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Abstract
Plurigaussian simulation is a method of discrete random field generation that can be used to 
generate many complex geometries depicting real world structures. Whilst it is commonly 
applied at larger scales to represent geological phenomena, the highly flexible approach is 
suitable for generating structures at all scales. Here, an extension of plurigaussian simu-
lation to periodic plurigaussian simulation (P-PGS) is presented, such that the resulting 
fields are periodic in nature. By using periodic Gaussian random fields as components of 
the method, periodicity is enforced in the generated structures. To substantiate the use of 
P-PGS in capturing complex heterogeneities in a physically meaningful way, the pore-scale 
microstructure of cement paste was represented such that its effective properties can be cal-
culated through a computational homogenisation approach. The finite element method is 
employed to model the diffusion of heat through the medium under dry and saturated pore 
conditions, where numerical homogenisation is conducted to calculate the effective thermal 
conductivity of the medium. Comparison of the calculated values with experimental obser-
vations indicated that the generated microstructures are suitable for pore-scale representa-
tion, given their close match. A maximal error of 1.38% was observed in relation to the 
numerically determined effective thermal conductivity of mortar paste with air filled pores, 
and 0.41% when considering water filled pores. As the assumption of a periodic domain is 
often an underlying feature of numerical homogenisation, this extension of plurigaussian 
simulation enables a path for its integration into such computational schemes.

Article Highlights

• Integrating P-PGS into numerical homogenisation frameworks enhances complex het-
erogeneous material representation

• The flexibility of P-PGS enables a wide range of material microstructures to be repre-
sented accurately

• Use of the generated structures allows material properties to be estimated accurately 
through numerical homogenisation
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1 Introduction

Understanding the complex response of materials at different scales can give insight into 
their overall behaviour, where often the micro-level dynamics have a large influence on 
the macro-level response. This is true for many mechanical or transport-based processes, 
which are often dependent on the geometry of the discrete structures seen at each level. 
One such process is thermal diffusion, where the thermal conductivity is a key considera-
tion when employing materials in the built environment. For example, insulative proper-
ties of materials can significantly influence comfort and heating costs for individuals in 
surrounding areas. Similarly, it has been shown that the associated damage mechanisms 
of these heterogeneous materials originates from thermal-related micro- and meso-scale 
behaviour (Evans 1978), highlighting the need for accurate prediction at all scales of obser-
vation of effective material properties.

In the first instance, research focussed on the behaviour of heterogeneous solids through 
variational principles, such that upper and lower bounds could be computed for the effec-
tive material properties (Rosen and Hashin 1970; Hashin 1983; Gibiansky and Torquato 
1997). An alternative approach was then taken, deriving closed-form expressions for said 
properties based on a solution of inclusions within an infinite medium (Noor and Shah 
1993), but often relied on idealisation of the material geometry and system response. The 
use of asymptotic methods has been considered for determining the constitutive compo-
nents of periodic microstructures (Auriault 1983). Originally being used to solve differ-
ential equations with periodic boundary conditions, the approach utilises an asymptotic 
expansion of a given unknown field such as temperature or displacement, and truncates 
the higher-order terms to give homogenised properties. Due to the significant advancement 
of computational resources, many approaches have been developed for numerical homog-
enisation (Ghosh and Liu 1995; Jiang et al. 2002), often using the finite element method 
(FEM) in conjunction with multi-level simulation (Özdemir et al. 2008; Rocha et al. 2021; 
Ricketts et al. 2023c). Macro-level models are fed information about the solution -calcu-
lated at various scales- such that the need for highly empirical relations is negated, and 
is seen in methods such as  FE2 (Feyel and Chaboche 2000) and equation free modelling 
(Bindal et  al. 2006; Tretiak et  al. 2022). Typically, these are computationally expensive, 
as a boundary value problem (BVP) is solved at the micro-scale for each integration point 
in the macro-level domain. It is worth noting that methods have been developed to reduce 
this cost, such as neural network based surrogate models (Lefik et al. 2009; Ghavamian and 
Simone 2019; Rocha et  al. 2020), and model order reduction techniques (Chaturantabut 
and Sorensen 2010; Kerfriden et al. 2011; Goury et al. 2016; Ghavamian et al. 2017).

The unifying factor in all the considered approaches is that a description of the micro-
scale geometry is necessary in terms of a representative volume element, over which the 
homogenisation process is conducted. Generally, this is simplified in terms of the geom-
etry, and is often not representative of the true complex microstructural geometry, which 
is known to impact the resulting effective properties. Whilst experimentally obtained scans 
-e.g. from micro-X-ray computed tomography- could be used as the BVP domain, these are 
often expensive to analyse in terms of time and computing resources (Le Houx et al. 2023). 
It would be advantageous to be able to generate these virtually at low computational cost. 
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Many methods exist for generating virtual cementitious materials, such as the use of CEM-
HYD3D (Bentz 2006), aggregate placing methods (Zhang et al. 2018; Thilakarathna et al. 
2020; Holla et al. 2021), machine learning alternatives (Cruz et al. 2016), with the most 
commonly used being HYMOSTRUC3D (van Breugel 1995; Patel et al. 2018a).

Plurigaussian simulation (PGS) is a lesser explored stochastic method for microstruc-
tural generation. It was first introduced by Galli et al. (1994), and developed further in 
the following years (Loc’h and Galli 1997; Dowd et  al. 2003; Armstrong et  al. 2014) 
for geological applications. The method is based on the truncation of Gaussian random 
fields (Matheron et al. 1987; Beucher and Renard 2016), but unlike the sequential rela-
tionship that the resulting field has between its phases, PGS can produce more complex 
connectivity between its phases in a non-sequential manner. This is determined by a 
prescribed lithotype rule, which controls the distinct geometry and proportions of the 
generated field, as well as the spatial relationship between facies (Doligez et al. 2011). 
The method commonly applied in representing field scale structures such as ore depos-
its or geologic formations (Betzhold and Roth 2000; Yunsel and Ersoy 2011; Renard 
and Beucher 2012; Talebi et al. 2013; Maleki and Emery 2014; Mery et al. 2017; Teles 
et al. 2023) and petroleum reservoirs (Chautru et al. 2015; Beucher and Renard 2016; 
Zagayevskiy and Deutsch 2016; Martinius et  al. 2017; Madani et  al. 2018), but has 
also been used at much smaller scales such as in the generation of the micro-structure 
of solid oxide cells (Abdallah et  al. 2016), porous media (Méndez-Venegas and Díaz-
Viera 2013), mineral microstructures (Teichmann et  al. 2021), as well as concrete at 
various scales for the calculation of effective diffusion coefficients through a multi-level 
approach (Ricketts et al. 2023c).

In many asymptotic or computational homogenisation approaches, the micro-scale rep-
resentative volume elements are assumed periodic. Thus, in this study, the PGS framework 
is extended to allow for the generation of periodic structures, being denoted as P-PGS. The 
highly flexible approach allows for the generation of many complex discrete geometries 
with minimal computational cost. A series of pore-scale representations of cement paste 
are generated based on experimental observations (Khan 2002; Liu et al. 2020; Stolarska 
and Strzałkowski 2020), and their effective thermal conductivities are calculated for dry 
and saturated pore conditions. Finally, these are compared against experimental values to 
assess the generated microstructures in being representative of the pore-scale geometry. 
Taking a numerical approach for material characterisation allows for a much wider descrip-
tion of the material to be attained much more quickly than the equivalent experimental pro-
cess. The use of P-PGS enables the quantification of material properties based on a more 
closely fitting geometric representation than current solutions offer, such as pore network 
modelling (Van Marcke et al. 2010; Yang et al. 2019).

Here, the simulations are conducted in 2D, but it is noted that there is an intrinsic dif-
ference between 2D analyses and the 3D reality of pore-scale transport processes, being 
inherently three dimensional. Despite the potential for discrepancy in qualitative informa-
tion, 2D representations have been employed as a step towards more complex 3D investi-
gations, where this methodological choice is rooted in the current scope of the research. 
As will be seen in Sect.  4, the results correlate well with experimental data for thermal 
conductivity under both dry and saturated conditions, validating the robustness and rele-
vance of the 2D approach within its acknowledged limitations. Whilst 3D analyses hold the 
promise of yielding quantitatively differing results, the approach is conceptually equivalent 
in 2D, and provides a basis for understanding transport phenomena at the pore-scale.

The layout for the remainder of the paper is as follows: Sect. 2 presents the theory of 
the PGS model, its extension to P-PGS, and the numerical homogenisation regime that is 
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employed; Sect. 3 gives the numerical formulation of the finite element solution for heat 
transport through Poisson’s equation, as well as numerical details of the field generation; 
Sect. 4 presents the determination of the effective thermal conductivity for cement paste; 
and Sect. 5 highlights the main conclusions of the study.

2  Theoretical Basis

In the following, the PGS theory and the chosen numerical homogenisation scheme are 
given. The applied numerical approach will allow the effective thermal conductivity of 
cement paste to be calculated under steady state conditions. It is worth noting that this can 
also be done for the transient case, as well as for other material properties, but these will 
not be considered here. The method is versatile, suitable for thermal properties across vari-
ous materials, and will be presented with this generality in mind. Similarly, the formulation 
relating to PGS and its periodic extension will be presented in ℝ2 . Whilst the method is not 
limited by dimensionality -being equally as applicable in ℝ3 , for instance- the cases that 
will be considered in later sections are in ℝ2 , hence, the formulation will be given in this 
space for consistency.

2.1  Periodic Plurigaussian Simulation

Let 
{

Z1, Z2
}

 be a set of two independent random fields in ℝ2 , such that the random field � 
is defined as

Then, let L =
{

D1,… ,Dn

}

 be a partition of ℝ2 into n disjoint subdomains, such that the 
resulting random field � with at most n distinct facies is defined as

where i is the phase of Di . The set L is the lithotype rule, and determines the number 
phases that could be present in the resulting field � , where each phase is related to a facie 
Di . Figure 1d presents an example realisation of that is generated through PGS, where the 
random fields have a Gaussian kernel (a, b), and L consists of 3 quadrilateral facies (c).

The covariance structure of the random fields Z1, Z2 influences the general form of � , 
where here the smoothness of (a, b) result in a smooth field (d). Using a rougher covari-
ance structure, such as the Matérn kernel, will result in a rougher realisation of � (Ricketts 
et al. 2023c). The lithotype also allows control of the connectivity between phases in � . If 
two facies are not connected in L , then the same will be true in � . This allows for complex 
structures to be represented based on careful choices of L.

Similarly, to the use of non-stationary random fields in generating a non-stationary 
field of � , the extension to P-PGS relies on the generated fields Z1, Z2 being periodic. For 
both Z1 and Z2 , their values on opposing boundaries will be equal, such that they map to 
the same position in L . If the generated random fields are now assumed periodic, denoted 
as Z1 , Z2 , the convolutional nature of the method ensures that the periodicity of Z1 , Z2 
enforces periodicity in � . This is illustrated in Fig. 2, where (a) depicts a more complex 

(1)�(x) =
(

Z1(x), Z2(x)
)

,∀x ∈ ℝ
2

(2)�(x) = i ⇔ �(x) ∈ Di,∀x ∈ ℝ
2
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lithotype rule, (b) gives the resulting field � , and (c) illustrates a tiled version of � to shows 
its periodicity.

The extension to P-PGS was inspired by numerical homogenisation techniques. In many 
cases, the calculation of effective material properties is done numerically over domains 
which mimic the structures found at different levels of the material. Often, the microstruc-
ture of composite materials is assumed periodic in numerical homogenisation approaches 
(Andreassen and Andreasen 2014), hence, extending to P-PGS allows for greater flexibility 
in the usage of the generated structures, making it highly appropriate for multi-level mate-
rial representation.

Fig. 1  Schematic of plurigauss-
ian simulation where a, b are 
gaussian random fields, c is 
the lithotype rule consisting of 
3 facies, and d is the resulting 
simulated field �

Fig. 2  An example of P-PGS where a is the lithotype rule, b is the resulting periodic field � , and c is a tiled 
illustration of � to highlight its periodicity
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2.1.1  Random Field Generation

Random fields are a key component of PGS, where the covariance kernel of the input fields 
will dictate the characteristics of the resulting discrete field (Ricketts et al. 2023c). Gaussian 
random fields are a common choice due to their smooth behaviour making them suitable at 
representing many spatially varying parameters. Various methods exist to generate such fields, 
with the choice often being dictated by the computational efficiency of the method. Covari-
ance matrix decomposition (CMD) is commonly adopted due to its simplicity and accuracy, 
in which a random field � can be computed as � = �� , where � is a vector sampled from a 
standard normal distribution, � is the decomposition matrix satisfying ��T = A, and A is the 
correlation matrix for all locations (Li et al. 2019). Cholesky- or eigen-decomposition is often 
used in the computation of � , and the choice of autocorrelation function to form A determines 
the covariance kernel of the resulting fields. Whilst this method is simple to employ, it suffers 
greatly in computational expense when considering larger problems (Tang et al. 2020). Alter-
natives such as the SPDE approach, Karhunen-Loève expansion, or spectral methods offer 
cheaper alternatives (Müller et al. 2022; Ricketts et al. 2023b). See Ricketts et al. (2023a) for a 
summary of methods as well as their computational complexity.

The approach for generating periodic random fields is less trivial. Recently, CMD has 
been employed using a modified squared exponential kernel, enforcing periodicity at oppos-
ing boundaries (González Acosta et al. 2023). The periodicity of the autocorrelation function 
matched the domain width, enforcing the same resulting field values at opposing boundaries. 
Due to the application, only horizontal periodicity was necessary, but this could be readily 
extended to all opposing boundaries. In this paper, an approach derived from Hu and Tonder 
(1992) is employed in generating periodic self-affine surfaces (Yastrebov et  al. 2017). The 
method is based on filtering in the Fourier space of random noise such that a fractal surface 
is generated, and depending on the cut off frequencies in the Fourier space, the generated sur-
faces can be made Gaussian in nature. The advantages of having smooth Gaussian fields has 
already been highlighted, but this approach of variable roughness through the choice of cut-off 
frequencies allows for roughness to be introduced into the plurigaussian simulation method, 
leading to more flexibility in representing discrete rough geometries. For further details on the 
approach, see Yastrebov et al. (2015).

2.2  Numerical Homogenisation

Generally, numerical homogenisation approaches are used to conduct multi-scale analyses 
where the material response is computed by solving a boundary value problem (BVP) on a 
representative volume of the microstructure. This can be done for multiple scales, for example, 
macro- and micro-scales. The first step in this approach is to define a microstructural repre-
sentative volume element (RVE) that represents the characteristics of the material in terms of 
its physical geometry. The RVE is used as the domain of the micro-scale BVP, and allows for 
the calculation of macroscopic quantities through a domain averaging scheme. Here, the RVE 
is generated through the appropriate use of P-PGS. In the following, the formulation of the 
thermal problem at both the macro and micro-scale -denoted with M and m respectively- as 
well as the scheme for micro to macro transition will be given.

The approach taken follows the work of Özdemir et  al. (2008), where the principles of 
numerical homogenisation are extended to thermal problems based on the work of Kouznet-
sova et al. (2001) for stress analyses. The time dependency of heat storage is neglected at the 
micro-scale, such that steady-state thermal equilibrium is achieved as
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where �m(x) is the microscopic heat flux vector. The solution of (3) over the volume V  of 
the RVE domain requires proper boundary conditions in terms of a prescribed temperature 
of heat flux normal to the boundary Γ . At the macro-level, heat balance takes the form of

where 
(

ρcv
)

M
 is the heat capacity, � is the temperature where the �̇� indicates the time deriv-

ative, and �M is the macroscopic flux. Again, this balance equation requires macro-level 
boundary conditions and additional initial conditions for its solution. In this study, numeri-
cal homogenisation is used to obtain the macroscopic flux from the solution over the 
micro-scale RVE. This is done such that the macroscopic effective thermal conductivity 
can be evaluated. As suggested by Eq. (3), the heat storage is neglected at the micro-scale. 
The same assumption is made at the macro-level, such that the steady-state solution can be 
computed. If a multi-level transient simulation was conducted, then this could be upscaled 
from the micro-level such that the heat capacity is preserved.

Using a multi-scale approach, the microscopic temperature profile �m(x) for a posi-
tion vector x can be decomposed without loss of generality into a spatially linear mean 
field at the macro-level, and a fluctuation field �f (x) , where

where �k
m
 is the temperature at an arbitrary point xk within the RVE (Özdemir et al. 2008). 

This can be seen as a perturbation of a mean macroscopic field that has fluctuations at 
the micro-scale due to material property variations in the RVE, in this case being the 
conductivity.

Heat conduction is driven by the temperature gradient that develops in the domain 
due to the applied boundary conditions. Thus, temperature gradients should be pre-
served in the transition between scales. As the temperature field is additively split into 
its micro and macro contributions as in Eq. (5), the volume averaged micro-scale tem-
perature gradient can be written as

where the Gauss divergence theorem is applied to the volume integral involving the fluc-
tuation field to convert it to an integral over Γ , the domain boundary, and ∇M�M is the 
gradient reflecting the thermal effects of macroscopic heat flow transferred through the 
boundary conditions to the RVE. The introduction of a scale transition to enforce the mac-
roscopic temperature gradient to equal the volume average of its microscopic counterpart 
leads to the constraint

and is satisfied by RVE boundary conditions to be defined.
The scale transition constraint (7) can be explicitly written as

(3)∇m ⋅ �m(x) = 0

(4)
(

𝜌cv
)

M
�̇�M + ∇M ⋅ �M = 0

(5)�m(x) = �k
m
+ ∇M�M ⋅

(

x − x
k
)

+ �f (x)

(6)
1

V ∫
V

∇m�mdV = ∇M�M +
1

V ∫
Γ

�fndΓ

(7)∫
Γ

�fndΓ = 0
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where L,R,B,T , represent the left, right, bottom and top boundaries of the microscopic 
RVE.

For Eqs. (7) and (8) to be true, the fluctuation field �f must equal zero. Thus, the fluc-
tuation field is neglected from Eq.  (5), and the macro and microscopic quantities can be 
formulated as

and

These relate to periodic boundary conditions which naturally enforce anti-periodic nor-
mal flux at the boundary due to the heat balance equation. It is noted that the use of peri-
odic boundary conditions is purely mathematically motivated and does not imply geomet-
ric restrictions on the micro-scale domain. Their application has been seen to give better 
predictions when applied as opposed to uniform boundary conditions (Hazanov and Huet 
1994; Hori and Nemat-Nasser 1999; Bouaoune et al. 2016; Tian et al. 2019).

The micro–macro scale transition can be achieved by first considering the second law of 
thermodynamics, which then leads to Fourier’s inequality

being the entropy change due to heat conduction. Eliminating � from the denominator and 
enforcing consistent entropy change at both the macro- and micro-level results in

implying that the change in entropy due to heat conduction at the macro-level should be 
consistent with that at the micro-level. Thus, from Eqs. (6) and (7), the micro and macro 
flux fields can be associated through

showing that the volume averaged micro-scale heat flux is equivalent to the macroscopic 
heat flux.

3  Numerical Formulation

In the following, the numerical approach to solving the thermal problem at the micro-scale 
is presented, as well as details relating to the implementation of the P-PGS framework.

(8)∫
ΓL

{

�L
f
− �R

f

}

n
LdΓ + ∫

ΓB

{

�B
f
− �T

f

}

n
BdΓ = 0

(9)�R
m
− �L

m
= ∇M�M ⋅

(

x
R − x

L
)

(10)�T
m
− �B

m
= ∇M�M ⋅

(

x
T − x

B
)

(11)−
1

�
∇� ⋅ � ≥ 0

(12)
1

V
∫
V

∇m�m ⋅ �mdV = ∇M�M ⋅ �M

(13)
1

V
∫
V

�mdV = �M



1321Stochastic Periodic Microstructures for Multiscale Modelling…

1 3

3.1  Finite Element Framework: Thermal Diffusion

As previously stated, numerical homogenisation is employed to calculate the effective 
thermal properties at the pore-scale of cement paste, specifically to attain the effective 
thermal conductivity of the medium. This is done through solving a BVP with appro-
priate boundary conditions and constitutive components over the RVE using the FEM. 
Before the solution process begins, the microstructures generated through P-PGS are 
read in as an image, and used to define material sub-domains that can be assigned dis-
tinct material properties, in this case being the different thermal conductivities of the 
medium.

The transfer of heat at the micro-scale is governed by nothing more than a descrip-
tion of diffusion governed by Poisson’s equation. There are many approaches to solv-
ing this, but here the standard variational form of the steady-state Poisson’s equation 
is employed and solved in FEniCS over the RVE (Logg et al. 2012). Periodic bound-
ary conditions akin to those given in Eqs. (9) and (10) are enforced through the func-
tion space definition, such that the periodic fluctuation at the micro-scale is solved for 
directly. Following this, the solution can be averaged over the domain as in Eq. (13) to 
directly give the effective thermal conductivity of the medium at the macroscale.

The problem is given as

where Ω ∈ ℝ
2 is the problem domain whose boundary �Ω has periodic boundary condi-

tions enforced between opposing boundaries, k is the thermal conductivity, and �m is the 
periodic fluctuation in Ω . To compute the effective thermal conductivity k , Fourier’s law 
k ⋅ ∇�M = �M is employed, where �M is the macroscopic flux computed by taking the vol-
ume-average of the microscopic flux see Eq. 13 and ∇�M is the prescribed macroscopic 
temperature gradient as in Eq. (14).

The domain is discretised into linear Lagrangian triangular elements in a uniform 
grid, and can be posed as: find �m ∈ H1(Ω) such that

where �̂m are the test functions. This is an ill-posed problem, so an additional constraint of 
zero-average of the fluctional field �m is applied through additional Lagrange multipliers � . 
The problem is then: find 

(

�m, �
)

∈ H1(Ω) ×ℝ
2 such that

∀
(

�̂�m, �̂�
)

∈ H1(Ω) ×ℝ
2 . This can then be solved numerically by employing the 

Galerkin weighted residual approach for spatial discretisation. The conductivity ten-
sor is employed in the weak form to represent the differing thermal conductivities of 
the sub-domains present in the generated microstructures. The domain is discretised 
such that each pixel contains two linear Lagrangian elements. A schematic to describe 
the overall process from is presented in Fig.  3, illustration the collection of material 

(14)

−∇ ⋅

(

k
(

∇�M + ∇�m
))

= in Ω

�R
m
− �L

m
= ∇M�M ⋅

(

x
R − x

L
)

on ΓLR = ΓL ∪ ΓR

�T
m
− �B

m
= ∇M�M ⋅

(

x
T − x

B
)

on ΓTB = ΓT ∪ ΓB

(15)∫
Ω

∇�̂�mk ⋅
(

∇𝜃M + ∇𝜃m
)

dΩ = ∫
Ω

�̂�mfdΩ, ∀�̂�m ∈ H1(Ω)

(16)∫
Ω

∇�̂�mk ⋅
(

∇𝜃M + ∇𝜃m
)

dΩ + ∫
Ω

𝜆 ⋅ �̂�mdΩ + ∫
Ω

�̂� ⋅ 𝜃mdΩ = ∫
Ω

�̂�mfdΩ
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microstructural information, its representation using P-PGS, and the numerical homog-
enisation that occurs to compute the effective thermal conductivity.

It is noted that the contribution of convective heat transport is neglected in the 
boundary value problem. As the finite element method is flexible, other physical pro-
cesses such as convection can be accounted for by including additional terms in the 
governing equations, and subsequent integrals in the weak form.

3.2  Field Generation

The PGS framework that was mentioned in Ricketts et al. (2023a, b, c) was extended to 
include the generation of periodic Gaussian random fields. A lithotype rule must first be 
defined, composed of facies of a given shape. In two dimensions, two periodic Gauss-
ian random fields are generated to convolutionally map each position in the simulation 
domain to the lithotype rule to determined its phase. This pixel-wise evaluation is saved 
as an image to be read by the finite element model upon execution. For more details on the 
effects of lithotype facies, see Ricketts et al. (2023a, b, c).

4  Example Problem: Effective Thermal Properties of Mortar Paste

To assess the applicability of P-PGS in representing material microstructures, the effec-
tive thermal conductivity of cement paste was calculated based on the presented numeri-
cal homogenisation regime. Experimental measurements from the literature were col-
lected to compare with the calculated values. Specifically data presented by Stolarska and 
Strzałkowski (2020) of the thermal parameters of mortars based on different water content 
(W/C) ratios and cement types, namely CEM I 42.5R, CEM II A-S 52.5N and CEM III 
A 42.5N are considered. Three samples at W/C ratios of 0.5, 0.55, and 0.6 were made for 
three different cement types with dimensions 25 × 25 × 6 cm. For each of the 9 samples, 
the thermal conductivity, volume-specific heat and thermal difussivity were analysed under 
different levels of saturation. Measurements from three consistent points on each sample 
were taken, such that all samples were measured a total of 9 times, with the mean value 
of each of the material properties for each sample being reported. The porosity was also 
evaluated through mercury intrusion porosimetry on two subsamples of each of the 9 sam-
ples, with dimensions 0.7 × 0.7 × 2 cm. Table 1 shows a summary of the measured results 
in terms of their total porosity and average thermal conductivity for each sample. These 
will be used directly to compare with the calculated equivalents.

Fig. 3  Schematic of the process for computing the effective thermal conductivity of a given material (part 
of which is reused with permission after Lyu et al. 2019)
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Table 1  Summary of measured values of total porosity and average thermal conductivity (after Stolarska 
and Strzałkowski 2020)

Sample

1 2 3 4 5 6 7 8 9

Cement type 42.5N 42.5N 42.5N 42.5R 42.5R 42.5R 52.5N 52.5N 52.5N
W/C 0.5 0.55 0.6 0.5 0.55 0.6 0.5 0.55 0.6
Porosity (%) 14.28 15.25 16.97 15.92 16.87 17.8 15.94 16.36 16.97
Thermal conduc-

tivity of air filled 
pores (W/mK)

1.67 1.59 1.55 1.47 1.29 1.36 1.38 1.27 1.23

Thermal conduc-
tivity of water 
filled pores (W/
mK)

2.42 2.46 2.49 2.53 2.42 2.54 2.42 2.35 2.39

Fig. 4  BSE images of size 190  × 140 μ m for cement paste with a W/C ratio of 0.35 for a original image and 
b binary image. (reused with permission after Lyu et al. 2019)

Fig. 5  Illustration of a the employed lithotype, b generated pore-structure, and c is the tiled version to high-
light the periodicity
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Whilst direct comparison of effective properties is possible, the geometric structure of 
the samples was not reported, making it challenging to represent through P-PGS. Due to 
this, the generated microstructures were based upon backscattered electron scanning elec-
tron microscope (SEM-BSE) images reported in Lyu et al. (2019) and seen in Fig. 4, where 
(a) is the raw image and (b) is the binarised equivalent.

The covariance structure of the random fields as well as the lithotype rule used in 
P-PGS were chosen such that the porosity of the resulting fields matched well with the 
reported measurements in Table 1, as well as adhering to the geometry seen in Fig. 4. The 
selected lithotype appears as an off-centre and rotated ellipse, as illustrated in Fig.  5a. 
Ricketts et al. (2023a, b, c) observed that a central ellipse was an appropriate choice for 
generating cement paste pore-structures. In this case, the microstructures are less intercon-
nected, and iterative testing suggested that shifting the ellipse from the lithotype’s centre 
encouraged more disconnected structures in the final field. The domain size was chosen to 
be 100  × 100 μ m, where a sample realisation can be seen in Fig. 5b.

The periodicity is also highlighted in Fig. 5c, showing the connectivity between oppos-
ing boundaries. The low connectivity of the pore-structures is a result of the low porosities 
seen in Table 1. It has been shown that a porosity of 20% is a sufficient percolation thresh-
old for good predictions of diffusivity in samples of W/C 0.3–0.5 (Patel et al. 2018b). This 
assumes a certain level of connectivity to allow for percolation, and as the generated poros-
ities are below this threshold, it is fair to assume that they will be made up of larger discon-
nected pore structures. This is further suggetsed by Fig. 5b. To assess whether the gener-
ated microstructures are RVEs, the RVE size was calculated using the open-source image 
analysis python package PoreSpy (Gostick et al. 2019), where the domain will constitute 
an RVE once the quatity being analysed changes negligably with increasing domain size. 
As seen in Fig. 6 for a given generated structure, the porosity converges to a stable value, 
suggesting that the domain size used is suffient in representing the overall behaviour of the 
microstructure. It is worth noting that whilst the domain represents an RVE for porsitiy at 
this scale, this may not be true for other quantities of interest, but this was not determined.

In total, 250 microstructures of size 100  × 100 μ m were generated based on the rea-
soning above. For additional verification of the generated microstructures, their maximal 

Fig. 6  RVE analysis of a generated pore-structure at 100  × 100 μ m highlighting convergence and that the 
RVE size is suitable
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pore-size was calculated and compared with experimental results. The calculation is based 
on assigning each pixel to be the value of the largest circle that overlaps it inside the pore, 
and was evaluated using PoreSpy (Gostick et al. 2019). This has been reported in the lit-
erature as ≤9.47 μ m for W/C ratio of 0.3 (Lyu et al. 2019). Due to the stochasticity of the 
microstructural generation, around 10% of the resulting fields lay outside of the experimen-
tal range and were neglected. Similarly, the resulting volume fractions of the microstruc-
tures can vary. Those outside of the experimental porosity range of Table 1 (14–18%) were 
filtered out, leaving 152 images (see Fig. 7 for more examples). It is noted that even with 
further trial and error through changing the lithotype and input field parameters, the ran-
dom nature of the approach means that it is often the case that some generated fields will 
be unsuitable. With such a constrained lithotype as in Fig. 5c, this is inevitable.

The diffusion of heat through the medium was simulated using the approach presented 
in Sect. 3.1, where material conductivities for the paste and pore phases were taken from 
the literature. The thermal conductivity of cement paste has been reported in the range 
of 2.48  →3.43  W/mK for a porosity of 22.9 →24.10% (Khan 2002). Similarly, the ther-
mal conductivity of air filled pores and water filled pores has been reported as 0.026 
and 0.607 W/mK respectively (Liu et  al. 2020). The pore-space conductivities are taken 
directly as model input parameters depending on whether air or water filled pore condi-
tions are being simulated. Here, the porosity of the generated microstructures is lower than 

Fig. 7  Samples of generated periodic pore-scale microstructures
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porosity of the samples used to back calculate the reported thermal conductivity associated 
with the cement paste (Khan 2002), where the authors used Campbell-Allen and Thorne’s 
approach (Campbell-Allen and Thorne 1963). Similarly, it is assumed that the conductivity 
does not change between cement type, where in reality this could be the case. The material 
parameters of each phase used in the model are given in Table 2.

Table 2  Material parameters

Paste Air filled pores Water filled pores

Thermal conductivity (W/mK) 3.43 0.026 0.607

Fig. 8  Microscopic solution of the microscale boundary value problem over a the cement paste and b the 
pore-space under air filled conditions

Fig. 9  Microscopic solution of the microscale boundary value problem over a the cement paste and b the 
pore-space under water filled conditions
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Figures 8 and 9 show the microscopic solution �m over Ω for a given generated micro-
structure under the assumption of air and water filled pores respectively.

Table 3 shows the comparison between the experimental and numerical results of the 
effective thermal conductivities for both air and water filled conditions in terms of the 
mean, maximum and minimum thermal conductivities of all samples.

It can be seen that the calculated mean values match well with the experimental obser-
vations for both conditions, suggesting that the generated microstructures are representa-
tive of these materials in terms of their geometry. A greater range of calculated thermal 
conductivities is seen numerically when compared with the experimental observations. 
Clearly, the evaluation of many more samples of varied porosities and pore structures will 
widen the range in which the calculated conductivities will lie. This enlarged range is most 
pronounced in the case of air filled pores, as seen in Fig. 10, due to the much larger ratio 
between the conductivity of the paste and pore phases.

The structure of the pores -as well as the overall porosity- will have a greater effect 
on the diffusive process, leading to more variability in the calculated effective properties 
as is seen in Table  3. Similarly, the maximum and minimum experimental values given 
in Table 3 are in fact the maximum and minimum of the mean samples values that were 
reported in Stolarska and Strzałkowski (2020). As the authors did not report the variabil-
ity in the measurements of each sample, it is likely that the true maximum and minimum 
would differ from the given values.

Table 3  Comparison of the experimental and calculated thermal conductivity for both air and water filled 
conditions

Type Mean (W/mK) Relative 
error (%)

Maximum 
(W/mK)

Minimum 
(W/mK)

Air filled pores Experimental 1.45 – 1.67 1.23
Numerical 1.43 1.38 1.89 0.85

Water filled pores Experimental 2.45 – 2.54 2.35
Numerical 2.44 0.41 2.59 2.27

Fig. 10  Histograms of the calculated thermal conductivities
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5  Concluding Remarks

An extension of the plurigaussian simulation method has been presented, such that the gen-
erated structures are periodic in nature. The use of periodic random fields ensures periodic-
ity in the resulting structures, a characteristic that is particularly important when calculat-
ing effective material properties. Heat diffusion was simulated at the pore-scale of cement 
paste, and numerical homogenisation employed to calculate its effective thermal conduc-
tivity. This was done to assess how representative the generated microstructures are of the 
pore-scale geometry. Strong agreement was obtained between the numerical and experi-
mental observations, suggesting that P-PGS is appropriate for generating complex mate-
rial microstructures. Using such an approach mitigates the reliance on empirical formulas 
and experimental calibration, reducing the cost and time associated with material testing 
or design. This computationally inexpensive method can generate complex structures in a 
stochastic manner, and is appropriate for material representation at all scales.

When considering a given material at different scales, numerous phases could be pre-
sent. The presented approach is not limited to two phase materials as seen here, both in the 
microstructure or heat diffusion stage for computational homogenisation. P-PGS allows for 
an arbitrary number of phases to be represented by choosing a lithotype rule that contains 
information about all phases present in the material at a given scale, making it suitable for 
a wide range of material microstructures. The difficulty lies in choosing an appropriate 
lithotype as a given microstructure can be generated through many morphologically equiv-
alent lithotypes. Investigation into this matter is on-going. The approach is also extendable 
to 3-D, where the calculated effective properties would be more sensitive to the complex 
pore geometries. Similarly, other processes could be modelled such as electrical diffusion 
and its associated properties, as well as transient solutions at differing scales.

Many approaches to numerical homogenisation or simulation over RVE BVPs employ 
idealised representations of the material geometry. Whilst for many cases this can be appro-
priate, the use of discrete geometrically consistent representations can lead to more accu-
rate estimations of effective material properties and is something that P-PGS can provide.
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