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Abstract
Quantifying the relationship between geometric descriptors of microstructure and effec-
tive properties like permeability is essential for understanding and improving the behavior 
of porous materials. In this paper, we employ a previously developed stochastic model to 
investigate microstructure–property relationships of nonwovens. First, we show the capa-
bility of the model to generate a wide variety of realistic nonwovens by varying the model 
parameters. By computing various geometric descriptors, we investigate the relationship 
between model parameters and microstructure morphology and, in this way, assess the 
range of structures which may be described by our model. In a second step, we perform vir-
tual materials testing based on the simulation of a wide range of nonwovens. For these 3D 
structures, we compute geometric descriptors and perform numerical simulations to obtain 
values for permeability as an effective material property. We then examine and quantify 
the relationship between microstructure morphology and permeability by fitting parametric 
regression formulas to the obtained data set, including but not limited to formulas from the 
literature. We show that for structures which are captured by our model, predictive power 
may be improved by allowing for slightly more complex formulas.

Keywords  Nonwoven · Permeability · Virtual materials testing · Stochastic microstructure 
model · Microstructure–property relationship · Prediction · Regression formula

1 � Article Highlights

•	 We utilize a stochastic microstructure model to generate a large database of virtual yet 
realistic samples of nonwovens.

•	 We investigate the relationship between geometric descriptors of 3D microstructure 
and effective properties.
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•	 Incorporating various geometric descriptors into prediction formulas for permeability 
improves their performance.

2  Introduction

Fiber-based materials, especially nonwovens, play an important role in a wide variety of 
applications like gas-diffusion layers in fuel cell technology (Schulz et  al. 2007), filtra-
tion (Geerling et al. 2020), printing paper (Chinga-Carrasco 2009), and hygiene products 
(Kroutilova et  al. 2020). In different applications, various material properties are crucial 
for the performance of the final product and thus, must be optimized during design and 
production of the fiber mats. Aside from the properties of the fiber material, the geometric 
structure of the fiber systems is directly linked to many effective properties like wettability 
or diffusivity. Using modern tomographic imaging techniques, the 3D microstructure of 
existing nonwovens can be investigated and used as an input for numerical simulations to 
determine effective properties (Soltani et al. 2014). However, while tomographic imaging 
and numerical simulations alone may provide some insight into advanced properties which 
may not be accessible to experimental investigation, they are still limited in the range of 
feasible structures: changing the properties of the nonwovens necessitates changes to the 
production process and is thus costly and time-consuming.

By instead using a stochastic model for the 3D microstructure of nonwovens, a huge 
variety of virtual but realistic structures can be easily generated on the computer and still 
be used for numerical simulations. By this so-called virtual materials testing, relationships 
between the 3D geometry and effective properties can be investigated at a low cost and the 
development of new materials with improved properties can be accelerated (Huang et al. 
2017; Schneider 2017; Venkateshan et  al. 2016). Moreover, quantitative functional rela-
tionships between microstructure and effective properties can be obtained from this kind 
of data, as has already been shown in the literature. For example, in Prifling et al. (2021) 
such relationships were determined on structures derived from artificial models with no 
direct reference to measured image data for real existing materials. On the other hand, for 
fiber-based materials, functional relationships based on extensive experimental studies 
have been derived in Jackson and James (1986). However, the latter investigations focused 
on the solid volume fraction and fiber diameter as the main contributing factors. When 
performing investigations based on simulated data of fiber systems, a larger number of geo-
metric descriptors can be calculated and a more comprehensive view of the relationship 
between microstructure and effective properties can be obtained.

Model-based approaches as described above or as discussed in Soltani et al. (2017) are 
primarily motivated by the shortcomings of real-world methods. In order to investigate 
relationships between manufacturing, microstructure, and effective properties of porous 
materials through physical experimentation, it is necessary to produce a large number of 
samples. This step alone would already require immense time and financial resources. 
Furthermore, manufacturing processes are often rigid and varying individual production 
parameters is not always trivial. While it is possible in theory to produce the necessary 
number of samples, it would not be feasible. Even if the necessary number of samples was 
available, determining all properties of interest through experimentation could prove prob-
lematic for many reasons, e.g., if the resolution of a sensor is not high enough or if a mate-
rial sample is not stable enough to perform the experiment.
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Based on the flexible stochastic model for the 3D structure of nonwovens which 
was developed and validated in Weber et  al. (2023), we present a simulation study to 
investigate the relationship between geometric descriptors and effective properties of 
nonwovens, where we focus on the permeability as the effective property of interest. 
The present work illustrates the full process of virtual materials testing by fitting the 
microstructure model to measured data, simulating structures matching the properties of 
measured structure and subsequently analyzing various scenarios of novel, yet realistic 
structures using established numerical methods. At less than 10 min per simulated and 
analyzed structure, the proposed method allows for a fast and automated investigation of 
a huge number of samples.

We lay the foundation for our study by drawing a large number of virtual yet realistic 
microstructures from the model proposed in Weber et al. (2023). While this model was 
initially fitted to through air bonded nonwovens, it may be equally suitable for other 
types of nonwovens. By considering a wide range of different parameter sets for the 
model, we manage to obtain realistic structures with significantly varying properties. 
On these structures, we compute geometric descriptors and, by numerical simulations, 
permeability.

First, we investigate the relationship between model parameters and geometric 
descriptors by systematically varying the values of selected parameters. Not surpris-
ingly, varying parameters which directly control the porosity of the resulting structures 
leads to a huge variation in a wide range of geometric descriptors. Varying other model 
parameters that control the shape and arrangement of fibers, we are able to adjust some 
selected geometric descriptors. Joint variation of multiple model parameters leads to 
drastic differences in the resulting structures which we investigate in a second step.

The major part of this paper is dedicated to investigating the relationship between 
geometric descriptors and permeability as illustrated in Fig. 1. In particular, we fit para-
metric regression formulas for predicting the permeability from geometric descriptors. 
We discuss the performance of various approaches, partly taken from the literature and 
partly developed for this study. Finally, we discuss the results and outline possibilities 
for further research.

Fig. 1   Overview of the framework for virtual materials testing. Virtual but realistic structures are simulated 
using the presented stochastic model. Then, geometric descriptors and permeability are computed for these 
structures. Functional relationships are established to predict permeability from geometric descriptors



1406	 M. Weber et al.

1 3

3 � Methods

In the following, we will outline the methods applied throughout the present paper. In 
particular, we will give a short summary of the model proposed in Weber et al. (2023) 
and discuss how we choose model parameters for virtual materials testing. Moreover, 
we describe the geometric descriptors that are used for the investigation of microstruc-
ture–property relationships and show how permeability is numerically computed on the 
simulated structures. Finally, we discuss how parametric regression formulas are fitted 
for the prediction of permeability from geometric descriptors.

3.1 � Stochastic Model for Nonwoven Fiber Systems

For the present study, we will employ a spatial stochastic model developed in previous 
works (Weber et  al. 2023), which was designed to represent nonwoven fiber systems. 
It is based on assuming fibers with a circular cross section of constant diameter d > 0 
and by representing the centerlines of single fibers by polygonal tracks with constant 
segment length. This is the centerline of a fiber considered as a sequence of (random) 
points … ,P−1,P0,P1,P2,… ∈ ℝ

3 with |Pn+1 − Pn| = c for all n ∈ ℤ and some constant 
c > 0 . Furthermore, it is assumed that 

{
Pn, n ∈ ℤ

}
 forms a stationary, reversible third-

order Markov chain (Raftery 1985). The transition function, which determines the 
distribution of Pn conditional on Pn−1,Pn−2,Pn−3 is constructed by modeling the joint 
distribution of the random vector (P1,… ,P4) . Due to stationarity, this fully determines 
the transition function of the given third-order Markov chain.

For modeling the joint distribution of (P1,… ,P4) , the z-coordinates and the (x, y)-
coordinates of Pi = (Xi, Yi, Zi) for i = 1,… , 4 are independently modeled. More 
precisely, Z4 is assumed to be independent of Z1 conditional on Z2, Z3 , i.e., 

{
Zn, n ∈ ℤ

}
 

forms a second-order Markov chain and, for simplicity of notation, the joint distribution 
of (Z1, Z2, Z3) is considered. This, in turn, is equivalent to modeling the distribution of 
(Z1, Z2 − Z1, Z3 − Z2) . In the model proposed in Weber et al. (2023), a copula approach 
is used to model this distribution. It consists of modeling the marginal distributions 
of Z1 and Z2 − Z1 (which has the same distribution as Z3 − Z2 ) by generalized normal 
distributions. Then, in a second step, the correlation structure is modeled by a pair-
copula approach, using Clayton copulas for the joint distribution of (Z3 − Z2, Z1) and the 
joint distribution of (Z2 − Z1, Z1) , and a Student’s t copula for the joint distribution of 
(Z3 − Z2, Z2 − Z1) conditional on Z1.

For modeling the sequence of random vectors (X1, Y1),… , (X4, Y4) , the angle 
A between (X3, Y3) − (X2, Y2) and (X2, Y2) − (X1, Y1) , and the angle B between 
(X4, Y4) − (X3, Y3) and (X3, Y3) − (X2, Y2) are considered. They determine the values of 
(X1, Y1),… , (X4, Y4) up to rigid transformations and the joint distribution of (A, B) is suf-
ficient to describe the transition function of (X1, Y1),… , (X4, Y4) . The joint distribution 
of (A, B) is again modeled by a copula approach where the (identical) marginal distribu-
tions of A and B are modeled by a generalized normal distribution and the correlation 
structure of (A, B) is modeled using a Student’s t copula, see (Weber et al. 2023). Note 
that for example, the curl of fibers is largely determined by the distribution and correla-
tion of the angles A and B. Higher values of the scale parameter �A generally correspond 
to stronger curl, whereas higher values of �(A,B) lead to less changes in direction.
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Table 1 gives an overview of the 14 parameters of the model, which will be varied 
for the present study. They will be denoted by P = (p1,… , p14) in the following. Addi-
tional parameters are the extent of the structure in x- and y-direction, which are fixed to 
5 mm, and the length of individual segments of the polygonal tracks, fixed to 50μm.

Note that, in the given model, individual fibers are simulated independently of each 
other and thus may overlap. This does not seem to significantly affect the permeability and 
most of the considered geometric descriptors. For more details and a validation of the used 
model, see (Weber et al. 2023).

3.2 � Simulated Structures

By systematic variation of the parameters P = (p1,… , p14) of the model described 
in Sect.  3.1, we obtain a wide range of realistic, yet novel, nonwoven struc-
tures. The range of chosen parameters is based on two sets of model parameters 
P1 = (p1

1
,… , p1

14
),P2 = (p2

1
,… , p2

14
) which were obtained in Weber et al. (2023) by fitting 

the model to measured data of two different through air bonded nonwovens, where some 
further bounds for the model parameters must be taken into account, see Table 1.

For the different aspects of the current study, we consider three different scenarios creat-
ing the following sets of structures:

Table 1   Overview of the model parameters which will be varied for the present study

a These are modeled via a generalized normal distribution with location parameter fixed to 0
b Z1 is modeled via a generalized normal distribution. The location and scale parameters are chosen such 
that ℙ(0 < Z1 < zmax) = 0.9998 and �(Z1) = zmax∕2
c For Student’s t copula, a higher value of parameter � corresponds to a stronger correlation
d  For the Clayton copula, a higher value of parameter � corresponds to a weaker correlation
The given limits are chosen based on the parameter sets P1 and P2 . If applicable, a meaningful unit is given 
for each parameter

Parameter Limits Description

zmax (mm) (1.5, 4) Extent of the structure in z-direction
DL (mm−2) (10.36, 42.69) Fiber length density, i.e., the total length of fibers per unit volume
d (μm) (4.05, 64.8) Fiber diameter
�A (rad) (0.02, 0.2) Scale parameter of the distributiona modeling A and B
�A (0.3, 1.5) Shape parameter of the distributiona modeling A and B
�Z1 (1, 30) Shape parameter of the distributionb modeling Z1
�Z2−Z1 (μm) (10, 40) Scale parameter of the distributiona modeling Z2 − Z1 and Z3 − Z2

�Z2−Z1 (0.5, 5) Shape parameter of the distributiona modeling Z2 − Z1 and Z3 − Z2

�(A,B) (0.2, 0.9) parameterc of Student’s t copula modeling (A, B)
�(A,B) (3, 4) Parameter of Student’s t copula modeling (A, B)
�(Z3−Z2,Z1) (0.01, 0.1) Parameterd  of the Clayton copula modeling (Z3 − Z2,Z1)

�(Z2−Z1,Z1) (0.01, 0.1) Parameterd  of the Clayton copula modeling (Z2 − Z1,Z1)

�(Z3−Z2,Z2−Z1)|Z1 (0.7, 1) Parameterc of Student’s t copula modeling (Z3 − Z2,Z2 − Z1) conditional 
on Z1

�(Z3−Z2,Z2−Z1)|Z1 (2, 8) Parameter of t Student’s t copula modeling (Z3 − Z2,Z2 − Z1) conditional 
on Z1
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	Scenario I	 The first set is obtained by keeping all parameters fixed with the exception 
of one single model parameter, which is systematically varied. Each of the 14 param-
eters was varied in 10 steps between specifically chosen minimum and maximum 
values, see Table 1. By this method, we created two subsets of structures, for which 
all (but the varied) parameters were chosen to equal P1 or P2 , respectively. In total, 
this resulted in 280 = 14 ⋅ 10 ⋅ 2 cases, for each of which 3 structures were simulated, 
resulting in 840 structures.

	Scenario II	 The second set of structures was created by randomly varying all 
model parameters at the same time. This means that, except for the fiber diameter, 
which was kept fixed, each entry pi of the parameter vector P = (p1,… , p14) was 
independently drawn from a specific (truncated) normal distribution which was 
chosen such that the mean value was given by � = (p1

i
+ p2

i
)∕2 , and the standard 

deviation by � = |p1
i
− p2

i
|∕(2Φ0.75) , where Φ0.75 denotes the 0.75-quantile of the 

standard normal distribution. Thus, the value of pi belongs to the interval (p1
i
, p2

i
) with 

probability 0.5. The normal distributions were truncated to observe the parameter 
bounds shown in Table 1. For each of 500 parameter vectors chosen in this way, 3 
structures were simulated, resulting in 1500 structures.

	Scenario III	 The third set of structures is a small dataset showcasing the effect of fiber 
diameter d and fiber density DL on permeability. Note that the porosity � introduced 
in Sect. 3.3 below can be approximately expressed by

for some constant a > 0 . Thus, different combinations of fiber density and fiber 
diameter can lead to the same value of porosity but hugely different values of per-
meability. To investigate this behavior, all model parameters were kept fixed, except 
for the fiber diameter and fiber density. Seven different target values for porosity 
� between 0.9 and 1 were chosen and for each target value, 5 different combina-
tions of fiber diameter and fiber density leading to the specific value of porosity, 
were considered. For each combination, 3 structures were simulated, resulting in 
105 structures.

In the lateral direction, all structures were simulated in a window of size 5 × 5mm , 
which turned out to be sufficiently large. For each sample, the simulation of the structure 
took about 10 s, the computation of the geometric descriptors terminated after about 62 s 
and the numerical simulation of the permeability took about 380 s on a standard desktop 
computer equipped with an Intel Core i7–7700K and 32GB of RAM.

3.3 � Geometric Descriptors

In the following, we introduce the geometric descriptors on which further analysis of 
microstructure–property relationships is based. Most descriptors are similar to those used 
in  Prifling et  al. (2023), where a more detailed discussion can be found. Recall that for 
the computation of the descriptors we may use the representation of a structure as set of 
polygonal tracks as well as voxel image.

Porosity Probably, the most fundamental geometric descriptor when it comes to any 
kind of porous material is the porosity � ∈ [0, 1] , or the solid volume fraction 1 − � . We 

(1)� ≈ 1 − aDLd
2
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estimate porosity from voxel images by simply counting the number of voxels belonging to 
the void space and dividing by the total number of voxels.

Tortuosity The notion of tortuosity is often considered when investigating transport phe-
nomena. While there exists a wide variety of different specifications of tortuosity (Holzer 
et al. 2023; Ghanbarian et al. 2013), we only consider the geodesic tortuosity � ≥ 1 , which 
is based purely on geometric information and does not involve numerical simulations. It is 
related to the windedness of the shortest transportation paths. While in general, tortuosity 
is a second-order tensor, it is enough for us to consider a scalar because we are only inter-
ested in the through direction of nonwoven, perpendicular to the plane that the fibers are 
oriented almost parallel to. We compute the tortuosity by considering the voxelized struc-
tures and defining a transport direction, in our case, from z = 0 to z = zmax . For each target 
voxel on the plane through z = zmax , we compute the shortest path from the opposite side to 
that voxel through the pore space using Dijkstra’s algorithm (Jungnickel 2008) on the voxel 
grid. Note that, Dijkstra’s algorithm is a greedy algorithm iteratively finding shortest paths 
in a weighted graph. The voxel-based tortuosity is then computed as the ratio of the length 
of the shortest path and the thickness zmax of the structure. For the present study, the mean 
geodesic tortuosity �(�) and its standard deviation �(�) are considered which are estimated 
from the tortuosity values for all target voxels from a given structure.

Constrictivity A further directly transport-related property is the constrictivity 
� ∈ [0, 1] which measures bottleneck effects along transportation pathways. Again, we 
define the transport direction from z = 0 to z = zmax . Then, the constrictivity � is defined as 
the ratio � =

rmin

rmax
 of two characteristic pore radii rmin and rmax , where rmax is the maximum 

radius such that 50% of pore space can be covered in (overlapping) spheres of that radius. 
These spheres are not allowed to penetrate into the solid phase, i.e., the fibers. Similarly, 
rmin is the maximum radius of spheres which can intrude from the plane at z = 0 into the 
structure and fill 50% of pore space. This concept may be viewed as a digital version of 
mercury intrusion porosimetry.

Specific surface area The specific surface area S is the (mean) area of the solid-pore 
interface per unit volume. It is estimated by computing the total surface area within a given 
sampling window and dividing it by the window’s volume. In the case of fiber systems, the 
specific surface area is directly related to the porosity, the fiber diameter and the curl and 
overlap of fibers.

Chord length distribution Chords are straight lines in a given direction fully contained 
in the pore space which start and end at the pore-solid interface or the boundary of the 
sampling window. The distribution of the length C of such segments is called chord length 
distribution. In this work, we consider chords in z-direction and estimate the chord length 
distribution by collecting all possible chords within the voxelized structure. Note that other 
definitions use other notions of ‘‘random chord” and essentially lead to a length-weighted 
distribution of chord lengths. In the following, we consider the mean chord length �(C).

Mean spherical contact distance The average distance from a randomly selected 
point within the pore space to the nearest point within the solid phase (i.e., to the near-
est fiber) is called mean spherical contact distance, In the following, it will be denoted by 
�(H) . We estimate it by randomly choosing a large number of points within the pore space 
and averaging over their distances to the nearest fiber, computed directly on the polygonal 
track data.

The geometric descriptors stated above are determined for all simulated structures of 
Scenarios I, II and III. The obtained results are stored in a database, which contains the 
values of model parameters used for the simulation of a given structure, along with the 
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corresponding values computed for geometric descriptors and permeability, where the 
computation of permeability is explained in the next section.

3.4 � Computation of Permeability

In general, the permeability � is a 3 × 3 tensor corresponding to the 3 spatial directions. 
Furthermore, it is a material property. For nonwoven, fibers tend to be oriented strongly 
anisotropically nearly in a plane, and only the through-direction perpendicular to that 
plane is measured. By our convention for modelled structures, the through-direction is the 
z-direction. With this in mind, a scalar permeability � , the (3, 3) entry of the above-men-
tioned tensor, is computed for the through-direction (or z-direction) based on appropriately 
rearranging Darcy’s law

Here, Q is the flow rate, A the area perpendicular to the flow direction over which the flow 
rate occurs, i.e., in the x-y plane, ū is the (macroscopic) flow velocity, ΔP is the pressure 
drop, L is the thickness of the nonwoven, i.e., length in the z-direction, and � is the dynamic 
viscosity of the fluid, that contains the kinematic viscosity of the fluid and its density. The 
permeability � identifies the proportionality between the pressure drop and flow velocity.

Darcy’s crucial observation was that the permeability is determined by the geometry of 
the pore space alone and thus is a constant for porous materials. The viscosity � and media 
thickness L are fluid and material parameters, respectively, that must be fixed and known in 
order to compute � . Darcy’s law, see Eq. (2), is valid under some assumptions on the rep-
resentativeness of the material and parameters of the flow, i.e., that the fluid is incompress-
ible, Newtonian and flowing rather slowly, corresponding to a moderate pressure drop. In 
real experiments, u and ΔP are measured, and the proportionality only holds for small pres-
sure drops and velocities, but independently of the fluid viscosity � and experimental value 
ΔP . For faster flows and higher pressure drops, there exists a generalization of Darcy’s law 
called Forchheimer’s law. The latter uses two material constants which can also be deter-
mined by computer simulations, but is not considered here.

In the computational experiments, the permeability for the nonwoven models is deter-
mined using the FlowDict module of the GeoDict software (Linden et  al. 2018; Becker 
et  al. 2023). The flow solver code was validated against previous code versions that in 
turn were validated against experimental data in Glatt et al. (2009). For a given ΔP , the 
approach is to solve a large linear system of equations resulting from a discretization of the 
Stokes equations, see Eqs, (3)–(5), on the microstructure where the pressure p and the x-, 
y-, and z-components of the (local, interstitial) velocity vector u at each pore space voxel of 
the binary image are the unknowns. Then, the local velocities get averaged to find the mac-
roscopic or superficial ū (Wiegmann 2007). For the sake of concreteness, the simulations 
assume that the pressure drop is 0.02 Pa and that the dynamic viscosity � = 1.834 ⋅ 10−5 
i.e., that the pore space is filled with air at 20 ◦C . The resulting permeability is independent 
of the choice of pressure drop and viscosity as it should be analytically due to the dropping 
of the intertia term of the Navier-Stokes equations, up to the accuracy of the numerical 
computations. Note some symbols conflict with other definitions in this paper, but are cho-
sen in this section to be consistent with existing literature.

Each simulated structure is initially given as a set of polygonal tracks (fibers) within 
a fixed bounding cuboid W = [0, xmax] × [0, ymax] × [0, zmax] and equipped with a fiber 

(2)
Q

A
= ū =

𝜅

𝜇
⋅

ΔP

L
.
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diameter d. However, for the numerical flow simulations, a conversion into (binary) voxel 
images is done by the software. The voxel length h must be chosen small enough to resolve 
the fiber diameter, and so that the results of the flow simulation do not depend on it as 
would be the case for too large voxel sizes. For highly porous fibrous materials, as in the 
case under consideration here, voxel length h = d∕10 is sufficient. These binary images 
also form the base for the computation of some of the geometric descriptors.

Finally, to compute the permeability in the z-direction we add an inlet of the length 
lin and an outlet of the length lout to the domain to allow for the flow to be uniform far in 
front and behind the nonwoven, and thus to be able to use periodic boundary conditions for 
the velocity in all three spatial directions as well as periodic boundary conditions for the 
pressure.

Under the assumption of slow, viscous, steady-state incompressible flow through the 
nonwoven, the Reynolds number is zero, and the time-derivative as well as the inertial 
term in the Navier–Stokes equations can neglected. This means we can use the steady state 
incompressible Stokes equations with periodic boundary conditions on the domain and no-
slip boundary conditions, see Eq. (5), on the fiber surfaces

where G is the volume that is occupied by fibers, Ω is the computational box [
0, xmax

]
×
[
0, ymax

]
×
[
−lin, zmax + lout

]
 , and �G is the surface of G. u is the periodic veloc-

ity vector with components, u, v and w. f = (0, 0, c) is a constant body force vector where c 
is derived from the desired pressure drop ΔP and the length of the computational domain 
in the z-direction, and p is the periodic pressure. That pressure can be made physical by 
adding the linear function that is independent of x and y and assumes the values ΔP at the 
inlet boundary and 0 at the outlet boundary. The latter choice removes the non-uniqueness 
of the pressure resulting from the periodic boundary conditions and lets us see the com-
puted pressure as the difference from the atmospheric pressure at the outlet of the simula-
tion domain. Figure 2 illustrates this behavior. It clarifies also the fact that L is only the 
thickness of the nonwoven media and does not include the inlet and outlet, as longer or 
slightly shorter inlets and outlets would not change the behavior of the flow.

(3)−�Δu + ∇p =f in Ω ⧵ G,

(4)∇ ⋅ u =0 in Ω ⧵ G,

(5)u =0 on �G,

Fig. 2   The physical pressure 
resulting from a simulation with 
inlet and outlet. There is no 
pressure loss in the empty space 
before and behind the nonwoven, 
and the slight deviation from 
linear over the nonwoven is typi-
cal for highly porous and uniform 
porous materials
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The linear systems of equations resulting from the discretization of Eqs.  (3)–(5) are 
solved in Becker et al. (2023) using the LIR approach from Linden et al. (2014, 2015) with 
improved discretization of the no-slip boundary conditions (following Harlow and Welch 
1965) and greater efficiency than were proposed in Wiegmann (2007).

3.5 � Fitting of Parametric Regression Formulas

For the prediction of permeability from geometric descriptors, we consider different para-
metric regression formulas which will be discussed in Sect. 4.2 below. For fitting and eval-
uation of the prediction formulas, we use the data obtained for structures from Scenario 
II, where we split it into a subset for fitting the formulas and a (smaller) subset for evaluat-
ing their performance. Fitting of the formulas is performed by means of SciPy’s (Virtanen 
et al. 2020) built-in methods for least-squares optimization using the Levenberg-Marquardt 
algorithm. Note that the values of permeability obtained for the structures from Scenario 
II are within a much tighter range than, e.g., those considered in  Prifling et  al. (2021). 
Nevertheless, they span two orders of magnitude, such that the behavior for large values of 
permeability would disproportionately influence the fit of the formulas. Thus, we apply a 
log-transform prior to fitting.

To assess the quality of the fit, we use the mean absolute percentage error (MAPE), 
which is given by

and the coefficient of determination R2 given by

where y1,… , yk is the ground truth data, ŷ1,… , ŷk are the corresponding predictions 
and ȳ = 1

k

∑k

j=1
yj is the mean of the ground truth data. The values of MAPE and R2 are 

computed on (not log-transformed) test data which has not been used for fitting. However, 
note that the least-squares fit essentially optimizes the R2-value for the log-transformed 
data.

4 � Results

For each structure generated in Scenarios I, II and III as outlined in Sect. 3.2, we computed 
the geometric descriptors described above as well as the corresponding permeability. In 
the following, we present the results of the statistical analysis of this data. This includes 
the investigation of microstructure–property relationships, where we consider various para-
metric regression formulas for the prediction of permeability from a range of geometric 
descriptors and discuss their performance.

Recall that for each specification of model parameters, 3 structures were generated 
which vary with respect to geometric descriptors and permeability. For structures of Sce-
nario II, the coefficient of variation for the numerically computed values of permeability 
is equal to 60.10 when considering the full set of simulated structures. However, the mean 

MAPE =
100

k

k∑

j=1

|||||

ŷj − yj

yj

|||||
,

R2 = 1 −

∑k

j=1
(yj − ŷj)

2

∑k

j=1
(yj − ȳ)2

,
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coefficient of variation when considering each specification of model parameters individu-
ally is only equal to 3.06, indicating that structures which were simulated using the same 
specification of model parameters are rather similar.

4.1 � Statistical Analysis of Simulated Fiber Systems

In a first step, we illustrate the range of feasible structures and investigate some basic rela-
tionships between model parameters and geometric descriptors resp. permeability. Struc-
tures of Scenario II, which were simulated using randomly chosen model parameters as 
discussed above, exhibit a wide range of values for many geometric descriptors, see Fig. 3, 
which shows cutouts of 3 simulated structures of Scenario II. This can be made more pre-
cise by histograms of geometric descriptors and permeability computed for each of the 
simulated structures of Scenario II, see Fig. 4. It can be clearly seen that none of these 
histograms can be modeled by a Gaussian distribution.

Furthermore, we may use the data of Scenario III to investigate the fiber diameter, fiber 
density, and permeability. Recall that the volume fraction of fibers (i.e., 1 − � ) is roughly 
a function of the squared fiber diameter while fiber density has a linear effect, see Eq. (1). 
As expected, increasing the fiber diameter while decreasing the fiber density to keep the 
porosity fixed has a positive effect on permeability, see Fig. 5.

Finally, to investigate the influence of single model parameters on geometric descrip-
tors, we consider structures of Scenario I. Figure  6 shows this kind of relationships for 
selected pairs of model parameters and descriptors. As expected, increasing the fiber 
density changes many geometric descriptors, including the mean chord length. But other 
parameters also influence the morphology of the fiber systems. The value of �A which 

Fig. 3   Examples of simulated structures of Scenario II. The top left structure exhibits a very low tortuosity, 
the top right and bottom structures have a low and high constrictivity, respectively
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Fig. 4   Histograms of geometric descriptors and permeability computed for structures of Scenario II 

Fig. 5   Relationship between permeability, porosity, and fiber diameter. As expected, for given porosity, per-
meability is low when the structure is composed of a huge number of thin fibers as compared to a smaller 
number of thicker fibers. Each dot corresponds to a structure of Scenario III 

Fig. 6   Relationships between selected pairs of model parameters and geometric descriptors, for struc-
tures of Scenario I. For each pair, we used the model parameters P1 = (p1

1
,… , p1

14
) (blue dots) and 

P2 = (p2
1
,… , p2

14
) (orange dots), which were obtained in Weber et al. (2023) by fitting the model to meas-

ured data of two different nonwovens, and varied only one single parameter. Left: Constrictivity vs shape 
parameter of the distribution of A. Center: Mean spherical contact distance vs parameter � of the copula 
corresponding to (Z2 − Z1,Z1) . Right: Mean chord length vs fiber density
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influences the curvature of fibers projected onto the x–y-plane has a strong influence on the 
constrictivity of the resulting structures. The dependence of geometric descriptors on other 
parameters is more complex and the effect of some model parameters on the morphology 
of the fiber systems may not be captured by the geometric descriptors stated in Sect. 3.3.

4.2 � Quantitative Microstructure–Property Relationships

In this section we consider various parametric regression formulas which express perme-
ability in term of geometric descriptors of the simulated fiber systems. In this context, we 
first analyze the correlation between different geometric descriptors and permeability. Fig-
ure  7 shows these correlations based on data of Scenario II. Note that various geomet-
ric descriptors are strongly correlated with permeability. As expected, porosity and per-
meability are positively correlated whereas mean geodesic tortuosity and permeability are 

Fig. 7   Correlation between geometric descriptors and permeability, based on data of Scenario II 

Fig. 8   Relationship between selected pairs of geometric descriptors and permeability (color of dots) for 
structures of Scenario II. Left: Porosity vs constrictivity. Center: Mean chord length vs specific surface 
area. Right: Standard deviation of tortuosity vs mean chord length
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negatively correlated. Moreover, most geometric descriptors are highly correlated with 
porosity, i.e., suggesting that a large amount of information about the morphology of the 
fiber systems is contained in a single geometric descriptor.

However, besides porosity, the other geometric descriptors considered in this paper 
deliver further (refined) morphological information. Figure 8 shows scatter plots of various 
pairs of descriptors obtained for structures of Scenario II. As expected, the porosity � has a 
huge impact on the permeability, but other properties play an important role as well. E.g., 
the standard deviation of tortuosity together with the mean chord length seem to be highly 
correlated with permeability.

Based on the data of Scenario II, we fitted different regression formulas to predict the 
permeability � from geometric descriptors. In the following, we will discuss these formulas 
and their goodness of fit. Note that some formulas which were proposed in the literature, 
specifically for fibrous porous media, predict the quantity �∕d2 instead of � (Jackson and 
James 1986). However, as the fiber diameter d was not varied for the structures of Scenario 
II, we will ignore the fiber diameter and fit formulas to directly predict �.

While some prediction formulas are designed observing physical units, others are solely 
targeted to obtain the best numerical values at the cost of a limited interpretability. As a 
baseline formula which does not preserve meaningful units, we consider the equation

which represents one of the most simple relationships between porosity and permeabil-
ity. Based on the data of Scenario II, we obtain the fitted parameters c1 = 3.85 × 10−8 and 
c2 = 61.07.

Additionally incorporating constrictivity � and specific surface area S, the following for-
mula was introduced in Neumann et al. (2020), which preserves the physical units:

where fitting led to the parameters c1 = 5.03 × 10−12, c2 = −24.88, c3 = 0.13 and 
c4 = 59.51 . Furthermore, a slightly simplified version of Eq. (7) given by

was considered in  Röding et  al. (2020). Then, the fitted parameters are 
c1 = 4.96 × 10−12, c2 = −24.17 and c3 = 59.91 . Deviating from pure power-law type for-
mulas as described above, in  Prifling et  al. (2021) still another formula was introduced, 
which is based on the same descriptors as Eq. (7):

with fitted parameters c1 = 4.80 × 10−12, c2 = −8.08, c3 = −23.06 and c4 = 55.68.
Again ignoring physical units, we consider the following slight modification of Eq. (7) 

which allows for a flexible choice of the exponent of S:

where fitting leads to the parameters c1 = 2.29 × 10−10, c2 = 4.41, c3 = −1.15 and 
c4 = −13.50 . Adding the constrictivity � as a variable leads to the formula

(6)𝜅̂1 = c1𝜀
c2 ,

(7)𝜅̂2 = c1𝜀
c2𝛽c3S−2𝜇(𝜏)c4 ,

(8)𝜅̂3 = c1𝜀
c2S−2𝜇(𝜏)c4

(9)𝜅̂4 = c1𝜀
c2+c3𝛽S−2𝜇(𝜏)c4

(10)𝜅̂5 = c1𝜀
c2Sc3𝜇(𝜏)c4 ,

(11)𝜅̂6 = c1𝜀
c2𝛽c3Sc4𝜇(𝜏)c5
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with fitted parameters c1 = 5.07 × 10−10, c2 = 4.21, c3 = 1.01, c4 = −1.00 and 
c5 = −29.72 . Alternatively, one may ignore the specific surface area, leading to

with fitted parameters c1 = 5.04 × 10−8, c2 = 33.21, c3 = 1.88, c4 = −118.69.

Finally, we consider a power-law type formula incorporating a wider range of geometric 
descriptors to investigate the theoretically achievable predictive power of these types of 
relationships, where fitting the formula

leads to the parameters c1 = 5.08 × 10−8, c2 = 12.18, c3 = −2.21, c4 = −0.67,
c5 = 101.67, c6 = 1.05, c7 = 1.56 and c8 = 0.51.

(12)𝜅̂7 = c1𝜀
c2𝛽c3𝜇(𝜏)c4

(13)𝜅̂8 = c1𝜀
c2𝛽c3Sc4𝜇(𝜏)c5𝜎(𝜏)c6𝜇(C)c7𝜇(H)c8

Fig. 9   Permeability predicted by the parametric formulas given in Eqs.  (6)–(13), against the ground-truth 
permeability computed by the methods described in Sect. 3.4. Each dot corresponds to one structure from 
the test dataset of Scenario II 
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A visual impression of the predictive power of Eqs.  (6)–(13) can be obtained from 
Fig.  9. Visually, all prediction formulas perform reasonably well, which is corroborated 
by the values of R2 and MAPE shown in Table 2. However, there is a clear trend for most 
prediction formulas showing a better fit for lower values of permeability. As the fits were 
performed on log-transformed data, this is probably due to the fact that only few structures 
exhibit the higher values of permeability while a huge amount of data are present for lower 
values. Especially, when considering Eq. (13), it becomes clear that the prediction can be 
improved significantly when considering further geometric descriptors as compared to, 
e.g., Eq. (6), which is solely based on the porosity �.

5 � Conclusion

For the efficient development of improved functional materials, understanding the relation-
ship between easy to manipulate geometric descriptors of their 3D morphology and desired 
material properties is important. Traditional experimental setups for the investigation of 
these relationships are expensive and time-consuming and, furthermore, some important 
aspects may not be accurately measured. By using a stochastic microstructure model com-
bined with numerical simulations, virtual materials testing may be performed to investigate 
these relationships. Compared to real experiments, our approach based on modeling and 
simulation is cheap and time-efficient at less than 10 min per simulated and analyzed struc-
ture on a regular desktop computer. It can be used to generate a huge database of virtual 
but realistic structures for which all the desired geometric descriptors and effective proper-
ties can be easily computed. From this data, a thorough understanding of the relationship 
between 3D morphology and effective properties of nonwovens can be obtained. Using 
this knowledge, the production process may be optimized by targeting solely geometric 
descriptors which are easier to manipulate than the effective material properties.

In this paper, we showed the full process of virtual materials testing by fitting the micro-
structure model to measured data, simulating structures matching the properties of measured 
structure and subsequently analyzing various scenarios of novel, yet realistic structures using 

Table 2   Performance metrics 
of the fitted prediction formulas 
computed on the test dataset

R2
log

 denotes the R2 on the log scale, which was essentially optimized 
during the fit

Equations R
2

R
2
log

MAPE (%)

(6) 0.788 0.832 15.39
(7) 0.766 0.849 13.90
(8) 0.766 0.848 13.83
(9) 0.771 0.851 13.91
(10) 0.826 0.867 12.21
(11) 0.837 0.872 12.44
(12) 0.826 0.857 14.08
(13) 0.894 0.914 11.58
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established numerical methods. Precisely, we employed a stochastic model for nonwoven 
fiber materials to generate a large set of different structures and computed various geomet-
ric descriptors for each simulated structure. Furthermore, through numerical simulations, 
we computed permeability. To exemplify the approach of virtual materials testing, we then 
deduced parametric regression formulas to describe the relationship between 3D morphology 
and permeability. We used different types of formulas found in the literature as well as some 
custom-designed formulas and were able to show that permeability does not only depend on 
porosity, but very much on other geometric descriptors as well.

Our approach enables material scientists and designers to make fast predictions about a 
material’s effective properties based purely on easy-to-measure geometric descriptors. Using 
the prediction formulas considered in this paper, it might also be easier to design or mod-
ify a material in order to achieve a desired permeability, as it becomes clear how individual 
descriptors factor into the permeability of the material. For real-world production processes, 
this means that instead of finding the right production parameters to obtain the desired mate-
rial properties, it is only necessary to optimize the process to get 3D morphologies with the 
right geometric descriptors. If the relationship between production parameters and geometric 
descriptors of the material is known to the manufacturer, the entire pipeline of the material’s 
design can be done virtually.

The methods shown in this paper can easily be extended to the full permeability tensor 
or other properties like diffusivity or wettability. Further work could use the large amount of 
virtual samples as training data for a machine learning based approach that could establish a 
fast and more precise, yet less interpretable link between geometric descriptors and effective 
properties of fiber-based materials.

Utilized Numerical Tools

The python programming language was used to implement the model, simulate the 
structures, compute geometric descriptors, fit parametric formulas and prepare most of 
the figures for this manuscript. Notably, the following libraries were used: NumPy (Har-
ris et  al. 2020), SciPy  (Virtanen et  al. 2020), a slightly modified version of pyvinecop-
ulib (Vinecopulib 2023), Numba (Lam et al. 2015) for accelerated execution and Matplot-
lib (Hunter 2007) and seaborn (Waskom 2021) for creating most of the figures.

GeoDict (Becker et al. 2023) was used to numerically compute the permeability and for 
3D rendering of selected structures.
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