Skip to main content
Log in

An overview of bismuth tungstate-based catalysts in various organic transformations

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Bismuth tungstate (Bi2WO6) has received extensive research in a numerous area, including degradation, CO2 reduction, organic transformations, etc. Due to their wide range of applications, the discovery and development of effective, environmentally safe, gentle, and affordable techniques for the synthesis of bismuth tungstate are critical in organic transformations. There have been reports on variety of multicomponent reactions employing the heterogeneous catalysts Bi2O3, BiVO4, and as well Bi2WO6 nanoparticle. Among other materials, Bi2WO6 nanoparticles are perceived for their high reactivity at ambient temperature in an aquatic medium. The main objective of this study is to emphasize the mechanistic considerations, scope, benefits, and limits of recent catalytic improvements in the process of oxidation and other reactions. Consequently, the use of Bi2WO6 catalyst offers many advantages, including high yields, an ecologically friendly process, quick reaction times, and a straightforward work-up technique. It has been created to use a Bi2WO6 catalyst in an aqueous medium in a versatile, simple, one-pot, multi-component technique. This process offers easy-to-find, inexpensive reagents, quick reaction times, great yields, and high atom economy. In this review, we have elaborated how Bi2WO6 nanomaterials can be employed as effective and reusable catalysts for organic transformation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AO:

Ammonium oxalate

Bi Au–Pd:

Bimetallic Au–Pd

BPQD:

Black phosphorous quantum dots

BQ:

Benzoquinone

BTF:

Benzotrifluoride

BW/CTPz:

Bi2WO6/Co-thioporphyrazine

CB:

Conduction band

CBM:

Conduction band minimum

CTAB:

Cetyltrimethylammonium bromide

CuAAC:

Copper-catalyzed azide–alkyne cycloaddition

DHP:

Dihydropyridine derivatives

EDG:

Electron donating group

ESR:

Electron spin resonance

EWG:

Electron withdrawing group

FAPbBr3 :

Formamidinium lead bromide

mono-Pd:

Monometallic Pd

PL:

Photo luminescence spectroscopy

TBA:

Tert-butyl alcohol

VB:

Valence band

NaN3 :

Sodium azide

References

  1. Qiu G, Wang R, Han F et al (2019) One-step synthesized Au– Bi2WO6 hybrid nanostructures: synergistic effects of Au nanoparticles and oxygen vacancies for promoting selective oxidation under visible light. Ind Eng Chem Res 58:17389–17398. https://doi.org/10.1021/acs.iecr.9b03371

    Article  CAS  Google Scholar 

  2. Vivekchand SRC, Govindaraj A, Rao CNR Nanotubes and Nanowires: Recent Developments In Nanomaterials Chemistry Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, https://doi.org/10.1002/9783527611362.ch2

  3. Trivedi TJ, Rao KS, Singh T et al (2011) Task-specific, biodegradable amino acid ionic liquid surfactants. Chemsuschem 4:604–608. https://doi.org/10.1002/cssc.201100065

    Article  CAS  PubMed  Google Scholar 

  4. Paplal B, Nagaraju S, Palakollu V et al (2015) Synthesis of functionalized 1,2,3-triazoles using Bi2WO6 nanoparticles as efficient and reusable heterogeneous catalyst in aqueous medium. RSC Adv 5:57842–57846. https://doi.org/10.1039/C5RA09544A

    Article  CAS  Google Scholar 

  5. Jayaseelan C, Rahuman AA, Roopan SM et al (2013) Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 107:82–89. https://doi.org/10.1016/j.saa.2012.12.083

    Article  CAS  Google Scholar 

  6. Aravindraj K, Mohana Roopan S (2022) WO3-based materials as heterogeneous catalysts for diverse organic transformations: a mini-review. Synth Commun 52:1457–1476. https://doi.org/10.1080/00397911.2022.2089588

    Article  CAS  Google Scholar 

  7. Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2012) Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C–H bonds under ambient conditions. Chem Sci 3:2812. https://doi.org/10.1039/c2sc20603j

    Article  CAS  Google Scholar 

  8. Arunachalapandi M, Roopan SM (2022) Environment Friendly g-C3N4-based catalysts and their recent strategy in organic transformations. High Energy Chem 56:73–90. https://doi.org/10.1134/S0018143922020102

    Article  Google Scholar 

  9. Matano Y (2011) Pentavalent organobismuth reagents in organic Synthesis: alkylation, alcohol oxidation and cationic photopolymerization. Bismuth Med Org React. https://doi.org/10.1007/128_2011_167

    Article  Google Scholar 

  10. Ollevier T (2013) New trends in bismuth-catalyzed synthetic transformations. Org Biomol Chem 11:2740. https://doi.org/10.1039/c3ob26537d

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Chen L, Yuan Q et al (2016) A green and efficient photocatalytic route for the highly-selective oxidation of saturated alpha-carbon C–H bonds in aromatic alkanes over flower-like Bi2WO6. Chem Commun 52:1274–1277. https://doi.org/10.1039/C5CC07586F

    Article  CAS  Google Scholar 

  12. Lv T, Zhao Y, Li S et al (2023) One-pot synthesis of a CaBi2O4/graphene hybrid aerogel as a high-efficiency visible-light-driven photocatalyst. J Phys Chem Solids 174:111164. https://doi.org/10.1016/j.jpcs.2022.111164

    Article  CAS  Google Scholar 

  13. Chao PY, Chang CJ, Lin K-S, Wang C (2021) Synergistic effects of morphology control and calcination on the activity of flower-like Bi2WO6-Bi2O3 photocatalysts prepared by an ionic liquid-assisted solvothermal method. J Alloys Compd 883:160920. https://doi.org/10.1016/j.jallcom.2021.160920

    Article  CAS  Google Scholar 

  14. Rodrigues BS, Branco CM, Corio P, Souza JS (2020) Controlling bismuth vanadate morphology and crystalline structure through optimization of microwave-assisted synthesis conditions. Cryst Growth Des 20:3673–3685. https://doi.org/10.1021/acs.cgd.9b01517

    Article  CAS  Google Scholar 

  15. Li G, Ding Y, Zhang Y et al (2011) Microwave synthesis of BiPO4 nanostructures and their morphology-dependent photocatalytic performances. J Colloid Interface Sci 363:497–503. https://doi.org/10.1016/j.jcis.2011.07.090

    Article  CAS  PubMed  Google Scholar 

  16. Yin J, Chen X, Li G et al (2023) Construction of charge transfer chain in Bi12TiO20-Bi4Ti3O12/α-Bi2O3 composites to accelerate photogenerated charge separation. Nano Res 16:3730–3740. https://doi.org/10.1007/s12274-023-5507-3

    Article  CAS  Google Scholar 

  17. Liu K, Li N, Ding J et al (2023) One-step synthesis of Bi2O2CO3/Bi2S3 S-scheme heterostructure with enhanced photoactivity towards dibutyl phthalate degradation under visible light. Chemosphere 324:138357. https://doi.org/10.1016/j.chemosphere.2023.138357

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Zhang C, Lai C et al (2018) BiOX (X = Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv Colloid Interface Sci 254:76–93. https://doi.org/10.1016/j.cis.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  19. Xiong J, Zeng H-Y, Peng J-F et al (2022) Construction of ultrafine Ag2S NPs anchored onto 3D network Rodlike Bi2SiO5 and insight into the photocatalytic mechanism. Inorg Chem 61:11387–11398. https://doi.org/10.1021/acs.inorgchem.2c01665

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Song Y, Hu J et al (2019) Photocatalytic hydrogen evolution on P-type tetragonal zircon BiVO4. Appl Catal B Environ 251:94–101. https://doi.org/10.1016/j.apcatb.2019.03.049

    Article  CAS  Google Scholar 

  21. Jing K, Ma W, Ren Y et al (2019) Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol. Appl Catal B Environ 243:10–18. https://doi.org/10.1016/j.apcatb.2018.10.027

    Article  CAS  Google Scholar 

  22. Wang M, Han Q, Li L et al (2017) Construction of an all-solid-state artificial Z-scheme system consisting of Bi2WO6/Au/CdS nanostructure for photocatalytic CO2 reduction into renewable hydrocarbon fuel. Nanotechnology 28:274002. https://doi.org/10.1088/1361-6528/aa6bb5

    Article  CAS  PubMed  Google Scholar 

  23. Cui Y, Xia Y, Zhao J et al (2014) Super high selectivity of acrolein in oxidation of propene on molybdenum promoted hierarchical assembly of bismuth tungstate nanoflakes. Appl Catal A Gen 482:179–188. https://doi.org/10.1016/j.apcata.2014.05.021

    Article  CAS  Google Scholar 

  24. Zargazi M, Entezari MH (2019) Anodic electrophoretic deposition of Bi2WO6 thin film: high photocatalytic activity for degradation of a binary mixture. Appl Catal B Environ 242:507–517. https://doi.org/10.1016/j.apcatb.2018.09.093

    Article  CAS  Google Scholar 

  25. Zhang C, Ren J, Hua J et al (2018) Multifunctional Bi2WO6 nanoparticles for CT-guided photothermal and oxygen-free photodynamic therapy. ACS Appl Mater Interface 10:1132–1146. https://doi.org/10.1021/acsami.7b16000

    Article  CAS  Google Scholar 

  26. Seddigi ZS, Gondal MA, Rashid SG et al (2016) Facile synthesis and catalytic performance of nanosheet – nanorods g-C3N4 - Bi2WO6 heterojunction catalyst and effect of silver nanoparticles loading on bare Bi2WO6 and g-C3N4- Bi2WO6 for N-deethylation process. J Mol Catal A Chem 420:167–177. https://doi.org/10.1016/j.molcata.2016.04.026

    Article  CAS  Google Scholar 

  27. Huang H, Zhao J, Du Y et al (2020) Direct Z-Scheme Heterojunction of Semicoherent FAPbBr 3/Bi2WO6 interface for photoredox reaction with large driving force. ACS Nano 14:16689–16697. https://doi.org/10.1021/acsnano.0c03146

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Wang Y, Qi K et al (2023) Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: exploration of photoinduced carrier migration in S-scheme heterojunction. J Alloys Compd 933:167789. https://doi.org/10.1016/j.jallcom.2022.167789

    Article  CAS  Google Scholar 

  29. Lee W-LW, Huang S-T, Chang J-L et al (2012) Photodegradation of CV over nanocrystalline bismuth tungstate prepared by hydrothermal synthesis. J Mol Catal A Chem 361–362:80–90. https://doi.org/10.1016/j.molcata.2012.04.015

    Article  CAS  Google Scholar 

  30. Sun S, Wang W, Zhang L et al (2013) Ultrathin {001}-oriented bismuth tungsten oxide Nanosheets as highly efficient photocatalysts. Chemsuschem 6:1873–1877. https://doi.org/10.1002/cssc.201300406

    Article  CAS  PubMed  Google Scholar 

  31. Murcia-López S, Hidalgo MC, Navío JA (2012) Photocatalytic activity of single and mixed nanosheet-like Bi2WO6 and TiO2 for Rhodamine B degradation under sunlike and visible illumination. Appl Catal A Gen 423–424:34–41. https://doi.org/10.1016/j.apcata.2012.02.016

    Article  CAS  Google Scholar 

  32. Ding Y, Zhao Y, Yao S et al (2023) Enhanced sonodynamic cancer therapy through iron-doping and oxygen-vacancy engineering of piezoelectric bismuth tungstate nanosheets. Small. https://doi.org/10.1002/smll.202300327

    Article  PubMed  Google Scholar 

  33. Zheng Z, Liu J, Yu H et al (2023) Adsorption performance and mechanism of U(VI) in aqueous solution by hollow microspheres Bi2WO6. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-023-08842-3

    Article  Google Scholar 

  34. Zhang Y, Xu Y-J (2014) Bi2WO6: a highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water. RSC Adv 4:2904–2910. https://doi.org/10.1039/C3RA46383D

    Article  CAS  Google Scholar 

  35. Scandura G, Ciriminna R, Xu Y-J et al (2016) Nanoflower-Like Bi2WO6 encapsulated in ORMOSIL as a novel photocatalytic antifouling and foul-release coating. Chem-A Eur J 22:7063–7067. https://doi.org/10.1002/chem.201600831

    Article  CAS  Google Scholar 

  36. Guo Z, Liu B, Zhang Q et al (2014) Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 43:3480. https://doi.org/10.1039/c3cs60282f

    Article  CAS  PubMed  Google Scholar 

  37. Sheldon RA, Arends IWCE, ten Brink G-J, Dijksman A (2002) Green catalytic oxidations of alcohols. Acc Chem Res 35:774–781. https://doi.org/10.1021/ar010075n

    Article  CAS  PubMed  Google Scholar 

  38. Shibley IA Jr, Amaral KE, Aurentz DJ, McCaully RJ (2010) Oxidation and reduction reactions in organic chemistry. J Chem Educ 87:1351–1354. https://doi.org/10.1021/ed100457z

    Article  CAS  Google Scholar 

  39. Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348. https://doi.org/10.1021/ar400309b

    Article  CAS  PubMed  Google Scholar 

  40. Oertel K, Zech G, Kunz H (2000) Stereoselective combinatorial Ugi-multicomponent synthesis on solid phase. Angew Chemie Int Ed 39:1431–1433. https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8%3c1431::AID-ANIE1431%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  41. Kumar A, Gupta MK, Kumar M, Saxena D (2013) Micelle promoted multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction in water. RSC Adv 3:1673–1678. https://doi.org/10.1039/C2RA22428C

    Article  CAS  Google Scholar 

  42. Rouhani M, Ramazani A, Joo SW, Hanifehpour Y (2012) Very efficient and rapid catalyst-free one-pot three component synthesis of 2,5-Dihydro-5-imino-2-methylfuran-3,4-dicarboxylate derivatives under ultrasound irradiation. Bull Korean Chem Soc 33:4127–4130. https://doi.org/10.5012/bkcs.2012.33.12.4127

    Article  CAS  Google Scholar 

  43. Huang E, Zhang L, Xiao C et al (2019) Synthesis and biological evaluation of indole-3-carboxamide derivatives as antioxidant agents. Chinese Chem Lett 30:2157–2159. https://doi.org/10.1016/j.cclet.2019.04.044

    Article  CAS  Google Scholar 

  44. Moosavi-Zare AR, Zolfigol MA, Khaledian O et al (2014) Tandem Knoevenagel–Michael-cyclocondensation reactions of malononitrile, various aldehydes and dimedone using acetic acid functionalized ionic liquid. New J Chem 38:2342. https://doi.org/10.1039/c3nj01509b

    Article  CAS  Google Scholar 

  45. Mondal J, Modak A, Nandi M et al (2012) Triazine functionalized ordered mesoporous organosilica as a novel organocatalyst for the facile one-pot synthesis of 2-amino-4H-chromenes under solvent-free conditions. RSC Adv 2:11306. https://doi.org/10.1039/c2ra22291d

    Article  CAS  Google Scholar 

  46. Manjupriya R, Roopan SM (2023) Unveiling the photocatalytic activity of carbon Dots/g-C3N4 nanocomposite for the O-Arylation of 2-Chloroquinoline-3-carbaldehydes. Catalysts 13:308. https://doi.org/10.3390/catal13020308

    Article  CAS  Google Scholar 

  47. Arunachalapandi M, Chellapandi T, Madhumitha G et al (2022) Direct Z-scheme g-C3N5/Cu3TiO4 heterojunction enhanced photocatalytic performance of Chromene-3-carbonitriles synthesis under visible light irradiation. Catalysts 12:1593. https://doi.org/10.3390/catal12121593

    Article  CAS  Google Scholar 

  48. Tong H, Ouyang S, Bi Y et al (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251. https://doi.org/10.1002/adma.201102752

    Article  CAS  PubMed  Google Scholar 

  49. Zhang N, Ciriminna R, Pagliaro M, Xu Y-J (2014) Nanochemistry-derived Bi2WO6 nanostructures: towards production of sustainable chemicals and fuels induced by visible light. Chem Soc Rev 43:5276–5287. https://doi.org/10.1039/C4CS00056K

    Article  CAS  PubMed  Google Scholar 

  50. Zhang K, Wang J, Jiang W et al (2018) Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO6 for efficient visible-light-driven photocatalysis. Appl Catal B Environ 232:175–181. https://doi.org/10.1016/j.apcatb.2018.03.059

    Article  CAS  Google Scholar 

  51. Wang J, Liang H, Zhang C et al (2019) Bi2WO6-x nanosheets with tunable Bi quantum dots and oxygen vacancies for photocatalytic selective oxidation of alcohols. Appl Catal B Environ 256:117874. https://doi.org/10.1016/j.apcatb.2019.117874

    Article  CAS  Google Scholar 

  52. Fu H, Zhang L, Yao W, Zhu Y (2006) Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Appl Catal B Environ 66:100–110. https://doi.org/10.1016/j.apcatb.2006.02.022

    Article  CAS  Google Scholar 

  53. Chen L, Wang C, Liu G et al (2023) Anchoring black phosphorous quantum dots on Bi2WO6 porous hollow spheres: A novel 0D/3D S-scheme photocatalyst for efficient degradation of amoxicillin under visible light. J Hazard Mater 443:130326. https://doi.org/10.1016/j.jhazmat.2022.130326

    Article  CAS  PubMed  Google Scholar 

  54. Chang C-J, Wang C-W, Wei Y-H, Chen C-Y (2018) Enhanced photocatalytic H2 production activity of Ag-doped Bi2WO6-graphene based photocatalysts. Int J Hydrogen Energy 43:11345–11354. https://doi.org/10.1016/j.ijhydene.2018.03.091

    Article  CAS  Google Scholar 

  55. Kubacka A, Fernández-García M (2018) Chromism and catalysis shake hands. Nat Catal 1:643–644. https://doi.org/10.1038/s41929-018-0151-0

    Article  CAS  Google Scholar 

  56. Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2013) Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glycerol to dihydroxyacetone in water. Chem Sci 4:1820. https://doi.org/10.1039/c3sc50285f

    Article  CAS  Google Scholar 

  57. Ge Y, Zhang Q, Yang C et al (2021) Efficient visible-light-driven selective conversion of glucose to high-value chemicals over Bi2WO6/Co-thioporphyrazine composite in aqueous media. Appl Catal A Gen 623:118265. https://doi.org/10.1016/j.apcata.2021.118265

    Article  CAS  Google Scholar 

  58. Bhoi YP, Rout DP, Mishra BG (2016) Photocatalytic chemoselective aerobic oxidation of thiols to disulfides catalyzed by combustion synthesized bismuth tungstate nanoparticles in aqueous media. J Clust Sci 27:267–284. https://doi.org/10.1007/s10876-015-0928-0

    Article  CAS  Google Scholar 

  59. Delisi R, Ciriminna R, Parrino F et al (2016) One-Pot, Clean Synthesis of Vanillic Acid from Ferulic Acid. ChemistrySelect 1:626–629. https://doi.org/10.1002/slct.201600111

    Article  CAS  Google Scholar 

  60. Wang R, Li B, Xiao Y et al (2018) Optimizing Pd and Au-Pd decorated Bi2WO6 ultrathin nanosheets for photocatalytic selective oxidation of aromatic alcohols. J Catal 364:154–165. https://doi.org/10.1016/j.jcat.2018.05.015

    Article  CAS  Google Scholar 

  61. Liu X, Li H, Ma J et al (2019) Preparation of a Bi2WO6 catalyst and its catalytic performance in an alpha alkylation reaction under visible light irradiation. Mol Catal 466:157–166. https://doi.org/10.1016/j.mcat.2019.01.018

    Article  CAS  Google Scholar 

  62. Paplal B, Nagaraju S, Veerabhadraiah P et al (2014) Recyclable Bi2WO6 nanoparticle mediated one-pot multicomponent reactions in aqueous medium at room temperature. RSC Adv 4:54168–54174. https://doi.org/10.1039/C4RA07708C

    Article  CAS  Google Scholar 

  63. Ciriminna R, Delisi R, Parrino F et al (2017) Tuning the photocatalytic activity of bismuth wolframate: towards selective oxidations for the biorefinery driven by solar-light. Chem Commun 53:7521–7524. https://doi.org/10.1039/C7CC04242F

    Article  CAS  Google Scholar 

  64. Jakhade AP, Biware MV, Chikate RC (2017) Two-dimensional Bi2WO6 nanosheets as a robust catalyst toward Photocyclization. ACS Omega 2:7219–7229. https://doi.org/10.1021/acsomega.7b01086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pathak VV, Rai A, Shukla SK et al (2021) Prospects of iron oxide nanomaterial for remediation of wastewater. Funct Nanomater Based Devices Environ Appl Elsevier. https://doi.org/10.1016/B978-0-12-822245-4.00012-X

    Article  Google Scholar 

  66. Farooq S, Ngaini Z, Farooq S (2021) Manufacturing and design of smart polymer composites. Smart Polym Nanocompos Elsevier. https://doi.org/10.1016/B978-0-12-819961-9.00003-7

    Article  Google Scholar 

  67. Alfaro SO, Martínez-de la Cruz A (2010) Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2W2O9 obtained by co-precipitation method. Appl Catal A Gen 383:128–133. https://doi.org/10.1016/j.apcata.2010.05.034

    Article  CAS  Google Scholar 

  68. Radha R, Srinivasan A, Manimuthu P, Balakumar S (2015) Tailored sunlight driven nano-photocatalyst: bismuth iron tungstate (BiFeWO6). J Mater Chem C 3:10285–10292. https://doi.org/10.1039/C4TC02284J

    Article  CAS  Google Scholar 

  69. López-Tenllado FJ, Murcia-López S, Gómez DM et al (2015) A comparative study of Bi2WO6, CeO2, and TiO2 as catalysts for selective photo-oxidation of alcohols to carbonyl compounds. Appl Catal A Gen 505:375–381. https://doi.org/10.1016/j.apcata.2015.08.013

    Article  CAS  Google Scholar 

  70. Zhang LY, Yang JJ, Han YL (2022) Novel adsorption-photocatalysis integrated bismuth tungstate modified layered mesoporous titanium dioxide (Bi2WO6/LM-TiO2) composites. Opt Mater 130:112581. https://doi.org/10.1016/j.optmat.2022.112581

    Article  CAS  Google Scholar 

  71. Lei C, Song L, Zhang S (2020) Study on the piezoelectric catalytic degradation dyes performance of three-dimensional bismuth tungstate microflower. Ceram Int 46:29344–29351. https://doi.org/10.1016/j.ceramint.2020.08.084

    Article  CAS  Google Scholar 

  72. Bayoumi EE, Abd El-Magied MO, Elshehy EA et al (2022) Lead–bismuth tungstate composite as a protective barrier against gamma rays. Mater Chem Phys 275:125262. https://doi.org/10.1016/j.matchemphys.2021.125262

    Article  CAS  Google Scholar 

  73. Fan Q, Wang T, Fan W, Xu L (2022) Recyclable visible-light photocatalytic composite materials based on tubular Au/TiO2/SiO2 ternary nanocomposites for removal of organic pollutants from water. Compos Commun 32:101154. https://doi.org/10.1016/j.coco.2022.101154

    Article  Google Scholar 

Download references

Acknowledgements

We thank our management for their support and encouragement

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Shobika: Investigation, Writing—original draft. S.M. Roopan: Conceptualization, Writing, review and editing, Supervision.

Corresponding author

Correspondence to Selvaraj Mohana Roopan.

Ethics declarations

Conflict of interest

In this review article, the authors have no conflicts of interest to disclose.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobika, M., Roopan, S.M. An overview of bismuth tungstate-based catalysts in various organic transformations. Transit Met Chem 48, 195–213 (2023). https://doi.org/10.1007/s11243-023-00535-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00535-w

Navigation