d-block transitional metals for other 
metal effects and, in the case of titanium, this led to the first 
reported transition metal catalysed ethylene polymerisation 
[37, 38].

In their early work, Ziegler et al. described the process as 
a transition metal catalysed Aufbaureaktion, with the alky-
laluminium functioning as the polymerisation catalyst and 
the transition metal compound functioning as the co-catalyst 
[37]. Later it was found that the polymer chain grows on 
the transition metal centre, rather than on aluminium. More 
recently however, several processes have been reported 
where the polymer chain is transferred during the course of 
the reaction from a transition metal to a main group metal 
such as aluminium, magnesium or zinc [39–44]. If this 
chain transfer is very fast and reversible, then it appears as 
if the polymer chains grow on the main group metal centres 
instead. Such a reaction is generally described as a catalysed 

chain growth (CCG) process or a coordinative chain-transfer 
polymerisation (CCT), or, to employ the original terminol-
ogy, a transition metal catalysed Aufbaureaktion [44–46].

Tremendous advances have been made in CCG during 
the past 2 decades, but the mathematics of generating prod-
uct distributions via CCG has not yet been reported. Such 
a treatment from first principles is presented here and then 
applied next.

3.2.1  First Principles

Scheme 10 summarises the mechanics of a first-order eth-
ylene oligomerisation or polymerisation process whereby 

Scheme 10  Catalytic scheme 
for first-order propagation with 
chain transfer ( ), ( ) =  ―3

 ,  = ―1

  = ―1 3 ―1
M(0) M(1) M(2)

k(M(0))p

k(M(1))e k(M(2))e

...

...

k(M(1))p k(M(2))p

...Chain Transfer (CT) species
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propagation proceeds via metal alkyl or metallacyclic spe-
cies, and chain transfer to and amongst a population of 
non-propagating agents is possible. A similar caveat as 
in Sect. 3.1 applies in that in this model and the follow-
ing mathematical treatment, we assume that the rate con-
stants  kp,  ke and  kct are constant over time and independent 
of chain length. Furthermore, all active species must start 
the polymerisation instantaneously and there is no catalyst 
deactivation.

M(n) represents transition metal intermediates involving 
n ethylene units, CT(n) represents the population of chain 
transfer species bearing an alkyl chain of length n ethylene 
units, k(M(n))p is the rate constant of propagation for M(n) , 
k(M(n))e is the rate constant of elimination for M(n) , and 
kct ’s are rate constants of chain transfer between species. 

Scheme 10 is not labelled with individual kct ’s given the 
general nature of the present treatment.

It is possible to show (see SI.5.2) that:

This expression for change does not show dependence 
on chain transfer terms. In other words, the underlying M(n) 
system drives towards the distribution that it would adopt in 
the absence of chain transfer agent. However, the nature of 
instantaneous steady state for CT species slows down the 
overall rate at which the M(n) system evolves vs. the case 
with no chain transfer.

(32)

d

dt
M(n)t = k(M(n − 1))pM(n − 1)t −

[
k(M(n))p + k(M(n))e

]
M(n)t

Scheme 11  Scheme for a living 
polymerisation system with 
CCG Let:

Total transition metal catalyst loading = 10 mol dm-3

kp = 1 s-1

ke = 0 s-1

All kct's equal (units mol-1 dm3 s-1) and >>> kp, ke
t = 0.1 s

M(0) M(1) M(2)
kp

ke ke

...

...

kp kp

...Chain Transfer (CT) species

µ

µ
∆

Fig. 18  System evolution and product distribution with CT agent loading = 0 μmol dm−3 (0 eqv. vs. transition metal catalyst). Note: M(n) and 
CT(n) up to n = 5 illustrated left and centre, all n captured right

Fig. 19  System evolution and product distribution with CT agent loading = 10 μmol dm−3 (1 eqv. vs. transition metal catalyst). Note: M(n) and 
CT(n) up to n = 5 illustrated left and centre, all n captured right
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3.2.2  Numerical Simulations

Two illustrative examples are provided to demonstrate the 
preceding mathematics. Numerical simulations of evolving 
oligomerisation or polymerisation systems which involve 
chain transfer, as per Scheme 10, are possible with Micro-
soft Excel (see SI.5.3 for details).

3.2.3  Illustrative Example 1: Living Polymerisation 
with Catalysed Chain Growth

See Scheme 11, Figs. 18, 19, 20.

3.2.4  Illustrative Example 2: First‑Order Oligomerisation 
with Catalysed Chain Growth

See Scheme 12, Figs. 21, 22, 23.

3.2.5  The Fitting Process

The preceding discussion demonstrated how Poisson distri-
butions or Schulz–Flory distributions are still generated for 
first-order systems involving CCG. Section 2.1 provided the 
details for modelling first-order steady state oligomerisation 
systems, which by extension may be applied to first-order 
oligomerisation systems involving CCG. Section 3.1 gave a 
derivation to the Poisson distribution for living polymerisa-
tion systems, ending at Eqs. 31a and 31b.

Fig. 20  System evolution and product distribution with CT agent loading = 100 μmol dm−3 (10 eqv. vs. transition metal catalyst). Note: M(n) and 
CT(n) up to n = 5 illustrated left and centre, all n captured right

Scheme 12  Scheme for a first-
order oligomerisation system 
with CCG 

Let:

Total transition metal catalyst loading = 10 mol dm-3

kp = ke =1 s-1

All kct's equal (units mol-1 dm3 s-1) and >>> kp, ke
t = 0.1 s

M(0) M(1) M(2)
kp

ke ke

...

...

kp kp

...Chain Transfer (CT) species

µ

µ
∆

Fig. 21  System evolution and product distribution with CT agent loading = 0 μmol dm−3 (0 eqv. vs. transition metal catalyst). Note: M(n) and 
CT(n) up to n = 5 illustrated left and centre, all n captured right
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When Eqs. 31a and 31b are applied to living polymerisa-
tion systems with CCG, in order to capture all intermediate 
alkyl chains, L is now defined as:

Furthermore, kp may now be interpreted as the effective 
propagation rate constant for the entire system. The process 
for modelling living polymerisation systems with CCG is 
described next, along with derivations of the experimentally-
relevant metrics Mn , Mw and PDI . For illustration, a com-
parison is also made between an experimentally determined 
result vs. the fitted data.

3.2.6  Back‑Solving to Determine L and λ, and Checking 
for the Best Fit

In practice, the mol(n)tend values in Eq. 31a are known (i.e. 
mol of each oligomer produced during the reaction time), 
and the aim is to find L and � . See SI.5.4 for a discussion on 
the method used to determine � and R , as well as a checking 
method to determine that the best fit has been found.

(33)

L = Transition metal catalyst loading

+ (CTloading)(Alkyl chains per CT species)

3.2.7  Derivations of Further Experimentally‑Relevant 
Metrics

For a distribution of n-alkenes, the following expressions can 
be derived (see SI.5.5 and SI.5.6):

As � increases, the factor 
(
1 − e−�

)
 approaches 1. Under 

such circumstances, Eqs. 35 and 37 simplify.

(34)wt(n)tend% =
n�n−1e−�

n!

(35)Mntend
=
(
RFMC2H4

)
�(1 − e−�)−1

(36)Mwtend
=
(
RFMC2H4

)
(� + 1)

(37)PDI =
Mwtend

Mntend

=
(� + 1)

(
1 − e−�

)

�

(38)Mntend
→

(
RFMC2H4

)
�

Fig. 22  System evolution and product distribution with CT agent loading = 10 μmol dm−3 (1 eqv. vs. transition metal catalyst). Note: M(n) and 
CT(n) up to n = 5 illustrated left and centre, all n captured right

Fig. 23  System evolution and product distribution with CT agent loading = 100 μmol dm−3 (10 eqv. vs. transition metal catalyst). Note: M(n) and 
CT(n) up to n = 5 illustrated left and centre, all n captured right
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With high values of � , PDI tends towards unity, as per 
the literature [47].

3.2.8  Comparison of an Experimentally Determined Result 
vs. Fitted Data

CCG polymerisations have been performed, using  ZnEt2 
as the CT agent with 2,6-diacetylpyridinebis(2,6-diiso-
propylanil)FeCl2/MAO (experimental details, see SI.5.7). 
Termination of the polymerisation reaction is carried out 
by hydrolysis, resulting in a mixture of long-chain alkanes. 
Given a highly symmetric Poisson distribution of the result-
ing n-alkane oligomers, quantitative 13C{1H} NMR analysis 
may be used to estimate the mean chain length by com-
paring integrals for  CH3 with those for  CH2. For the given 
experiment, quantitative 13C{1H} NMR spectroscopy gives 
a  CH3:CH2 ratio of 2:45.38, implying a mean chain length 
between 46 and 48 carbons (see Fig. 24).

(39)PDI →
(� + 1)

�
= 1 +

1

�
→ 1

Experimental characterisation of the alkane distribu-
tion in such mixtures is non-trivial. The average molecu-
lar weight is typically too low for accurate GPC analysis, 
and the longer alkanes are often insufficiently volatile 
for conventional quantitative GC-FID analysis. Only the 
first part of the n-alkane oligomer distribution is usually 

Fig. 24  Quantitative 13C{1H} NMR spectrum of n-alkane oligomer product (solvent:  d2-1,1,2,2-tetrachloroethane/1,2,4-trichlorobenzene 50/50 
v/v), 100 MHz, 100 °C

Fig. 25  Modelled outputs (see Table 5) vs. experimental GC data
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quantifiable via GC. These signals have been used here as 
inputs for the fitting model. Following the procedure previ-
ously described in this sub-section, the values in Table 5 
are found.

3.2.9  Model Outputs

There is a high degree of correlation between calculated and 
experimental values in Table 5 (goodness of fit  R2 = 0.996), 
and the calculated mean chain length of 46.6 carbons 
is within the range previously specified by quantitative 
13C{1H} NMR spectroscopy. This method therefore allows 
the entire product distribution to be determined from a sub-
set of experimental data obtained by GC analysis.

4  Conclusions and Summary

A variety of different distributions—including Schulz–Flory, 
alternating, selective-LAO, and Poisson distributions—of 
linear hydrocarbon products can be obtained from ethylene 
oligomerisation and polymerisation processes. Oligom-
erisation processes are steady-state in nature, and can be 
mathematically described using recurrence relations. First 
order oligomerisation processes propagate via sequential 

single-insertions of ethylene, whereas second order oli-
gomerisation processes propagate via sequential single- and 
double-insertions of ethylene. From an analytical point of 
view, an important consideration with regards to second 
order processes is the degree of alternation exhibited by a 
given distribution, which is generally more pronounced at 
higher ethylene pressure. The degree of alternation for a 
particular distribution may be defined as the relative ratio 
of alternating vs. Schulz–Flory character. An overview of 
the key analytical results from first order and second order 
processes with constant probabilities of propagation is given 
in Table 6.

Examples of first order and second order oligomerisation 
processes which involve varying probabilities of propaga-
tion have been identified from the literature. Such systems 
include selective oligomerisation catalysts such as the well-
known chromium-based tetramerisation catalysts. An ana-
lytical method is available for handling first order processes 
with varying probabilities of propagation. However, there is 
a theoretical limitation to a similar approach for analogous 
second order processes.

The connection between distributions from first order 
steady-state oligomerisations (Schulz–Flory) and first order 
non-steady-state polymerisations (Poisson) is made through 
a consideration of kinetic differential equations. The addi-
tion of a chain transfer agent (e.g.  ZnEt2) to such systems 
results in a slowing down of the overall propagation rate. 
Accurate modelling of a CCG polymerisation system featur-
ing  ZnEt2 as the CT agent has been achieved, allowing for 
the derivation of several key mechanistic parameters.

The mathematics of ethylene oligomerisation pre-
sented here can be easily applied to other systems where 
chain growth proceeds through an oligomerisation process. 
Examples of such systems would be the oligomerisation of 
higher α-olefins to poly(α-olefin) oils, the dehydropolymeri-
sation of aminoboranes, chain growth reactions in the Fis-
cher–Tropsch process or the formation of oligonucleotides. 
By fitting the experimental results to the formulas described 
herein for the various oligomerisation scenarios, valuable 
information may be extracted regarding the underlying reac-
tion mechanisms of the oligomerisation process.

Table 5  Modelled outputs using experimental GC data

λ 23.3
kp/s−1 6.5E−03
Mean chain length (No. of car-

bons)
46.6

Mn/g mol−1 655.15
Mw/g mol−1 683.11
ĐM 1.04
Mol%  (C2 to  C∞) (23.3n)∗(e−23.3)

n!∗(1−e−23.3)

Wt%  (C2 to  C∞) (23.3n)∗(e−23.3)∗[n(RFMC2H4)+(RAM2H)]

n!∗[(RFMC2H4)∗23.3+(RAM2H)∗(1−e−23.3)]

R2 fit 0.996
Fit L, λ/mmol2 0.001
δ(Fit L, λ)/δL/mmol 0.00000
δ(Fit L, λ)/δλ/mmol2 0.00000



317Topics in Catalysis (2020) 63:294–318 

1 3

Acknowledgements We are grateful to INEOS for financial support. 
We thank Dr. Andrew Wadsley for helpful discussions.

Compliance with Ethical Standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creat iveco mmons 
.org/licen ses/by/4.0/.

Table 6  Key analytical results 
from 1st order and 2nd order 
processes with constant 
probabilities of propagation

First order (Schulz–Flory) Second order (Alternating)

Recurrence relation type First-order linear homogene-
ous recurrence relation with 
constant coefficients

Second-order linear homogeneous recur-
rence relation with constant coefficients

Relation Tn+1 = �Tn Tn+2 = �Tn+1 + �Tn

General solution Tn = crn

r = �

c =
(1−�)

�
R

� = propagation probability
(1 − �) = elimination prob-

ability
R = total amount in mol of 

oligomer produced during 
reaction time

Tn = c1r
n
1
+ c2r

n
2

r1 =
�+

√
�2+4�

2

r2 =
�−

√
�2+4�

2

c1 =
(1−�−�)(R1r1+R2)

r1(r1−r2)

c2 =
(1−�−�)(R1r2+R2)

r2(r2−r1)

�∕� = propagation probability via single-/

double-insertion

(1 − � − �) = elimination probability

R1 + R2 = total amount in mol of oligomer 

produced during reaction time
mol(n),

mol(n)% and wt(n)% equations
mol(n) = crn = (1 − �)�n−1R

mol(n)% = (1 − �)�n−1

wt(n)% = n(1 − �)2�n−1

mol(n) = c1r
n
1
+ c2r

n
2

mol(n)% =
c1r

n
1
+c2r

n
2

R1+R2

=
c1r

n
1
+c2r

n
2

c1r1

1−r1
+

c2r2

1−r2

wt(n)% =
n(c1r

n
1
+c2r

n
2
)

c1r1

(1−r1)
2
+

c2r2

(1−r2)
2

Mn,

Mw and PDI equations
Mn =

(RFMC2H4)
(1−�)

Mw =
(RFMC2H4)(1+�)

(1−�)

PDI = (1 + �)

Mn =
(RFMC2H4)
c1r1

1−r1
+

c2r2

1−r2

[
c1r1

(1−r1)
2 +

c2r2

(1−r2)
2

]

Mw =
(RFMC2H4)
c1r1

(1−r1)
2
+

c2r2

(1−r2)
2

[
c1r1(1+r1)

(1−r1)
3 +

c2r2(1+r2)

(1−r2)
3

]

PDI =
py+qx

[py2+qx2]
2

[
py3(2 − x) + qx3(2 − y)

]

p = c1r1

q = c2r2

x = 1 − r1

y = 1 − r2

Further equations –
Deg. of Alt. =

+

√(
r2+

R2

R1

)2

(1−r1)
(
r1+

R2

R1

)
(1+r2)

�

�
=

Pet

g1+g2Pet

g1, g2 = constants across Pet
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