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Abstract
Using extensive numerical simulation of the Navier–Stokes equations, we study the transi-
tion from the Darcy’s law for slow flow of fluids through a disordered porous medium to 
the nonlinear flow regime in which the effect of inertia cannot be neglected. The porous 
medium is represented by two-dimensional slices of a three-dimensional image of a sand-
stone. We study the problem over wide ranges of porosity and the Reynolds number, as 
well as two types of boundary conditions, and compute essential features of fluid flow, 
namely, the strength of the vorticity, the effective permeability of the pore space, the fric-
tional drag, and the relationship between the macroscopic pressure gradient �P and the 
fluid velocity v. The results indicate that when the Reynolds number Re is low enough that 
the Darcy’s law holds, the magnitude �z of the vorticity is nearly zero. As Re increases, 
however, so also does �z , and its rise from nearly zero begins at the same Re at which the 
Darcy’s law breaks down. We also show that a nonlinear relation between the macroscopic 
pressure gradient and the fluid velocity v, given by, −�P = (�∕Ke)v + �n�|v|

2
v , provides 

accurate representation of the numerical data, where � and � are the fluid’s viscosity and 
density, Ke is the effective Darcy permeability in the linear regime, and �n is a generalized 
nonlinear resistance. Theoretical justification for the relation is presented, and its predic-
tions are also compared with those of the Forchheimer’s equation.

Keywords Nonlinear flow ⋅ Forchheimer’s equation ⋅ Porous media ⋅

1 Introduction

Single- and two-phase fluid flow through heterogeneous porous media are important phe-
nomena that occur in many natural and man-made processes (Sahimi 2011; Blunt 2017). 
Well-known examples include groundwater flow and contamination (Peterson et al. 1999; 
Selker et al. 2007), soil remediation (Wei et al. 2014), displacement of one fluid by another 
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immiscible fluid (Orr and Taber 1984; Lake 2018), water transmission by building materi-
als, evaporation in soils (Shokri et al. 2024), flow in packed-bed reactors, and ink imbibi-
tion in paper (Ghassemzadeh et al. 2001; Ghassemzadeh and Sahimi 2004). Understand-
ing fluid flow, and in particular two-phase flow through porous media, entails solving a 
complex problem, namely, predicting the continuous paths of the fluid(s) in a disordered 
pore space. With the enormous increase in the computational power, significant advances 
have been made in modeling of single- and two-phase fluid flow in porous media. On the 
experimental side, on the other hand, although visualization of flow paths in real time and 
investigation of the way by which they are affected by the morphology of the pore space—
its pore size distribution, pore connectivity, and surface roughness—have been undertaken, 
understanding the effect of intrinsic characteristics of the solid matrix, such as its wettabil-
ity, and that of the flow field, such as the Reynolds number, as well as the rheology of the 
fluid—Newtonian versus non-Newtonian—remain difficult problems.

A very important problem that has not been studied as extensively, both computation-
ally and by precise experiments and visualization, is the transition of flow from the creep-
ing regime in which Darcy’s law, �P = −(Ke∕�)v , is applicable, to flow at larger Reyn-
olds numbers Re in which the relationship between �P and v is nonlinear. Here Ke is the 
effective Darcy permeability of the pore space, and � is the fluid’s viscosity. Examples of 
such flows are abundant and include gas flow through a catalytic converter, flow of waste-
water that as a fracking fluid is injected into unconventional porous formations, such as 
shales, flow of high-pressure water injected into geothermal reservoirs, fluid flow in many 
filtration processes, flow in biological porous materials (Khanafer et al. 2008; Khalili et al. 
2010), in nuclear pebble-bed reactors (Dave et al. 2018), and in dense fluidized beds (Lu 
et al. 2018). In all such problems, the flow regime is no longer linear because, in addition 
to the viscous forces, the inertial effects are also important. In addition, as recent experi-
ments (Chang et  al. 2017) indicated, when the pores have rough surfaces, as almost all 
pores in natural porous media do, displacement of a wetting fluid by a non-wetting one 
may give rise to nonlinear flow.

Experimental data (Chauveteau and Thirriot 1967; Tiss and Evans 1989; Johns et  al. 
2000; Macini et al. 2010) for and visualization (de Camargo et al. 2016) of non-Darcy fluid 
flow in well-characterized porous media have also been reported. Compared to the Darcy 
flow in porous media, however, theoretical modeling of the non-Darcy flow, which began 
over a century ago (Forchheimer 1901), has remained relatively unexplored (Firoozabadi 
and Katz 1979; Joseph et al. 1982; Hassanizadeh and Gray 1987; Mei and Auriault 1991; 
Ruth and Ma 1992; Ma and Ruth 1993; Whitaker 1996; Thauvin and Mohanty 1998; 
Andrade et al. 1999; Cooper et al. 1999; Liu and Masliyah 1999; Chen et al. 2001; Panfilov 
and Fourar 2006; Hlushkou and Tallarek 2006; Balhoff and Wheeler 2009), even though 
as early as early 1960s, the effect of turbulence on flow of gases in porous media was stud-
ied and reported (Tek et al. 1962). To understand the effect of inertial forces on fluid flow 
in porous media, one must, in principle, numerically solve the momentum and mass con-
servation equations in realistic models of heterogeneous porous media—preferably their 
images as they contain their actual heterogeneity—in order to gain deeper understanding 
of flow in the transition from the Darcy regime to nonlinear flow at higher Re. Such com-
putations are typically difficult and time consuming. Although several efficient numerical 
methods, as well as lattice Boltzmann models (Hill et al. 2001; Chai et al. 2010), have been 
developed that may be used to solve the governing equations at high Reynolds numbers 
in porous media, many theoretical and computational studies have instead utilized empiri-
cal or semi-empirical correlations between the fluid velocity and the macroscopic pressure 
gradient.
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This paper is the first in a series dedicated to a study, by extensive computer simulations, 
of single- and two-phase flow in a heterogeneous porous medium at Reynolds numbers for 
which the Darcy’s law and its generalization to two-phase flow breaks down. In the present 
paper, we focus on the problem in single-phase fluid flow. Many factors contribute to the 
emergence of a transition from the Darcy to non-Darcy flow, which include the disordered 
morphology of the pore space that gives rise to highly non-uniform flow fields similar to 
those in turbulent flow (Sederman et al. 1998), intrinsic flow instabilities (Hill and Koch 
2002; Soulaine et al. 2017), and coherent topological patterns (Sederman et al. 1998; Chu 
et al. 2018) that emerge when the transition to turbulent flow occurs. A good review of the 
literature is given by Koch and Hill et al. (2001).

The organization of the rest of the paper is as follows. In the next section, we describe 
models of pore space that we utilize in our study. The details of the numerical simulations 
are described in Sect. 3, while the results and their implications are presented in Sect. 4. 
The paper is summarized in the last section.

2  Models of Porous Media

We used two-dimensional (2D) slices of a 3D image of a sandstone in the simulations. The 
square-shaped image had a length of 365 � m, with its pore space having a porosity of 0.79 
and connected from the left to the right side; see Fig. 1. The image was then imported into 
the COMSOL Multiphysics package whose geometry toolbar provides a number of util-
ity functions for image manipulation. We used the package’s “interpolation curve” func-
tion to capture and correctly represent the curved interface between the pores and the solid 
matrix of the porous medium with a relative tolerance of 10−3 � m. The partition node of 
the package with various Boolean operations was then utilized to identify the solid and 
void domains in the images. Once the two domains were identified, they were used in the 
physics interface of the COMSOL package in order to set up the computational grid for 
solving the governing equations for fluid flow with specified boundary conditions.

The original morphology of the image was also modified in order to generate several 
other models of porous media with lower porosities that are typically encountered in 
nature. According to percolation theory (Sahimi 2023), the lowest possible porosity in 2D 
disordered porous media with a more or less random morphology that still allows the for-
mation of a sample-spanning cluster of connected pores from the left to the right side of 

Fig. 1  The image of the 
two-dimensional slice of the 
sandstone, where the white area 
shows the pore space
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the image is 0.5. Thus, we added at random impermeable solid objects of random sizes to 
the void domain of the image, in order to generate multiple realizations of the pore space 
with porosities 0.7, 0.6, and 0.51. Examples of the modified morphology are displayed in 
Fig. 2.

Note that since we generate the model porous media at lower porosities through stochas-
tic insertion of solid objects in the pore space, one, in principle, can generate an infinite 
number of such realizations. Each of such realizations will give rise to numerical results 
that may be different from what we present below. The trends in the variations of the com-
puted properties with the control parameters, such as the porosity, are, however, completely 
similar among all the realizations. This is because previous simulation of fluid flow through 
porous media in the same sandstone (Kohanpur et al. 2020; Aljasmi and Sahimi 2021) indi-
cated that the size of the original image is larger then the representative elementary volume 
(REV) of the sandstone. Thus, the numerical results presented below are representative of 
the sandstone that we utilize in the simulation [for a discussion of the significance of the 
REV see, for example, (Wojciech 2019)], and our numerical simulations confirmed this.

It is also crucial to have a smooth interface that separates the void and solid domains in 
order to ensure that a high-quality and resolved computational grid is generated within the 
pore space and utilized in the flow simulation. An interface with sharp and pointed corners 
would result in a low-resolution mesh that can slow down and even prevent, in a reasonable 
time, convergence of the iterative scheme for solving the discretized governing equations to 
the true solution.

3  Simulation of Fluid Flow

The single-phase flow physics interface of COSMOL, which solves the mass conserva-
tion and the Navier–Stokes equations, was utilized to compute the velocity and pres-
sure fields throughout the entire domains, assuming the fluid to be incompressible and 
Newtonian. The fluid, assumed to be water, was injected into the pore space at the 
inlet on the left side of the images at a specified pressure, while the pressure on the 
right side (the outlet) of the models was zero. No-slip boundary condition was imposed 
on all the inner walls separating the pore space and the solid domain. The boundary 
conditions at the top and the bottom external edges of the models were either no-flow 
or symmetric boundary conditions. The former implies that the fluid velocity vector 

Fig. 2  The structure of the porous medium at three porosities � generated from the original image with 
porosity of 0.79. White areas show the pores



799The Transition from Darcy to Nonlinear Flow in Heterogeneous…

1 3

relative to the wall velocity vanishes on the external boundary, whereas the latter pre-
scribes no penetration and vanishing of shear stresses, i.e., the velocity gradient, at the 
top and bottom boundaries that, roughly speaking, is equivalent to the periodic bound-
ary conditions that are usually used in pore-network models of porous media. Note 
that since we use the images of a natural sandstone, imposing exact periodic boundary 
conditions, which eliminate the effect of finite size of a sample porous medium, is not 
possible.

The Reynolds number that we used in the simulation is defined by

where D0 is an appropriate length scale, which can be the mean grain or mean pore-throat 
size. We used the former, i.e., we took D0 to be the average diameter of the grains, com-
puted based on the images. They ranged from 28.2 � m for porosity � = 0.79 to 22.0 � m 
for � = 0.51 . Here � is the fluid’s density, and vm is the mean fluid velocity. Depending on 
the Reynolds number and the porosity, computational grids with sufficient resolution were 
superimposed on the pore space of the images, in order to simulate fluid flow. Figure 3 
depicts the grid used in the porous medium with the lowest porosity, 0.51. The resulting 
mesh-based discretized governing equations were solved in a fully-coupled fashion using 
PARDISO, parallel sparse direct solver. No special tuning of the numerical settings was 
necessary for achieving convergence of the iterative algorithm that solved the governing 
equations in the range of the Reynolds number that we studied. The simulations yielded the 
pressure and velocity fields as the basic outputs, which were then utilizd to compute four 
important characteristics of interest, namely, the vorticity, the friction drag, the effective 
permeability, and the relationship between the macroscopic pressure gradient and the mean 
fluid velocity.

We carried the flow simulations for a range of the Reynolds number using the 
“parametric sweep” function in COMSOL, which solves a sequence of stationary or 
time-dependent flow problems based on a specified range of the parameters of interest, 
beginning with their smallest values. Thus, a range of the inlet pressures was speci-
fied as the main parameter, and all the results for a given model (morphology) were 
computed through a sequence in a single simulation run for each porosity and several 
Reynolds numbers.

(1)Re =
�D0vm

�(1 − �)
,

Fig. 3  The computational grid 
in the pore space of the porous 
medium with porosity of 0.79
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4  Results and Discussion

We carried out extensive simulation of fluid flow in the models of porous media 
described above. In what follows, we present the results and discuss their implications.

4.1  Vorticity

The literature on fluid flow in porous media contains various arguments about the root 
cause of breakdown of Darcy’s law and the transition to nonlinear flow. They include 
formation of a viscous boundary layer (Whitaker 1996), the interstitial drag force (Has-
sanizadeh and Gray 1987; Ma and Ruth 1993), singularity of the streamline patterns 
(Panfilov et  al. 2003), separation of flow (Skjetne99), and deformation of streamline 
patterns and formation of eddies (Fourar et al. 2004; McClure et al. 2010; Panfilov and 
Fourar 2006). In particular, it has been suggested that one can characterize the departure 
from the Darcy flow through studying the development of vorticity and formation of 
eddies as the Reynolds number increases. It has been suggested (Panfilov et  al. 2003; 
Fourar et al. 2004; Panfilov and Fourar 2006; McClure et al. 2010) that, similar to tur-
bulent flow, the departure from Darcy’s law is due to the generation of eddies at micro-
scale. Chaudhary et al. (2011) utilized this idea to study the eddies and gaining under-
standing of the transition from the Darcy to nonlinear flow. The system that they studied 
was, however, simple, consisting of axisymmetric pores that had been formed in a stag-
gered pattern of spherical particles.

We computed the overall vorticity �z through

where S is the surface area of the image, and vx and vy are the components of the fluid 
velocity vector v. Although we carried out almost all the simulations under steady-state 
conditions (since we study single-phase flow), to understand how vortical structures are 
developed in the pore space, we also carried out some simulations under transient condi-
tions. Such simulations are quite time consuming because very small initial time steps, on 
the order of 10−12 s, are required for achieving numerical convergence.

The boundary conditions on the outer edges of the porous medium parallel to the 
direction of macroscopic pressure gradient do affect the development of the vorticity. In 
particular, the symmetry (periodic) boundary conditions give rise to dependence of the 
flow field on the local details of the pore space morphology at the top and bottom edges 
of the system. Our simulations indicated that the vorticity first develops near the exter-
nal edges, which then fuels the evolution of fluid mixing in the pore space and increases 
the strength of the vortical cells. On the other hand, the no-flow boundary conditions at 
the top and bottom edges suppress the strength of the total vorticity, which is computed 
over the entire domain, as indicated by Eq. (2).

Figure 4 presents snapshots of the flow field at three distinct times with the Reyn-
olds number, Re = 14.7 . They indicate that the vortical structures are developed rather 
quickly around the curved interfaces between the pore and solid phases. Figure 5 pre-
sents the local vortical structures at steady state for two Reynolds numbers. It is evident 
that, with increasing Re, not only the vortical structures spread farther away from the 

(2)�z =

(
�

S

)

∫ ∫
(
�vy

�x
−

�vx

�y

)

dxdy,
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interface between the pores and the solid phase, but that they also become more com-
plex. Figure 6 presents the effect of the porosity on the vortical structures at Re = 10.

We find that, independent of the boundary conditions, the vorticity is very small for 
small Reynolds numbers at which the Darcy’s law holds, and the effective permeability of 
the pore space is independent of the macroscopic pressure drop. But, as the deviatons from 
the Darcy flow begin to emerge, the magnitude of the vorticity also increases rapidly and 
significantly. This is shown in Fig. 7, where we present the computed vorticity as a func-
tion of the porosity and the Reynolds number, using the two aformentioned boundary con-
ditions. The no-flow boundary condition at the top and bottom edges of the porous media 
suppresses the strength of the total vorticity, which is computed over the entire domain.

On the other hand, the symmetry (periodic) boundary conditions magnify the effect on 
the vorticity of the local details of the morphology at the external top and bottom edges. 

Fig. 4  Dynamic evolution of vorticity in a portion of the pore space. White areas represent the matrix

Fig. 5  Evolution of vorticity with the Reynolds number Re. White areas represent the matrix

Fig. 6  Evolution with porosity of the vorticity at a fixed Reynolds number Re = 10. White areas show the 
solid matrix
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Fluid mixing and the development of vortical structures close to the external edges fuel 
their evolution in the rest of the pore space and increase the strength of vortical cells. 
Despite such differences, although the magnitudes of the vorticity, computed with the two 
boundary conditions, are different, the qualitative patterns are quite similar in both cases.

Several other methods have been proposed in the literature on turbulent flow for char-
acterization of the strength of local swirling and the vorticity. They include the iso-surface 
of the vorticity magnitude, local clustering of vortex lines (Kim et al. 1987), identification 
of elongated regions with low pressure (Robinson 1991), regions of complex eigenvalues 
of the velocity gradient tensor (Chong et al. 1990), the Hessian of the pressure field (Jeong 
and Hussain 1995), and the second invariant of the velocity gradient tensor (Zhong et al. 
1996). Here, in order to further understand the development of the vortical structure in 
the pore space, we use the method proposed by Chong et al. (1990). In this method, one 
expresses (Chong et al. 1990; Zhou et al. 1999) the local velocity field v around a point r to 
linear order as,

where D = �v is the velocity gradient tensor whose characteristic equation for 3D flow 
fields is given by

with P, Q, and R being the three invariants of the tensor D, given by, P = −� ⋅ v , 
Q =

1

2
[P2 − tr(DD)] , which is (Ziazi and Liburdy 2022) a quantity that measures the 

dominance of vorticity over strain, and R = −det(D) , where “tr” and “det” denote the 
trace and the determinant of the tensor. For incompressible fluids, P = 0 and, therefore, 
Q = −

1

2
tr(DD) , in which case, the discriminant Δ of the characteristic equation is simply, 

Δ ≡ R2∕4 + Q3∕27 . If Δ > 0 , then, D has one real and a pair of conjugated complex eigen-
values. Chong et al. (1990) proposed the use of the region where an eigenvalue pair is com-
plex to characterize the strength of vortices.

Since we simulate 2D systems, Eq. (4) reduces to, �2 + P� + R = 0 , with P = 0 for 
an incompressible fluid, and R = (�vx∕�x)(�vy∕�y) + (�vx∕�y)(�vy∕�x) . For the afore-
mentioned symmertry (periodic) boundary conditions, the two roots of the equation are 

(3)v(r + �r) = v(r) + D�r + O(||�r||2),

(4)�3 + P�2 + Q� + R = 0,

Fig. 7  The vorticity, computed by Eq. (2) for the two types of boundary conditions (B.C.), as a function of 
the porosity and the Reynolds number



803The Transition from Darcy to Nonlinear Flow in Heterogeneous…

1 3

complex conjugate, � = �r ± i�i , with the imaginary part �i representing the local swirling 
strength (Chong et al. 1990; Ziazi and Liburdy 2022), which may also be interpreted as a 
measure of the strength of the vorticity. Thus, we computed �i , with the results shown in 
Fig. 8, which are consistent with those shown in Fig. 7.

On the other hand, when the no-flow boundary conditions are imposed at the external 
edges of the porous media, the term R in the characteristic equation for the 2D flow that we 
study is negative, implying that the two roots are real, and therefore, there are no complex 
conjugate roots, so that the strength of local swirling and the vorticity is zero.

Another way of understanding the transition from the Darcy regime to the nonlinear 
one is through studying the growth of the eddies in the pore space with increasing Re and 
computing their growth rate � . We define � as the ratio of the pore volume occupied by 
the stationary eddies and the total pore volume of the porous media. Figure  9 presents 

Fig. 8  Strength of the vortical 
structures, computed through 2D 
version of Eq. (4), as a function 
of the porosity and the Reynolds 
number. For no-flow boundary 
conditions, the same quantity is 
essentially zero under the same 
conditions

Fig. 9  The growth rate � of the eddies as a function of the Reynolds number Re. The porosity is 0.51
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the results. In a system with uniform morphology (no disorder), such as that studied by 
Chaudhary et al. (2011), � increases monotonically with Re. In the heterogeneous porous 
medium that we study, however, the behavior of � is much more subtle. As Re increases, 
streamlines form loops and grow, hence � increases. Their growth stops when they become 
large enough to touch the neighboring grain boundaries. Thus, � reaches a local maximum. 
As Re is increased further, however, the heterogeneity of the pore space conspires with the 
non-uniform fluid velocity field to redistribute some of streamlines, causing � to decline, 
which then grow again toward the next local maximum larger that the previous one. Fig-
ure 9 shows four of such cycles or steps. Such a dynamics is not present in a uniform sys-
tem, because the velocity field is uniform everywhere, so that once � reaches a maximum, 
there is no opportunity for it to reset.

To verify our assertion, we show in Fig. 10, the loops and streamlines developed in the 
flow with three Reynolds numbers. The figure at the center at Re = 21.6 with larger � indi-
cates multiple larger loops than those at Re = 19.4 and Re = 24.7. If the simulations are 
extended to Re > 24.7, one again obtains increased multiple larger loops. Figure 9 shows 
the results for Reynolds numbers up to 37, which also indicates the formation of another 
step at Re = 35.

4.2  Drag

We computed the drag D by integrating the shear stress, in order to compute the rate of 
change of D with respect to the external pressure gradient, or the Reynolds number, i.e., its 
derivative D′ with respect to either variable, and to understand how it varies with increas-
ing Re. The results are shown in Fig. 11, where D′ has been normalized by its value at Re 
= 0. As Fig. 11 indicates, for Re < 1, D′ does not change with Re, which is characteristic 
of the linear flow regime (Darcy’s law). If we examine the formation of eddies in the same 
interval of Re, we will see that although small eddies are present for Re < 1, D′ does not 
change with the applied pressure gradient, indicating that the eddies do not grow for very 
small Re. Note that D′ is larger at the higher porosity of 0.79, since the pore space is more 
open.

For flows at larger Re, however, D′ begins to decrease, signaling the beginning of the 
transition from the Darcy regime to nonlinear fluid flow. The decrease in D′ is a conse-
quence of the growth of the eddies. Thus, as emphasized above, the deviation from Dar-
cy’s law is a result of development of vortical structure and the growth of the eddies. We 
will demonstrate in the next section that the effective permeability also decreases with 

Fig. 10  Loops, streamlines, and the rate of growth � of the eddies at three Reynolds number Re. The poros-
ity is 0.51
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increasing Re, hence indicating that the mechanism for its reduction is also the growth of 
the eddies.

4.3  The Effective Permeability

We define the effective permeability of a porous medium by, Kn = (�Lvm)∕ΔP , where 
L is the medium’s length, and ΔP is the pressure drop across it. Figure 12 presents the 
results as a function of the Reynolds number and porosity, computed for the two afore-
mentioned boundary conditions. The permebilities have been normalized by their val-
ues as Re → 0 . For very small Reynolds number, the effective permeability remains 

Fig. 11  The derivative D′ of the frictional drag (normalized by its value at Re = 0) and its dependence on 
the Reynolds number for two porosities

Fig. 12  Dependence of the effective permeability on the porosity, the Reynolds number, and the boundary 
conditions
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essentially constant, but for Re >≈ 2 , it begins to decrease, first slowly, and then rather 
rapidly. Note that the boundary conditions have a very minor effect on the effective per-
meabilities. A comparison between Figs. 8, 9, 11, and 12 indicates that the vorticity and 
rate of growth of the eddies begin to rise significantly, and the derivative D′ of the drag 
begins to decrease, precisely at the same Reynolds number at which the effective perme-
ability begins to decrease strongly, confirming our assertion that studying the vortical 
structure and the growth of the eddies is a fruitful way of understanding the transition of 
fluid flow in porous media from the Darcy’s law into a nonlinear regime.

The results so far provide a coherent picture of the mechanism of the reduction in 
the effective permeability with increasing the Reynolds number. As we showed above, 
in the Darcy regime, stationary eddies occupy a small and fixed fraction of the pore 
volume. They grow, however, when Re is above a critical value, Rec = 2 − 3 , with their 
growth leading to the transition from the Darcy’s law to the nonlinear flow regime. 
Since the eddies and vortical structure continue to grow above the critical value of Re, 
they effectively narrow down the flow paths within the pores, hence reducing the effec-
tive permeability. This picture is consistent with experimental observations of the Ziazi 
and Liburdy (2022), who analyzed vorticity locally in their porous medium, which was 
a packed bed of particles.

We also note that the value Rec of the critical Reynolds number depends on the mor-
phology of the pore space, and the manner by which it is defined. Typically, if the length 
scale D0 is taken to be the mean pore-throat size, Rec will be smaller than its value if D0 
is taken to be the mean grain size.

4.4  Crossover from the Darcy’s Law to Nonlinear Flow

In the literature, the departure from the Darcy’s law due to the effect of inertia has been 
modeled by the Forchheimer’s equation [see also Brinkman (1949)],

where �F is an empirical coefficient for which various correlations have been proposed 
(Sahimi 2011). One is,

which is for granular media, where Dg is a typical grain size. Using extensive pore-network 
simulations, Thauvin and Mohanty (1998) proposed the following correlations:

where � is the tortuosity of the pore space (see Ghanbarian-Alavijeh et  al. (2013), for a 
comprehensive review of the literature on the tortuosity). Several other empirical relations 
that relate �F to Ke and porosity � have also been proposed (Sahimi 2011), the accuracy of 
which is comparable with that of Eq. (6).

On the other hand, by applying the homogenization theory (Sanchez-Palencia 1980; 
Allaire 1989, 1991a, b, 1992; see also Telega and Wojnar (1998)) to the Navier–Stokes 

(5)−�P =

(
�

Ke

)

v + �F�v|v|,

(6)�F =
1.75(1 − �)

Dg�
3

,

(7)�F = 1.55 × 104�3.35K−0.98
e

�−0.29,
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equations in a periodic cell, Mei and Auriault (1991), Wodie and Levy (1991), Cieslicki 
and Lasowska (1999), and Skjetne and Auriault (1999a) showed that, in the weak inertia 
regime, the existing data can be accurately represented by

where �n is a generalization of �F for the nonlinear flow regime. Numerical simulations 
(Firdaouss et al. 1997; Rojas and Koplik 1998; Andrade et al. 1999; Narváez et al. 2013), 
as well as experimental studies (Lage et al. 1997; Skjetne and Auriault 1999b), also sup-
ported the accuracy of Eq. (8). Whitaker (private communication, May 1993) also derived 
Eq. (8) in the weak inertia regime.1

Adler et al. (2013) proposed two analytical–numerical algorithms in order to study the 
solution of the Navier–Stokes equations in a three-dimensional channel enclosed by two 
rough walls, with the roughness amplitude being proportional to b� , where 2b is the mean 
size of the channel’s flow passage, and � is a small dimensionless parameter. One algo-
rithm, applicable to small Reynolds number flow, represented the velocity and pressure 
fields in terms of a double Taylor series in Re and � . The algorithm, with accuracy O(Re2) 
and O(�6) , together with Padé approximation (see, for example, Brezenski 1996), pro-
duced the Forchheimer’s law. The second algorithm, applied to a symmetric channel, took 
all the terms on Re and � into account and predicted that the magnitude of the pressure 
gradient should be an odd function of |v| , implying that at larger Re, the Darcy’s law is cor-
rected by a cubic term in |v| , i.e., Eq. (8). Numerical simulations of Adler et al. (2013) for 
non-symmetric channels yielded the same cubic correction. Sivanesapillai et al. (2014) also 
proposed an equation that is consistent with Darcy’s law for small Re, reproduces Forch-
heimer’s equation for larger Re, and contains leading higher-order terms in the regime of 
weak inertia.

Here, we present a heuristic derivation of Eq. (8). Consider two-phase disordered mate-
rials, including porous materials that consist of the pore and solid phases. If �V  is an 
applied voltage gradient across the material and I is the electric flux, then, in the most gen-
eral form, one has (Sahimi 2003)

where R
�
 and Rn are, respectively, the linear and generalized nonlinear resistances (both per 

unit length), and m is a constant. Clearly, when, Rn = 0 , one recover’s Ohm’s law, which is 
the electric analog of the Darcy’s law. It has been shown that (Sahimi 2003) if a disordered 
material has inversion symmetry, then, one has m = 3 in the nonlinear regime, so that

This is consistent with Adler et al. (2013) prediction, mentioned above, that the pressure 
drop (the analog of voltage drop) in the most general case should be an odd function of |v| . 
If a porous medium’s morphology is random, or if it contains at most short-range correla-
tions, then, it has inversion symmetry. In that case, if we use the analogy between electrical 
and hydraulic resistances (conductances), i.e., �V ⟷ �P , R

�
⟷ (�∕Ke) and I ⟷ v , 

(8)−�P =
�

Ke

v + �n�v|v|
2,

(9)−�V = R
�
I + Rn|I

m−1|I,

(10)−�V = R
�
I + Rn|I

2|I.

1 Several months before his passing in May 2023, Professor Stephen Whitaker told one of us (M.S.) that, 
by modifying the analysis presented in his 1996 paper (Whitaker 1996), he derived Eq. (8).
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write Rn as, Rn = ��n , and invoke Eq. (10), we obtain Eq. (8), with �n being a generaliza-
tion of �F for the nonlinear flow regime. Note, however, that the units of �F and �n are not 
the same.

Figure 13 compares the results of the numerical simulation of the Navier–Stokes equa-
tion with the fits provided by Eqs. (5) and (8) for a porosity of 0.51, and the two types of 
the boundary conditions—no-flow and periodic—described above. �F was computed based 
on Eq. (6), although other correlations for �F may be used. Figure 14 makes the same com-
parison as in Fig. 13, but for a porosity of 0.79. For both types of boundary conditions and 
porosity, Eq. (8) provides very accurate fits of the data, much better than those provided by 
Eq. (5). Figures 13 and 14 both indicate that the transition from the Darcy’s law to nonlin-
ear flow begins to emerge at a Reynolds number that is about 2 − 3.

Our preliminary simulations indicate that for flow in 3D porous media, the performance 
of Eq. (8) is significntly better than that of the Forchheimer’s. We should, however, point 
out that if we treat �F as an adjustable parameter, rather than estimating it by Eq. (6) or (7) 
(or other correlations), and fit the numerical data to Eq. (5), the accuracy of the resulting fit 
would be comparable with what the fit to Eq. (8) provides. But, this means that one must 
estimate �F for each porous medium separately. On the other hand, it is possible to theoreti-
cally derive an equation that expresses �n in terms of the effective properties of the same 

Fig. 13  Comparison of the correlation between the macroscopic pressure gradient and the Reynolds num-
ber (flow velocity), as predicted by the Forchheimer’s equation, the Darcy’s law, and Eq. (8). The porosity 
is 0.51

Fig. 14  Same as in Fig. 13, but for porosity, � = 0.79
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porous media in the linear flow regime, so that, in principle, �n is not an adjustable param-
eter. The derivation of the equation for �n is long and complex, and will be presented in a 
future paper, where we will also test its accuracy.

5  Summary and Conclusions

Extensive numerical simulations of the Navier–Stokes equations were carried out in 
order to study the departure from the Darcy’s law for single-phase fluid flow through 
a disordered porous medium and to understand the effect of inertia. As the models of 
the porous media, we used 2D slices of an actual 3D image of a sandstone and studied 
the problem over wide ranges of the porosity and the Reynolds number Re, as well as 
for two types of boundary conditions. Four main properties of fluid flow, namely, the 
strength of the vorticity and the eddies, the frictional drag, the effective permeability of 
the pore space, and the relationship between the macroscopic pressure gradient �P and 
the fluid velocity v, were computed and studied. The numerical simulations indicate that 
in the range of the Reynolds number Re in which the Darcy’s law is valid, the magni-
tude �z of the vorticity is nearly zero. As Re increases, however, so also does �z , and its 
increase begins at the same Re at which Darcy’s law begins to break down.

Based on the analogy between electrical currents in heterogeneous and nonlinear 
composites and flow in disordered porous media, we also presented a heuristic deriva-
tion of a nonlinear relationship between the macroscopic pressure gradient �P and the 
fluid velocity v that is third order in |v| , unlike the Forchheimer’s equation that is quad-
ratic in |v| . The equation had actually been speculated on in the past based on numerical 
simulations and experimental data, and had also been derived for simple geometries. 
The new equation provides accurate representation of the numerical data over the range 
of Re that we studied, and its predictions are more accurate than those of the Forch-
heimer’s equation, which has traditionally been used in the studies of the effect of iner-
tia on fluid flow in porous media.

In this paper, we study non-Darcy fluid flow in an image of a sandstone. It remains to be 
seen whether the nonlinear third-order relation between the pressure gradient and the fluid 
velocity is applicable to nonlinear fluid flow in other types of porous media. Numerical 
simulations in this direction are in progress.
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