Skip to main content
Log in

Manganese(II) complexes of quinoline derivatives: characterization, catalase activity, interaction with mitochondria and anticancer activity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

In order to find mitochondria-targeted mimics of catalase that can attenuate the metabolism of oxygen for cancer chemotherapy, two complexes [Mn(QA)Cl2] and [Mn(QA)(OAc)(H2O)2](OAc) (QA = 2-di(picolyl)amine-N-(quinoline-8-yl)acetamide) were synthesized and characterized by spectroscopic methods. In addition, the crystal structure of [Mn(QA)Cl2] shows that the Mn(II) atom is coordinated by three N atoms (N1, N2,and N3), and one oxygen atom (O1) of the ligand QA, plus two chloride atoms (Cl1 and Cl2), forming a distorted octahedral geometry. The complex [Mn(QA)(OAc)(H2O)2](OAc) could disproportionate H2O2 in Tris–HCl solution at 37 °C, with K cat/K M = 9,226. Furthermore, both Mn(II) complexes were found to be active against the proliferation of HepG-2 cells and could attenuate the swelling of calcium-overloaded mitochondria. These results demonstrate that Mn(II) complexes of quinoline derivatives have potential as attenuators of the absorption of Ca2+ in mitochondria and can interfere with the metabolism of O2 for cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Osanto S, Poppel HV, Burggraaf J (2013) Future Oncol 9:1271–1281

    Article  CAS  Google Scholar 

  2. Lavrado J, Borralho PM, Ohnmacht SA, Castro RE, Rodrigues CMP, Moreira R, Dos Santos DJVA, Neidle S, Paulo A (2013) Chem Med Chem 8:1648–1661

    CAS  Google Scholar 

  3. Qi BH, Mi B, Zhai X, Xu ZY, Zhang XL, Tian ZR, Gong P (2013) Bioorg Med Chem 21:5246–5260

    Article  CAS  Google Scholar 

  4. Xie YY, Huang HL, Yao JH, Lin GJ, Jiang GB, Liu YJ (2013) Eur J Med Chem 63:603–610

    Article  CAS  Google Scholar 

  5. Jiang GB, Yao JH, Wang J, Li W, Han BJ, Xie YY, Lin GJ, Huang HL, Liu YJ (2014) New J Chem 38:2554–2563

    Article  CAS  Google Scholar 

  6. Kruppa M, Konig B (2006) Chem Rev 106:3520–3580

    Article  CAS  Google Scholar 

  7. Chen QY, Zhou DF, Huang J, Guo WJ, Gao J (2010) J Inorg Biochem 104:1141–1147

    Article  CAS  Google Scholar 

  8. Frezza C, Gottlieb E (2009) Semin Cancer Biol 19:4–15

    Article  CAS  Google Scholar 

  9. Monteith GR, Andrew DM, Faddy HM, Robert-Thomson SJ (2007) Nature Rev Cancer 7:519–529

    Article  CAS  Google Scholar 

  10. Wurtele C, Sanser Q, Lutz V, Waitz T, Tuczek F, Schindler S (2009) J Am Chem Soc 131:7544–7545

    Article  Google Scholar 

  11. Li JF, Chen QY (2009) Spectrochim Acta, Part A 73:25–28

    Article  Google Scholar 

  12. Romero I, Dubois L, Collomb MN, Deronzier A, Latour JM, Pecaut J (2002) Inorg Chem 41:1795–1806

    Article  CAS  Google Scholar 

  13. Groni S, Dorlet P, Blain G, Bourcler S, Guillot R, Anxolabehere-Mallart E (2008) Inorg Chem 47:3166–3172

    Article  CAS  Google Scholar 

  14. López-Lázaro M (2007) Cancer Lett 252:1–8

    Article  Google Scholar 

  15. Sheldrick GM (1997) SHELXTL-97, Program for Crystal Structure Solution and Refinement. University of Göttingen, Germany

    Google Scholar 

  16. Liu HL, Xu JJ, Dai XM, Shi JB, Xu S, Gao J, Yao QZ, Liu F (2009) J Appl Toxicol 29:489–495

    Article  CAS  Google Scholar 

  17. Shin BK, Kim MY, Han JH (2010) Polyhedron 29:2560–2568

    Article  CAS  Google Scholar 

  18. Shin BK, Kim MY, Han JH (2007) Polyhedron 26:4557–4566

    Article  CAS  Google Scholar 

  19. Chen QY, Huang J, Li JF, Gao J (2008) Chin Inorg Chem 11:1789–1793

    Google Scholar 

  20. Waldo GS, Penner-Hahn JE (1995) Biochem 34:1507–1512

    Article  CAS  Google Scholar 

  21. Boer JW, Feringa BL, Hage RCR (2007) Chim 10:341–354

    Article  Google Scholar 

  22. Barynin VV, Hempstead PD, Vagin AA, Artymiak PJ (1997) J Inorg Biochem. 67:196–198

    Article  CAS  Google Scholar 

  23. Zhou DF, Chen QY, Qi Y, Fu HJ, Li Z, Zhao KD, Gao J (2011) J Inorg Chem 50:6929–6937

    Article  CAS  Google Scholar 

  24. Weiss JN (1997) FASEB J. 11:835–841

    CAS  Google Scholar 

  25. Shank M, Barynin VV, Dismukes GC (1994) J Biochem 33:15433–15436

    Article  CAS  Google Scholar 

  26. Allgood GS, Perry JJ (1986) J Bacteriol 168:563–567

    CAS  Google Scholar 

  27. Triller MU, Hsieh WY, Pecoraro VL (2002) J Inorg Chem 41:5544–5554

    Article  CAS  Google Scholar 

  28. Larson EJ, Pecoraro VL (1991) J Am Chem Soc 113:7809–7810

    Article  CAS  Google Scholar 

  29. Mohammadi-Bardbori A, Ghazi-Khansari M (2007) Toxico Mechan Methods 17:87–91

    Article  CAS  Google Scholar 

  30. Niesel J, Pinto A, N’Dongo HWP, Merz K, Ott I, Gust R, Schatzschneider U (2008) Chem Commun 15:1798–1800

    Article  Google Scholar 

Download references

Acknowledgments

We thank the financial support from National Science Foundation of China (21271090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Yun Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1991 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZW., Chen, QY. & Liu, QS. Manganese(II) complexes of quinoline derivatives: characterization, catalase activity, interaction with mitochondria and anticancer activity. Transition Met Chem 39, 917–924 (2014). https://doi.org/10.1007/s11243-014-9876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9876-z

Keywords

Navigation