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Abstract
We consider steady-state immiscible and incompressible two-phase flow in porous media. 
It is becoming increasingly clear that there is a flow regime where the volumetric flow rate 
depends on the pressure gradient as a power law with an exponent larger than one. This 
occurs when the capillary forces and viscous forces compete. At higher flow rates, where 
the viscous forces dominate, the volumetric flow rate depends linearly on the pressure gra-
dient. This means that there is a crossover pressure gradient that separates these two flow 
regimes. At small enough pressure gradient, the capillary forces dominate. If one or both 
of the immiscible fluids percolate, the volumetric flow rate will then depend linearly on 
the pressure gradient as the interfaces will not move. If none of the fluids percolate, there 
will be a minimum pressure gradient threshold to mobilize the interfaces and thereby get 
the fluids moving. We now imagine a core sample of a given size. The question we pose 
is what happens to the crossover pressure gradient that separates the power-law regime 
from the high-flow rate linear regime and the threshold pressure gradient that blocks the 
flow at low pressure gradients when the size of the core sample is increased. Based on ana-
lytical calculations using the capillary bundle model and on numerical simulations using a 
dynamical pore-network model, we find that the crossover pressure gradient and the thresh-
old pressure gradient decrease with two distinct power laws in the size. This means that the 
power-law regime disappears in the continuum limit where the pores are infinitely small 
compared to the sample size.
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1  Introduction

In 1856, Darcy published his famous treatise where he formulated the linear relationship 
between volumetric flow rate and pressure drop in a porous column, i.e., the Darcy law 
(Darcy 1856). Eighty years later, the Darcy law was generalized to the simultaneous flow 
of two immiscible fluids by Wyckoff and Botset (1936). The basic idea behind this gener-
alization was that each fluid sees an available space in which it can flow consisting of the 
total pore space minus the space the other fluid occupies. Each fluid is then assumed to 
obey the Darcy law within this diminished pore space. This idea is clearly oversimplified. 
It remains to date, however with some important addenda such as the incorporation of cap-
illary effects (Leverett 1941), the dominating tool for simulations of immiscible two-phase 
flow in porous media. This is in spite of numerous attempts over the years at improving 
this approach or substitute it for an entirely new approach (Hassanizadeh and Gray 1990, 
1993a, b; Niessner et al. 2011; Gray and Miller 2014; Kjelstrup et al. 2018, 2019; Hilfer 
and Besserer 2000; Hilfer 2006a, b, c; Hilfer and Doster 2009; Doster et al. 2012; Vala-
vanides et al. 1998; Valavanides 2012, 2018; Hansen et al. 2018; Roy et al. 2020, 2022; 
Hansen et al. 2023; Pedersen and Hansen 2023; Fyhn et al. 2023).

A simpler question may be posed when generalizing the Darcy equation to immiscible 
two-phase flow in porous media. Rather than asking for the flow rate of each of the two 
fluids, how does the combined flow react to a given pressure drop? It has since Tallak-
stad et al. (2009a, 2009b) did their experimental study of immiscible two-phase flow under 
steady-state conditions, become increasingly clear that there is a flow regime in which the 
flow rate is proportional to the pressure drop to a power larger than one (Grøva and Hansen 
2011; Rassi et al. 2011; Sinha and Hansen 2012; Sinha et al. 2017; Yiotis et al. 2019; Gao 
et al. 2020; Zhang et al. 2021; Fyhn et al. 2021; Zhang et al. 2022; Fyhn et al. 2023).

In the experimental setups that have been used, the flow rate of each fluid into the 
porous medium is controlled and the pressure drop across the porous medium is meas-
ured. This leads to the two fluids simultaneously percolating at very low flow rates where 
the capillary forces are too strong for the viscous forces to move the fluid interfaces. This 
results in the standard linear Darcy law prevailing. As the flow rates are increased, Gao 
et  al. (2020) report a regime occurring where there are strong pressure fluctuations but 
still the linear Darcy law is seen. This is when the interfaces start being mobilized. Then, 
at even higher flow rates, nonlinearity sets in, and a power-law relation between flow rate 
and pressure drop is measured. This power law may be associated with the gradual increase 
in the number of mobilized interfaces as the flow rates increase (Tallakstad et al. 2009b; 
Sinha and Hansen 2012). Lastly, at very high flow rates, the capillary forces become negli-
gible compared to the viscous forces, and again, the system reverts to obey a linear Darcy 
law (Sinha et al. 2017).

A simplified problem compared to that of immiscible two-phase flow in porous media is 
that of bubbles flowing in a single tube (Sinha et al. 2011; Xu and Wang 2014; Lanza et al. 
2022; Cheon et al. 2023). Sinha et al. (2011) studied a bubble train in a tube with a variable 
radius assuming no fluid films forming as a function of imposed pressure drop along the 
tube. They found that the time-averaged volumetric flow rate depends on the square root 
of the excess pressure drop, that is the pressure drop along the tube minus a depinning or 
threshold pressure Pt . Xu and Wang (2014) also identified a threshold pressure in their 
numerical simulations. However, this threshold pressure has a different character from that 
in the previous study: It is the pressure drop at which contact lines start mobilizing. The 
movement of the contact lines consumes energy leading to the effective permeability drop. 
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Xu and Wang (2014) suggest that this is the main mechanism responsible for the nonlinear-
ity in the flow-pressure relationship. Lanza et  al. considered an immiscible mixture of a 
non-Newtonian and a Newtonian fluid moving along the tube (Lanza et al. 2022); whereas, 
Cheon et al. considered a mixture of compressible and incompressible fluids moving along 
the tube (Cheon et al. 2023), both with pressure drop as control variable. In both cases, a 
non-trivial power law dependence between the flow rate and pressure drop were found.

The question of whether there should be a threshold pressure or not in the power-law 
regime is an important one as assuming there to be one may alter significantly the meas-
ured value of the exponent � seen in the power-law regime where

where Q = Qw + Qn is the volumetric flow rate consisting of the sum of volumetric flow 
rates of the wetting fluid Qw , and the non-wetting fluid Qn . �P is the pressure drop across 
the sample.

The third flow regime in this equation appears when the viscous forces dominate the 
capillary forces, leading to a linear relationship between volumetric flow rate and the pres-
sure drop. PM is the crossover pressure drop that distinguishes the power-law regime from 
the linear high-pressure drop regime.

The value of � varies in the literature. Tallakstad et  al. (2009a, 2009b) reported 
� = 1∕0.54 = 1.85 (in these papers the inverse exponent was reported), Rassi et al. (2011) 
reported a range of values, � = 1∕0.3 = 3.3 to � = 1∕0.45 = 2.2 , and Gao et  al. (2020) 
reported � = 1∕0.6 = 1.67 . These results are based on experiments and they all assume 
Pt = 0 . Sinha et al. (2017) report for their experiments � = 1∕0.46 = 2.2 , based on there 
is a threshold. Sinha and Hansen (2012) in numerical work also assumes a threshold pres-
sure based on a dynamic pore-network simulator (Joekar-Niasar and Hassanizadeh 2012), 
where fluid interfaces are moved according to the forces they experience (Aker et al. 1998; 
Gjennestad et al. 2018; Sinha et al. 2020; Zhao et al. 2019), and found � = 1∕0.51 = 2.0 . 
The network representing the porous medium was here square lattice with disorder in 
the radii of the pore throats. They followed this up with an effective medium calculation 
yielding � = 2 . Sinha et al. (2017) reported � = 1∕0.50 = 2.0 to � = 1∕0.54 = 1.85 based 
on numerical studies with reconstructed porous media using the same numerical model 
as in Sinha and Hansen (2012). Yiotis et al. (2019) proposed � = 3∕2 based on numeri-
cal work and assuming the existence of a threshold pressure. Recently Fyhn et al. (2023) 
have studied a pore-network model for a mixture of grains with opposite wetting properties 
with respect to the two immiscible fluids. Depending on the filling ratio between the two 
grain types, there is a regime where there is no threshold pressure. They find an exponent 
� = 2.56 in this regime.

A note of caution on the threshold pressure: There is a lesson to be learned from the 
study of a very different problem. In 1993 Måløy et al. (1993) published an experimental 
study where a rough hard surface was pressed into a soft material with a flat surface, meas-
uring the force as a function of the deformation. At first contact, the Hertz contact law was 
seen, i.e., the force depended on the deformation to the 3/2 power. As the deformation pro-
ceeded, a different power law emerged, however not in the deformation but in the deforma-
tion minus a threshold deformation. And here is the lesson: The threshold deformation was 
not the deformation at first contact where the Hertz contact law was seen. Transferring this 

(1)Q ∼

⎧⎪⎨⎪⎩

0 , if �𝛥P� ≤ Pt ,

(�𝛥P� − Pt)
𝛽 , if Pt < �𝛥P� ≤ PM ,

�𝛥P� , if PM < �𝛥P� ,
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result to the power law Darcy case, our point is that the threshold pressure that shows up in 
the power law does not have to be the pressure needed to get the fluids flowing. The power 
law (1) may be followed down to a certain pressure difference larger than Pt . At this pres-
sure difference, there may then be a crossover to a different regime controlled by different 
physics, e.g., a linear one as Gao et al. (2020) reported.

We will here discuss another aspect of the power-law flow regime which so far has not 
been touched upon. Up to now, the system sizes that have been used in establishing the 
existence of the power-law regime, even if the details have not yet been sorted out, have 
been fixed. This applies both to the experimental and numerical studies that have been pub-
lished. What happens if we increase the system size? To be concrete, think of a core plug 
with a transversal area A and a length L. Increasing the system size means increasing A and 
L in a proportional way that does not deform the shape of the sample.

Does the threshold pressure Pt remain the same? And what about the crossover pressure 
drop PM that distinguishes the regime power-law regime where the capillary and viscous 
forces compete, and the linear regime where the viscous forces dominate? We define the 
corresponding threshold pressure gradient and crossover pressure gradient

which can then be compared to the average pressure gradient p = �P∕L , where �P is the 
pressure drop across the sample. We keep p constant when L is increased. Our conclusion, 
based on numerical evidence from the dynamic pore-network model (Aker et  al. 1998; 
Gjennestad et al. 2018; Sinha et al. 2020) and on analytic calculation using the capillary 
bundle model (Roy et  al. 2019), is that both the threshold pressure gradient pt and the 
crossover pressure gradient pM , decrease with increasing L. Moreover, they follow specific 
but different power laws in doing so.

In the next section, we present a scaling analysis of the viscosity-dominated linear flow 
regime and the power-law flow regime that sets the stage for our analysis. We then turn 
in Sect. 3 to the capillary bundle model. Section 4 contains our numerical study based on 
scaling up the square lattice. The last section contains a discussion of the arguments pre-
sented earlier in the paper together with our conclusion.

2 � Scaling Analysis

We assume a porous medium sample that has length L and transversal area A. If d (= 2 or 
3) is the dimensionality of the porous sample we are considering, we have that A ∝ Ld−1 . 
There is a pressure drop �P across it and this generates a volumetric flow rate of Q. When 
the flow rate is high so that capillary forces may be neglected, the constitutive relation 
between Q and �P is given by the Darcy law,

where Md is the mobility. We introduce the Darcy velocity

(2)pt =
Pt

L
,

(3)pM =
PM

L
,

(4)Q = −Md�P ,
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and the pressure gradient

The Darcy equation then takes the form

where

Equations (7) and (8) are both independent of the transversal area A and the length L of the 
sample.

As has been described in the Introduction, there is a regime in which the volumetric 
flow rate Q depends on the pressure drop �P as a power law,

where M� is the power-law mobility and Pt is a threshold pressure. Here �(|�P| − Pt) is the 
Heaviside function which is one for positive arguments and zero for negative arguments. 
We use the Heaviside function to mark the end of the power-law regime when the pressure 
drop is lowered. There may be a crossover to a different regime before reaching this lower 
cutoff (Gao et al. 2020). This occurs when either or both fluids percolate.

We also remind the reader of the crossover pressure drop PM as that which separates 
the power law flow regime from the linear viscosity-dominated regime, see Eq. (1).

We express the power law Darcy law (9) in terms of the Darcy velocity and the pres-
sure gradient,

where we have used the definitions (2) and (3). We then have that

Equations (7) and (10) are then the constitutive equations relating Darcy velocity to the 
pressure gradient in the viscosity-dominated and in the power law flow regimes. In the 
viscosity-dominated regime, both the Darcy velocity and the pressure gradient are inten-
sive variables, i.e., they do not depend on A ∝ Ld−1 or L. This leads to md being intensive 
too, i.e., independent of L.

Even though the power law flow regime constitutive Eq. (10) looks intensive too, we 
will in the following demonstrate that it is not. The mobility m� turns out to increase 
with increasing L as a power law, and this, in turn, leads to the crossover pressure gradi-
ent pM decreasing as a power law with increasing L. By another argument, we also show 
that the threshold pressure gradient pt also decreases with increasing L, also as a power 
law, but with a different exponent.

(5)v =
Q

A
,

(6)p =
�P

L
.

(7)v = −md p ,

(8)md =
MdL

A
.

(9)Q = −M� sign(�P)�(|�P| − Pt)(|�P| − Pt)
� ,

(10)v = −m� sign(p)�
(|p| − pt

)(|p| − pt
)�

,

(11)m� =
M�L

�

A
.
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3 � Capillary Bundle Model

In order to find the scaling properties of m� and pt , we consider the capillary bundle model 
(Scheidegger 1953, 1974). This simple model of immiscible two-phase flow in porous 
media is analytically tractable. Furthermore, it is surprisingly accurate when the right ques-
tions are put to it. We note that the one feature of ordinary porous media that lacks in the 
capillary bundle model is internal mixing. As long as mixing is not an important feature of 
the problem at hand, the model does well. It will turn out that the analytical results gotten 
from the capillary bundle model are supported by the numerical results from the dynamic 
pore-network model to be studied in the next section.

The capillary bundle model consists of N parallel capillary tubes of equal length L as 
shown in Fig. 1. The radii of the tubes vary along their lengths, creating capillary forces 
due to the interfaces that compete with the viscous forces. 

We now focus on one of the N tubes belonging to the capillary bundle model — say we 
pick tube number m. We introduce a position variable x along the tubes 0 ≤ x ≤ L . Follow-
ing Sinha et al. (2011), we assume the radius of tube m varies as

where l is period of the variation of the radius and b is the amplitude of the variation. The 
average radius of tube m is

where am is the average transversal area of the tube. The total transversal area of all tubes 
is then

If a fluid-fluid interface is at a position xI along tube m, it will generate a capillary pressure 
drop across it equal to

(12)rm(x) =
rm

1 − b cos(2�x∕l)
,

(13)rm =
√
am∕�,

(14)A =

N∑
m=1

am .

Fig. 1   The capillary bundle model consists of N capillary tubes in parallel. The dark regions signify the 
non-wetting fluid and the light regions the wetting fluid. The volumetric flow rate in tube m is qm and the 
total volumetric flow rate is Q when the pressure drop is �P across the tubes. We are not showing the radius 
modulation along the tubes, see Eq. (12), and we represent the interfaces as being flat
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where � is the surface tension and � is the contact angle. The positive sign is chosen if the 
wetting fluid is on the x < xI side of the interface and the negative sign is chosen if the wet-
ting fluid is on the x > xI side of the interface.

We assume that tube m contains K bubbles of non-wetting fluid. We number the bubbles 
from k = 1, ...,K in order of their position along the tube. Bubble number k has it midpoint at 
xk and its length is �xk . Hence, its two interfaces are located at x = xk ± �xk.

If we now choose a point x = x0 along the tube and follow it in time, it will obey the equa-
tion of motion

where the effective viscosity is given by �eff = �w + (�n − �w)
∑K

k=1
(�xk∕L) . We have 

defined �xk = xk − x0 . Due to incompressibility, we have that 𝛿ẋk = 0 for all k. Eq. (16) may 
be simplified considerably. We define two variables with the units of pressure,

and

From these two variables, we form

We introduce non-dimensional variables for the chosen point x0 and time t, � = (2�x0∕L) 
and � = amPt,mt∕4Ll�eff . In these variables, the equation of motion becomes

where tan �t,m = �s,m∕�c,m . This is the equation of motion for the driven over-damped pen-
dulum. We see that d�∕d� = 0 if |�P| ≤ Pt,m and |d𝜃∕d𝜏| > 0 if |𝛥P| > Pt,m . Hence, Pt,m is 
the flow threshold of tube m.

Based on the equation of motion (20), the time-averaged volumetric flow rate in tube m 
may be calculated,

where sgn(�P) is the sign function. We have that

(15)pc(x) = ±
2� cos�

rm

[
1 − b cos

(
2�

l
xI

)]
,

(16)ẋ0 = −
am

8𝜋L𝜇eff

[
𝛥P +

K∑
k=1

sin
(
𝜋

l
𝛿xk

)
sin

(
2𝜋

l
(x0 + 𝛿xk)

)]
,

(17)�s,m =
4b� cos�

rm

K∑
k=1

sin
(
�

l
�xk

)
sin

(
�

l
�xk

)
,

(18)�c,m =
4b� cos�

rm

K∑
k=1

sin
(
�

l
�xk

)
cos

(
�

l
�xk

)
.

(19)Pt,m =
√

� 2
s,m

+ � 2
c,m

.

(20)
d�

d�
=

�P

Pt,m

− sin(� + �t,m) ,

(21)qm = −
a2
m

8��effL
sgn(�P)�(|�P| − Pt,m)

√
�P2 − P2

t,m ,
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see Fig. 1.
We are now in the position to determine how the threshold pressure for tube m, Pt,m , 

scales with L, assuming that we keep the density of bubbles K/L constant. We note that 
the size of the bubbles �xk and their position xk are random apart from the constraints 
given by their ordering and that they cannot overlap. This means that the sign of each 
term in the sums �s and �c , Eqs. (17) and (18), are random. Hence, they sum as uncor-
related random walks. We may therefore interpret Pt,m , Eq.   (19), as the mean square 
distance covered by the equivalent random walk. As K ∝ L , we therefore must have that

A more general version of this argument has been presented in Feder et al. (2022).
So far we have considered only tube m. The flow threshold for the entire bundle is 

smallest Pt,m among the N tubes, i.e.,

The scaling of Pt,m with L will carry over to Pt so that we have

Our next task is to calculate m� , defined in Eq.   (10) for the capillary bundle. The tubes 
have radii rm drawn from some probability distribution. Since the thresholds Pt,m are 
inversely proportional to rm , we consider instead the distribution of thresholds rather than 
the radii. We furthermore consider the limit of N → ∞.

We follow now (Roy et al. 2019) and define the cumulative probability for the thresh-
olds Pt,m

where we have assumed that Pt > 0 , which is realistic as rm should always be finite. Here 
Pt is the threshold pressure defined in Eq. (25). PU is the threshold pressure at which all 
tubes flow. This means it is equal to the threshold pressure of the last tube to flow as the 
pressure difference is increased,

The scaling of Pt,m with L will carry over to PU so that we have

Averaging over the time-averaged flow rates in each capillary m, Eq. (21), using the cumu-
lative probability (26) gives

(22)Q =

N∑
m=1

qm ,

(23)Pt,m ∼ L1∕2 .

(24)Pt =
N

min
m=1

Pt,m .

(25)Pt ∼ L1∕2 .

(26)𝛱(Pt,m) =

⎧
⎪⎨⎪⎩

0 if Pt,m ≤ Pt ,
Pt,m−Pt

PU−Pt

if Pt < Pt,m ≤ PU ,

1 if PU < Pt,m ,

(27)PU =
N

max
m=1

Pt,m .

(28)PU ∼ L1∕2 .
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for |�P| close to but larger than the threshold Pt . Hence, we find � = 3∕2 . The average vis-
cosity is given by �av = Sw�w + (1 − Sw)�n , where Sw is the wetting saturation. In terms of 
the Darcy velocity and pressure gradient, this expression becomes

where pt = Pt∕L is the threshold pressure gradient, Eq.  (2). Furthermore, we set 
pU = PU∕L . From Eq. (25), we have that

and from Eq. (28) that

Hence, we find that

Equations (31) and (33) are two of the main results of this paper.
We are now in the position to determine the scaling on the crossover pressure gradient 

pM for the capillary bundle model. By equating Eqs. (7) and (10) for p = pM and ignoring 
the threshold pressure gradient pt by assuming pM >> pt , we find

With � = 3∕2 and m� scaling as in Eq. (33), we find

Hence, pM and pt scale in the same way. They both decrease with increasing L.

4 � Numerical Results Based on a Dynamic Pore‑Network Model

We base our simulations on the dynamic network simulator described in Aker et al. (1998), 
Gjennestad et al. (2018), and Sinha et al. (2020). It consists of interfaces in the pores and 
move according to the pressure gradient they experience. Hence, no wetting films occur in 
the simulations. We use a square lattice oriented at 45◦ to the average flow direction. We 
assume periodic boundary conditions both in the direction orthogonal to the average flow 
direction and in the direction parallel to the average flow.

The square lattices we have used range in size ( L × L ) between 48 × 48 and 208 × 208 . 
All the links are of length l = 10−3 m with its average radius r chosen randomly between 
0.1l and 0.4l. The simulation is carried out at both constant flow rate Q and constant 
pressure gradient �P , kept at a certain low value so that the capillary forces dominate 

(29)Q = −
aA sign(�P)

3
√
2��avL

√
Pt

(PU − Pt)
(��P� − Pt)

3∕2 ,

(30)
v = −

a sign(p)

3
√
2��av

√
pt

(pU − pt)
(�p� − pt)

3∕2

= − m� sign(p) (�p� − pt)
3∕2,

(31)pt ∼ L−1∕2 ,

(32)pU ∼ L−1∕2 .

(33)m� ∼ L1∕4 .

(34)v = −mdpM = −m�p
�

M
.

(35)pM ∼ L−1∕2 .
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and the relationship between Q and �P is a power law. For system sizes L = 48 , 64, 80, 
96, 112, 128, 144, 160, 176, 192, and 208 we have used, respectively, 20, 20, 15, 15 10, 
10, 8, 5, 3, 3, and 3 realizations. We set the surface tension times � times cosine of the 
contact angle to the values 0.03 or 0.01 N/m. While calculating the flow rate, instead of 
assuming a cross section, we summed up the flow rate for all links and divided it by the 
number of rows in the direction of overall flow.

Figure 2 shows the relation between the pressure gradient and the flow rate when the 
model reaches the steady state. The upper panels of the figure correspond to constant Q; 
while, the lower panels show the results for constant �P . We show in Fig. 2a pressure 
difference �P as a function of injected pore volumes when keeping Q constant and in 
figure 2(d) Q as a function of injected pore volumes when keeping �P constant. We see 
that in both cases, within a few injected pore volumes the system reaches a steady state. 
All data are collected after the system reaches a steady state. For the flow rates shown 
the system is well within the power law region where Eq. (9) applies.

In order to calculate Pt for a system size L we have adopted two different methods. 
For the first one we have assumed the mean-field solution from Sinha and Hansen 
(2012), setting � = 2 in Eq.  (9). For the second method, we keep � free as a fitting 
parameter and the numerical results are fitted with Eq.  (9) with variables Pt , M� and 
� . We do not measure the crossover pressure PM where the power-law relation (9) is 
replaced by the viscosity-dominated Darcy law (4). It can be estimated using the scaling 
of pt and m� as was done at the end of Sect. 3 and will be done in Sect. 5.

Fig. 2   Upper panel of the figure corresponds to constant flow rate; while, the lower panel corresponds to 
constant pressure gradient. The size of the network used is 96 × 96 . The saturation Sw value is kept con-
stant at 0.5. a and d At a constant flow rate ( 3.0 × 10−8 < Q < 6.5 × 10−8 m 3/s) or pressure gradient 
( 1.2 × 104 < 𝛥P < 1.7 × 104 Pa), �P and Q gradually approaches the steady-state value with increasing 
pore volumes Vp . b and e We assume � = 2.0 . The figures show the variation of �P with 

√
Q at a constant 

flow rate (upper) and constant pressure gradient (lower). For both figures the system sizes (L) from up to 
down are 128, 112, 96, 80, 64, and 48. As the size of the system is increased both the slope of the straight 
line and the intercept on the ordinate increases. The value of Pt and M� can be extracted from the intercept 
of the straight the line on the ordinate and its slope, respectively (see Eq. 36). c and f � is treated to be a fit-
ting parameter and the numerical results are fitted with Eq. (9) to find � , M� and Pt . The system sizes used 
here are the same as b and e. The fitted � value is observed to be close to 2.0 (shown in the inset).
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Constant � = 2 : In the capillary force dominated region, if we assume � = 2 , we get 
from Eq. (9) that

when taking into account the sign of �P used in the simulation. Figure 2b and e show how 
the pressure gradient �P behaves with 

√
Q for constant flow rate and constant pressure 

gradient, respectively. In both cases, we observe a straight line whose intercept on ordinate 
gives the value of Pt . As we increase L, the slope of the straight line as well as the intercept 
Pt increases. M� can be extracted from the slope of this straight line.

� as fitting parameter: Next, we have kept � as a free parameter and the numerical 
results are fitted with Eq.  (9). The fitted results are shown by dotted lines in Fig.  2c 
and f. The inset in the same figure shows the � values for different system sizes. The 
variation in � values show that the mean-field approximation is valid for our numerical 
results and � has a value close to 2.0.

We now discuss the size effect of the threshold pressure pt = Pt∕L . In Fig.  3a we 
show pt as a function of L for constant pressure gradient �P for the following two cases: 
� = 2 , as well as when we keep � as an independent fitting parameter. In both cases, a 
scale-free decay of pt is observed with L. Figure 3b shows the same power law decay for 
both constant �P and constant flow rate Q with � being treated as an independent fitting 
parameter. We find in all cases

where � = 0.55 . This result is in agreement with that found for the capillary bundle model, 
Eq. (31). We will, however, demonstrate in the following that � depends on the saturation 
Sw.

Another way of displaying the dependence of the threshold pressure pt on the system 
size L is to plot the Darcy velocity v as a function of p − ptL

� . We should then observe 
data collapse for different values of L. This is precisely what we observe in Fig. 4. We 
note that whether we keep the pressure drop �P or the flow rate Q constant, the results 

(36)�P ∼

√
Q

M�

+ Pt ,

(37)pt ∼ L−� ,

Fig. 3   pt as a function of L where L ranges from 48 to 176 is shown for a constant pressure gradient and 
� = 2.0 as well as treating � as a fitting parameter; b � as a fitting parameter for both constant pressure and 
constant flow rate. The inset in both figures shows the size effect for Pt under the same conditions. The satu-
ration Sw = 0.5 in all cases
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are quite similar. In light of this behavior, we will only consider the constant pressure 
drop scenario in the following. We will also in the following keep � as a free parameter.

The dependence of pt on saturation L for various saturation Sw is shown in Fig.  5. We 
observe � to remain constant at a low value for Sw > 0.55 . In the region 0 < Sw < 0.55 , � 
increases quickly with decreasing saturation. The variation � with Sw is shown in the inset of 
Fig. 5. In all cases, � is positive so that pt → 0 as L → ∞.

These results show that the capillary bundle model which predicts � = 1∕2 does not cap-
ture the full mechanisms behind the scaling we observe. We will return to this in the conclud-
ing section.

We now turn to the mobility M� and m� defined in Eqs. (9) and (11), respectively. Figure 6 
shows the size effect for both M� and m�.

where � has values 0.78 ( Sw = 0.53 ), 0.82 ( Sw = 0.50 ) and 0.75 ( Sw = 0.48 ), hence the 
dependence on saturation. From Eq. (11), we have that

(38)M� ∝ L−�

(39)m� =
M�

L
L� ∼ L�−1−� = L� ,

Fig. 4   Darcy velocity v = Q∕L plotted against p − ptL
� = �P∕L − (Pt∕L

1+�)L� , where we have set 
� = 0.55 , thus producing data collapse. We assumed � to be a fitting parameter. We furthermore set 
�n∕�w = 1.0 and Sw = 0.5 , respectively. The study was carried out for a constant pressure gradient and b 
constant flow rate

Fig. 5   Here we show pt = Pt∕L 
as a function of L for L = 48 to 
L = 176 , �n∕�w = 1.0 and for 
different values of Sw . The behav-
ior is consistent with Eq. (37). 
The exponent � is a strong func-
tion of Sw . However, all values 
of � are negative so that pt → 0 
as L → ∞
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where we have used that A = L for the two-dimensional networks we use. We have named 
the combination of exponent � − 1 − � = � . With the value � = 2.0 , we find that � − 1 − � 
is larger than zero for all observed �-values. More specifically, we find � − 1 − � = 0.22 , 
0.18 and 0.25, respectively. We show these results in Fig. 6.

We note how close the exponents measured in Fig. 6b are to the capillary bundle model, 
Eq. (33), where an exponent 1/4 was found.

5 � Discussion and Conclusion

The conclusion we draw from this analysis is that if the power-law mobility m� , which is 
defined in Eq. (10) increases with increasing L, the power-law regime vanishes in the con-
tinuum limit L → ∞ . We repeat the calculation at the end of Sect. 3, but now in a general 
setting. We assume that the power-law mobility scales as in Eq. (39). By equating Eqs. (7) 
and (10) for p = pM and ignoring the threshold pressure gradient pt by assuming pM pt , we 
find

so that

The exponent �∕(� − 1) is positive if � is positive. We have found � = 1∕4 for the capillary 
bundle model, Eq. (33) and 0.22 for Sw = 0.53 , 0.18 for Sw = 0.50 , and 0.25 for Sw = 0.48 , 
see Fig. 6. This means that the crossover pressure pM separating the power law flow regime 
from the viscosity-dominated Darcy flow regime decreases with increasing L.

One may illustrate this by sketching the Darcy law (7) as a straight line in a log-log 
plot of v vs. p as illustrated in Fig.  7. The power-law regime will give another straight 
line in this diagram with slope � when we ignore the threshold correction |p| − pt → |p| . 
The pressure gradient at which they cross each other is pM . We have 𝛽 > 1 so that the two 
lines cross each other with the power law line below the Darcy line to the left and above to 
the right. The system follows the lowest of the two lines for any |p|. As the power law m� 

(40)mdpM = m�p
�

M
,

(41)pM ∼ L−�∕(�−1) .

Fig. 6   The mobility M� defined in Eq. (9) scales with system size L, ranging from L = 48 to L = 208 , as 
described in Eq.  (38). The scaled mobility (11) then scales as m� = M�L

�−1 ∼ L�−1−� . Since 𝜂 < 1 and 
� ≈ 2.0 , m� increases with increasing L. We set �n∕�w = 1.0 here
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mobility increases with increasing L, the cross point between the two lines, pM , moves to 
the left, with the result that the power-law regime moves lower values of the pressure gra-
dient p as seen in Fig. 7.

The approach we followed in this paper to reach the conclusion just stated, was first to 
employed the capillary bundle model which is analytically tractable and then to follow up 
computationally using the dynamic pore-network model. The capillary bundle model has 
proved to be an excellent tool to uncover and explain various phenomena encountered in 
immiscible two-phase flow in porous media. The main results from the use of the capillary 
bundle model in the present context are given in Eqs. (31) and (33). As the model is ana-
lytically tractable, the model explains the mechanism behind the scaling we see.

We find the same qualitative behavior in the dynamic pore-network model we then 
employ: The threshold pressure pt shrinks and the mobility m� increases with increasing 
system size. Both quantities depend on the system size according to a power law. We find 
that the exponents depend weakly on the saturation Sw . However, they are roughly similar 
to the values found in the capillary bundle model.

Our conclusion is that the power law flow regime vanishes in the continuum limit.
We urge that experiments are done in order to move beyond the theoretical and numeri-

cal considerations presented here with their obvious limitations.
An understanding of the power law Darcy regime is very important as it occurs right in 

the parameter range relevant for many industrial situations such as oil recovery, water flow 
in aquifers etc. It should be noted that all theories for immiscible two-phase flow based 
on refining the relative permeability approach will be unable to handle this nonlinearity. 
Hence, it presents a significant challenge to the porous media community.
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Fig. 7   We show ln v vs. ln p in both the linear range, Eq. (7), and the power law range, Eq. (10). Extrapolat-
ing the linear part of the curve to ln p = 0 , it will cross the ln v axis at lnmd , where md is the Darcy mobility 
(8). Extrapolating the power law part of the curve to ln p = 0 , it will cross the ln v axis at lnm� , where m� is 
the power-law mobility (11). The linear mobility md does not depend on the system size L. The power-law 
mobility m� on the other hand grows with increasing L, see arrow marked (a). This means that the crossover 
pressure gradient pM , where the linear and power law part of the curve ln v vs. ln p cross moves to the left 
in the figure, illustrated with arrow (b). Hence, pM decreases with increasing L. We have set the threshold 
pressure pt to zero in this figure
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