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Abstract
Realistic immiscible viscous fingering, showing all of the complex finger structure 
observed in experiments, has proven to be very difficult to model using direct numerical 
simulation based on the two-phase flow equations in porous media. Recently, a method 
was proposed by the authors to solve the viscous-dominated immiscible fingering prob-
lem numerically. This method gave realistic complex immiscible fingering patterns and 
showed very good agreement with a set of viscous unstable 2D water → oil displacement 
experiments. In addition, the method also gave a very good prediction of the response 
of the system to tertiary polymer injection. In this paper, we extend our previous work 
by considering the effect of wettability/capillarity on immiscible viscous fingering, e.g. 
in a water → oil displacements where viscosity ratio 

(

𝜇
o
∕𝜇

w

)

≫ 1 . We identify particular 
wetting states with the form of the corresponding capillary pressure used to simulate that 
system. It has long been known that the broad effect of capillarity is to act like a nonlin-
ear diffusion term in the two-phase flow equations, denoted here as D(Sw) . Therefore, the 
addition of capillary pressure, Pc(Sw) , into the equations acts as a damping or stabilisation 
term on viscous fingering, where it is the derivative of this quantity that is important, i.e. 
D(Sw) ∼

(

dPc(Sw)∕dSw
)

 . If this capillary effect is sufficiently large, then we expect that 
the viscous fingering to be completely damped, and linear stability theory has supported 
this view. However, no convincing numerical simulations have been presented showing 
this effect clearly for systems of different wettability, due to the problem of simulating 
realistic immiscible fingering in the first place (i.e. for the viscous-dominated case where 
Pc = 0 ). Since we already have a good method for numerically generating complex real-
istic immiscible fingering for the Pc = 0 case, we are able for the first time to present a 
study examining both the viscous-dominated limit and the gradual change in the viscous/
capillary force balance. This force balance also depends on the physical size of the system 
as well as on the length scale of the capillary damping. To address these issues, scaling 
theory is applied, using the classical approach of Rapport (1955), to study this scaling in 
a systematic manner. In this paper, we show that the effect of wettability/capillarity on 
immiscible viscous fingering is somewhat more complex and interesting than the (broadly 
correct) qualitative description above. From a “lab-scale” base case 2D water → oil dis-
placement showing clear immiscible viscous fingering which we have already matched 
very well using our numerical method, we examine the effects of introducing either a 
water wet (WW) or an oil wet (OW) capillary pressure, of different “magnitudes”. The 
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characteristics of these two cases (WW and OW) are important in how the value of corre-
sponding  D(Sw) functions, relate to the (Buckley–Leverett) shock front saturation, Swf  , of 
the viscous-dominated ( Pc = 0 ) case. By analysing this, and carrying out some confirm-
ing calculations, we show clearly why we expect to see much clearer immiscible fingering 
at the lab scale in oil wet rather than in water wet systems. Indeed, we demonstrate why 
it is very difficult to see immiscible fingering in WW lab systems. From this finding, one 
might conclude that since no fingering is observed for the WW lab-scale case, then none 
would be expected at the larger “field” scale. However, by invoking scaling theory—spe-
cifically the viscous/capillary scaling group, C

VC1
 , (and a corresponding “shape group”, 

C
S1

 ), we demonstrate very clearly that, although the WW viscous fingers do not usually 
appear at the lab scale, they emerge very distinctly as we “inflate” the system in size in 
a systematic manner. In contrast, we demonstrate exactly why it is much more likely to 
observe viscous fingering for the OW (or weakly wetting) case at the lab scale. Finally, 
to confirm our analysis of the WW and OW immiscible fingering conclusions at the lab 
scale, we present two experiments in a lab-scale bead pack where 

(

�
o
∕�

w

)

= 100 ; no fin-
gering is seen in the WW case, whereas clear developed immiscible fingering is observed 
in the OW case.

Keywords Viscous fingering · Effect of wettability on viscous fingering · Effects of 
capillarity on viscous fingering · Scaling of capillary/viscous fingering · Effect of capillary 
pressure on viscous instability in porous media

1  Introduction and Literature Review

1.1  Viscous Fingering (VF) Literature

Instability is a central feature of flows in fluid mechanics, where the subject is closely 
related to the transition to turbulence (Drazin and Read 2004). Fluid instabilities in porous 
media do have some formal resemblance to the general characteristics of free fluids and 
can be analysed using some similar techniques such as stability analysis, although the spe-
cifics of instabilities in porous media are somewhat different (Drazin and Read 2004). A 
particular instability can be observed in porous media when a low viscosity fluid directly 
displaces a higher viscosity fluid, and this is usually referred to as viscous fingering. The 
two fluids may be fully miscible, partly miscible or immiscible, but in this work we will 
focus on the specific problem of immiscible viscous fingering. Examples of immiscible fin-
gering in porous media can be seen when a gas, such as  H2 or  CO2, displaces water in an 
aquifer (under certain conditions) or when water (viscosity, �w ) displaces a high viscosity 
oil 

(

�o

)

 . In the latter case, the severity of the viscous fingering depends on the viscosity 
ratio, 

(

�o∕�w

)

.
Since the initial founding work on this topic (Engleberts and Klinkenberg 1951; Hill 

1952; Van Meurs and Van der Poel 1958; Saffman and Taylor 1958; Chuoke et al. 1959) a 
huge literature has appeared on viscous fingering which is reviewed in several publications 
(e.g. Homsy 1987; Calderon et al. 2007; Pinilla et al. 2021; Salmo et al. 2022). The last ref-
erence in this list reviews immiscible viscous fingering in some detail under the headings 
of (a) linear stability analysis of the initial finger growth; (b) direct numerical simulation 
of immiscible fingering; (c) experimental studies at the core/2D slab scale; (d) discrete and 
pore scale modelling of viscous fingering (Salmo et al. 2022). We focus here mainly of the 
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summary of areas (b) and (c) since this is the main topic of this paper; a brief summary is 
as follows:

(a) Linear stability analysis of immiscible fingering Linear stability analysis of two-
phase immiscible fingering was originally proposed to analyse the early time growth of 
unstable modes by Chuoke et  al. (1959). This has been extensively developed by many 
workers (Huang et al. 1984; Yortsos and Huang 1986; Alemán and Slattery 1988; Chikhli-
wala et al. 1988; Chikhliwala et al. 1988; Yortsos and Hickernell 1989; Yortsos 1990; Riaz 
and Tchelepi 2006a; Daripa and Pasa 2008). The broad objective is to determine if there 
are some longer wavelength modes of the perturbation which will grow over time leading 
to instability. The stabilising effect of capillary pressure is important in this respect and 
is of relevance to the work presented here, especially the work of Yortsos and Hickernell 
(1989) and Daripa and Pasa (2008).

(b) Direct numerical simulation of immiscible fingering Numerical simulation seeks 
to make direct comparison between continuum numerical modelling by some particu-
lar method, and experimental viscous fingering experiments (see below) for any viscos-
ity ratios, 

(

�o∕�w

)

 . The early success of Blunt et  al. (1994) has not been significantly 
improved upon, by later publications using either more elaborate numerical methods (e.g. 
Riaz and Tchelepi 2006a, b; Erandi et al. 2015; Mostaghimi et al. 2016; Adam et al. 2017; 
Hamid and Muggeridge 2018; Kampitsis et al. 2019, 2020) or more conventional numeri-
cal approaches (Berg and Ott 2012; de Loubens et al. 2018; Bakharev et al. 2020; Chaud-
huri and Vishnudas 2018). It is in this area that the current work is located, and follows 
some previous papers from the authors where direct numerical simulation does lead to very 
detailed fingers which agrees well with experiment (Sorbie et al. 2020; Salmo, et al. 2022; 
Beteta et al. 2022a).

(c) Experimental results on immiscible fingering Since the earliest work on immisci-
ble viscous fingering appeared (Engleberts and Klinkenberg 1951; van Meurs and van der 
Poel 1958), almost no complete experimental studies have been published allowing direct 
numerical simulations to be tested. In this context, by “complete” we mean having the time 
lapsed finger patterns of the immiscible fingers, along with the oil recovery, watercut and 
pressure drop profiles (vs. pore volume injected, PV). The two exceptional bodies of work 
are as follows: (i) The collected experimental/modelling studies of Mohanty, Doorwar 
and colleagues in the USA (Doorwar and Mohanty 2011, 2014a, b, 2017; Doorwar and 
Ambastha 2020) who studied immiscible viscous fingering in a series of micromodel and 
core flooding experimental and modelling papers. The focus of this work was to develop 
models of the fingering for use in upscaled simulations of unstable displacement processes, 
following the “averaging tradition” of constructing “finger functions” (Koval 1963; Fayers 
1988; Fayers and Newley 1988; Tardy and Pearson 2005). This is a particular approach 
to solving the “unresolvable finger” problem and leads to practical workflows for model-
ling these processes. However, in this paper, we focus more of direct numerical modelling 
of resolved fingering (Sorbie et al. 2020), and to validate this, we have used experimen-
tal results from the second significant literature body of immiscible fingering results as 
follows: (ii) The work over the last 12 or so years of Skauge and colleagues in Norway 
(Skauge et al. 2009, 2011, 2012, 2013, 2014; Skauge and Salmo 2015; Bondino et al. 2011; 
Fabbri et al. 2015, 2020; Salmo et al. 2017; de Loubens et al. 2018). Unstable waterfloods 
(and tertiary polymer floods) were performed on 2D slabs of Bentheimer sandstone, and 
the full data set of oil recovery, watercut and pressure drop profiles and in situ X-ray images 
of the finger patterns (all vs. PV injected) were reported. In our previous work, all of this 
data was used to test our simulation methodology (Sorbie et al. 2020) to model immiscible 
viscous fingering with oil/water viscosity ratios over the range, (µo/µw) ~ 100–7000 (Salmo 
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et al. 2022; Beteta et al. 2022a). The agreement between the experiment and direct simula-
tions were all between very good and excellent.

The published body of experimental work on the specific study of wettability on viscous 
fingering is quite small. Worawutthichanyakul and Mohanty (2017) performed a series of 
core floods in oil wet rock cores. They observed that, in oil wet experiments, the break-
through oil recovery decreases as the flow rate decreases, whereas in water wet systems it 
increases. Hence, a correlation previously developed for water wet cores did not apply to 
their results. They went on to develop a new correlation but with the intent of carrying on 
their long-standing programme of devising pseudo-relative permeabilities to describe and 
upscale the fingering process in large-scale simulations. Zhao and Mohanty (2019) noted 
that viscous fingering was more severe in strongly oil wet media than in weakly oil wet 
media or water wet media, and again found different correlations for each wetting system. 
Zhao (2020) gives a good review of the rather limited literature on the effects of wettability 
on immiscible viscous fingering.

(d) Discrete and pore scale modelling Our previous review briefly touched on the vast 
literature on pore scale model using the various (non-continuum) approaches such as lat-
tice Boltzmann, network modelling, etc. (Salmo et  al. 2022). However, since pore scale 
modelling has little direct bearing on the main topic of this paper, no more will be added 
here.

1.2  The Problem of Modelling Viscous Fingering by Direct Numerical Simulation

Various equivalent formulations of the macroscopic equations (coupled PDEs) describ-
ing two-phase flow in porous media are quite well known (Bear 1989; Peaceman 1977; 
Aziz and Settari 1979; Pinder and Gray 2008; Wu 2015), and these will be discussed 
below. Numerical methods have been applied to solve these equations and many com-
mercial numerical simulators have been constructed based on solutions to these equa-
tions. These simulators have been used extensively in industrial applications such as 
in modelling aquifer flows, groundwater contaminant modelling and in oil reservoir 
engineering. However, it has proven to be particularly difficult to numerically simulate 
immiscible viscous fingering directly. By this, we mean that virtually all attempts to 
directly solve the two-phase transport equations numerically have failed to reproduce 
realistic viscous fingering showing all of the detail observed in experiments (Berg and 
Ott 2012; de Loubens et  al. 2018; Bakharev et  al. 2020). One of the most active and 
experienced groups working in this area remarked, “In agreement with existing litera-
ture, we find that Darcy-type simulations … cannot predict the measured waterflood 
data. Even qualitatively, the viscous fingering patterns are not reproduced” (de Loubens 
et al. 2018).

There are (at least) two broad schools of thought about why it is difficult to generate 
realistic immiscible viscous fingers in two-phase numerical simulations. One view is that 
we do not have accurate enough numerical discretisation schemes which will overcome 
problems of simulating the complex finger morphology which emerges, due to problems 
such as numerical dispersion or grid orientation. Such errors are thought to lead to sup-
pression and dispersal of the fingers. However, advanced high order spectral methods 
and other adaptive gridding schemes have been applied to model viscous unstable two-
phase flows and although some fingering behaviour is observed, it is not as fully devel-
oped or realistic as observed in experiments (e.g. Riaz and Tchelepi 2006a, 2006b; de 
Loubens et al. 2018; Kampitsis et al. 2019, 2020). The second school, to which the authors 
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broadly subscribe, believes the problem is more likely to be with the physics and formula-
tion of the viscous fingering problem or the algorithmic approach to the solution of the 
VF problem. An approach to the solution of the immiscible VF problem was proposed 
by the authors recently (Sorbie et  al. 2020) and is described in detail in that paper and 
applied in subsequent work to model viscous fingering experiments in 2D slabs referred 
to the above (Salmo et al. 2022; Beteta et al., 2022a). In brief, this approach starts from 
the “observed” fractional flow (denoted f ∗

w

(

Sw
)

 ) as the main input to the numerical sim-
ulation. However, this only specifies a ratio of relative permeabilities, 

(

kro∕krw
)

 , and 
the correct choice of these is the one that maximises the total mobility, �T

(

Sw
)

 , where, 
�T

(

Sw
)

= �o

(

Sw
)

+ �w

(

Sw
)

 ; or at least maximises �T
(

Sw
)

 within the constraints of the 
end-point relative permeabilities. Extensive discussion of this method and its application to 
modelling viscous-dominated 2D viscous fingering floods is given in previous publications 
(Sorbie et al. 2020; Salmo et al. 2022; Beteta et al. 2022a). A paper on the application of 
this approach to model field-scale viscous fingering and the effect of polymer flooding has 
appeared recently (Beteta et al. 2023).

However, the method proposed previously (Sorbie et al. 2020) only considered the vis-
cous-dominated problem (i.e. where Pc = 0 ) and, in this earlier publication (Sect. 3), some 
justification for taking a lower stabilisation length scale due to capillarity, L

cap
 , was pre-

sented. This was identified with the fine grid where a grid size of �x would lead to a mixing 
length (dispersivity, � ) of � ≈ (�x∕2) . This approximation proved to be perfectly adequate 
to model the viscous-dominated 2D slab floods of Skauge et  al. (see refs above) over a 
wide range of viscosity ratios of  

(

�o∕�w

)

 ~ 400–7000 (Salmo et  al. 2022; Beteta et  al. 
2022a) and also the core flooding results for a 

(

�o∕�w

)

 = 100 case (Beteta, et al. 2022b). 
Previously, we have found the discussion by Arya et al (1988) on mixing length with sys-
tem length scale to be very useful (Salmo et  al. 2022). The new work presented in this 
paper is on the effect of including capillary effects for systems of different wettability in 
viscous fingering calculation.

1.3  The Inclusion of the Effects of Wettability/Capillarity in Viscous Fingering 
Modelling

The system wettability and capillarity are intimately related since the wetting state of the 
porous medium in turn affects the capillary pressure of an invading phase displacing a resi-
dent phase. The relevant contact angle for an oil/water system is denoted �ow ; however, in 
a porous medium it is very common that there is a distribution of contact angles within the 
pore space; for a discussion of this see Dixit et al. (1999) and references therein. At the 
macroscopic scale, there is no direct cognizance of “wettability” in our flow equations; that 
is, there is no single number or function we input to a standard numerical simulator repre-
senting this property. Wettability is simply (indirectly) characterised by the precise form of 
continuum scale capillary pressure function, Pc(Sw) , which we measure and use in our flow 
equations. Indeed, in practice it is usually the Pc function that is used to define wettability 
or wetting state of the porous medium, as discussed in Dixit et al. (2000). Of course, the 
Pc arises as a function of the medium wettability, pore structure, network connectivity and 
heterogeneity (variability of pore sizes, pore geometry, presence of microporosity, etc.). 
Equilibrium capillary pressure is defined in oil/water systems simply as, Pc(Sw) = Po − Pw , 
irrespective of the actual wetting state of the porous medium or the nature of the invading 
or defending phases. The traditional definition of capillary pressure as Pc(Sw) = PNW − PW , 
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where PNW and PW are non-wetting (NW) and wetting (W) phase pressures, respectively, 
has largely been abandoned since we are generally considering complex heterogeneously 
mixed wetting state of porous media in all except the simplest systems.

It is already well known that the effect of capillary pressure, Pc , is to stabilise viscous 
fingers and this has been analysed in some detail using linear stability analysis; the most 
insightful studies in this respect are those of Yortsos and Hickernell 1989; Daripa and Pasa 
2008. This raises the question of why the effect of Pc has not been well established in 
macroscopic simulation previously, although many simulation studies have appeared that 
include Pc in the calculations (e.g. Riaz and Tchelepi 2006a, 2006b; Berg and Ott 2012; de 
Loubens et al. 2018). The reason was referred to above, where it was noted that no stud-
ies have been able to simulate well-developed viscous fingering in the first place (i.e. for 
Pc = 0 ), in order to show their subsequent damping by capillarity. Since the methods we 
have developed gives very well-developed viscous fingers, we are in a position to study the 
additional nonlinear diffusive effects of capillarity (Sorbie et al. 2020).

2  Governing Equations for Two‑Phase Flow in Porous Media

2.1  Transport Equations

There are several formulations of the two-phase flow equations (Peaceman 1977; Aziz and 
Settari 1979; Pinder and Gray 2008; Wu 2015) which are all equivalent. One coupled form 
of the incompressible two-phase pressure and saturation equations, including viscous, cap-
illary and gravity terms, is as follows:

where, with subscripts w and o referring to the water and oil phases, So and Sw are the 
phase saturations where ( So+Sw = 1 ), �o and �w are the phase mobilities, 
�o=(kro

/

�o) and �w=(krw
/

�w) , �T is the total mobility, �T
(

Sw
)

= �o

(

Sw
)

+ �w

(

Sw
)

 , 
kro and krw are the relative permeabilities (RPs), �o and �w are the phase densities, ϕ is the 
porosity,  k  is the permeability of the porous medium which in general may be a Cartesian 
tensor (although k is usually assumed to be diagonal) and g is the gravitational constant. 
For the moment, we will ignore gravity (g = 0) in the following development but it is 
included in our discussion of the scaling groups (below) for use at a later date. With g = 0, 
then the equations for viscous/capillary flow become:

(1)∇.
[

�Tk.∇Po − �wk.∇Pc − �T

(

�o − �w

)

gk.∇z
]

= 0

(2)�

(

�So

�t

)

= ∇.
[

�ok.∇Po − �og∇z
]

(3)∇.
[

�Tk.∇Po − �wk.∇Pc

]

= 0

(4)�

(

�So

�t

)

= ∇.
[

�ok.∇Po

]
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A clearer view of the nonlinear diffusion effect of the two-phase front is seen when the 
above equations are expressed in “convection–diffusion” form as follows in 1D (Stephen 
et al. 2001):

where the convective (Buckley–Leverett) term, u(Sw) , and dispersive/diffusive term, D(Sw) , 
are given by:

where the fluid velocity is given by vt = q∕(A�) . Note that the nonlinear diffusion term, 
D(Sw) , is always ≥ 0 since the derivative of the capillary pressure is always, (dPc∕dSw) ≤ 0. 
In addition, D(Sw) = 0 at each end point of the saturation range, since �w = 0 at Sw = Swi and 
�o = 0 at Sw = 1 − Sor ; Swi is the initial water saturation where krw

(

Swi
)

= 0 , and Sor is the 
residual oil where kro

(

Sw = 1 − Sor
)

= 0 . Plots of this quantity, D(Sw) , will be presented 
below for the unstable viscous fingering cases simulated in this work. Equation (5) can be 
cast in dimensionless form by letting T =

(

vt.t
)

∕L and X = (x∕L) to obtain:

where ũ(Sw) =
(

df
wv

dSw

)

 and is dimensionless (but not normalised) and the quantity 

D̃(Sw) = D(Sw)∕Dmax is both dimensionless and normalised to 1, since Dmax is the maxi-
mum value of the D(Sw) function. The dimensionless constant term in Eq.  8 is like an 
inverse Peclet number (NPe), as follows:

and this is one expression of the viscous/capillary ratio as a constant in this two-phase 
equation. We will return to this later in our discussion of the scaling of results and also in 
the analysis of the numerical results.

2.2  Numerical solution of fingering including Pc

To solve the coupled viscous/capillary transport equations for two-phase flow in porous 
media, we use the approach proposed in Sorbie et al. (2020). That is, we choose the frac-
tional flow, f ∗

w

(

Sw
)

 , followed by deriving the maximum mobility relative permeabilities 
(RPs kro and krw ). A normal numerical simulation is then carried out, usually in a cor-
related random permeability field, using simple numerical methods, such as single point 
upstreaming of the convection terms. In this work, we use the numerical simulator STARS 
(CMG, Calgary), but any simulator model can be used without modification. The approach 
has been tested with the same data on several simulators which give the same answer for 

(5)
(

�Sw

�t

)

= −u(Sw)

(

�Sw

�x

)

+
�

�x

[

D(Sw)

(

�Sw

�x

)]

(6)u(Sw) =
q

A�

(

dfwv

dSw

)

=vt

(

dfwv

dSw

)

(7)D(Sw) = −
k

�

(

�o�w

�o + �w

)(

dPc

dSw

)

(8)
(

�Sw

�T

)

= −ũ
(

Sw
)

(

�Sw

�X

)

+

(

Dmax

vtL

)

�

�X

(

D̃
(

Sw
)

(

�Sw

�X

))

(9)NPe =

(

vtL

Dmax

)
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our “base case” example (oil recovery, watercut and ΔP profiles, plus finger patterns and 
tertiary polymer response).

However, we will take as our base case example, a model which we have already simu-
lated assuming viscous forces only (Salmo et al. 2022; Beteta et al. 2022a), and we will 
use these previously derived flow functions (i.e. f ∗

w

(

Sw
)

 , kro and krw ) here directly. It is 
already known that these functions give fully developed viscous fingering which agrees 
very well with the experimental results. In order to assess the effect of P

c
 on the fingering, 

the equations can then be solved by simply including the chosen capillary pressure func-
tion, P

c

(

Sw
)

 , in the simulations.
It is already well known that the solutions to the two-phase equations including viscous 

and capillary terms is dependent on the balance between these two forces. For example, at 
very high flow rates, then the viscous forces will dominate and the transport will approach 
the Buckley–Leverett (BL) solution (in 1D) and sharp fronts will be observed (Buckley and 
Leverett 1941; Peaceman 1977; Aziz and Settari 1979; Pinder and Gray 2008; Wu 2015). 
Correspondingly, at sufficiently slow flow rates, then capillarity will dominate and solu-
tions will be obtained of the limiting nonlinear diffusion equation. Since we are consider-
ing the effect of the viscous/capillary force balance on viscous fingering, we now introduce 
the scaling groups for two-phase flow in the following section. This has already been done 
in a simple way by introducing the Peclet number for two-phase flow in Eq. 9 above, but 
this is a single number and the scaling of the nonlinear two-phase equations is a little more 
complex, as shown in the following section.

3  Force Balances and Scaling in Two‑Phase Flow

3.1  Scaling Theory Following Rapoport (1955)

To study the balance of viscous and capillary forces as it affects the modelling of immisci-
ble viscous fingering, we apply scaling theory using the formalism introduced by Rapoport 
(1955). This fundamental and very powerful technique has become rather old fashioned 
and forgotten in modern porous media research.

The broad intent of scaling theory in engineering is usually to construct a model at the 
laboratory or pilot scale of a much larger system, but in such a way that in a dimensionless 
space these two models are actually identical. This means that all the forces are identi-
cally balanced relative to each other in each system. In the context of flow through porous 
media, Rapoport (1955) described one system as a “prototype reservoir”, such as a labora-
tory flow experiment, and the scaled system as the “model reservoir”, as shown in Fig. 1. 
The prototype reservoir quantities such as total size, injection flow rates, permeabilities, 
etc. (i.e. Δx, Δy, Δz, q, kx, ky, kz, etc. ) have corresponding values in the model reservoir 
(i.e. Δx�, Δy�, Δz�, q�, k�

x
, k�

y
, k�

z
, etc. ). Table  1 shows the dimensionless dependent and 

independent quantities for both the prototype and model reservoirs. Assuming the relative 
permeabilities and reservoir structure remain the same, then if all the five similarity groups 
in Table 1 are held constant, then the prototype and model reservoirs are exactly scaled. 
This is equivalent to saying that in completely dimensionless variables the two systems are 
identical. For two-phase flow in 3D, there are exactly five similarity groups (see Table 1) 
as follows: (i) two force balances viscous/capillary ( CVC1 ) and viscous/gravity ( CVG1 ); the 
capillary/gravity balance ( CCG1 ) is then fixed); (ii) two “shape groups” ( CS1 and CS2 ) gov-
erning reservoir shape and permeability anisotropy; and (iii) the viscosity ratio 

(

�o∕�w

)
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must be fixed. The reason for the subscript 1 in the force balance groups is that there are 
actually three forms of each of these quantities, but they are not independent and any sets 
can be used. Ground breaking though his paper was, Rapoport (1955) did not lay this out 
very clearly.

3.2  Application of Scaling Theory: The Viscous/Capillary Force Balance

For completeness, in the governing equations (Eqs. 1 and 2) we have introduced all three 
forces for two-phase flow (viscous, capillary and gravity). This leads to two force bal-
ances as in Table 1—but we will consider only the viscous/capillary scaling group here 
( CVC1 ) since this force balance is the focus of this paper (here we assume g = 0), and this is 
expressed as:

(10)CVC1 =
q ⋅ Δx ⋅ �o

kx ⋅ Δy ⋅ Δz
(

dPc

dSw

) =
viscous

capillary

Fig. 1  Scaling between the prototype (laboratory) reservoir and the model (field) reservoir

Table 1  Scaling groups after 
Rapoport (1955) Independent groups

x

Δx
;

y

Δy
;

z

Δz
;

t

Δt

Dependent groups

Sw;
P

ΔP
;

Cum. oil recovery

Total oil in place

Similarity groups
Force balances
CVC1 =

q⋅Δx⋅�o

kx ⋅Δy⋅Δz
(

dPc

dSw

) =
viscous

capillary
; CVG1 =

q⋅Δx⋅�o

gΔ�⋅kx ⋅Δy⋅Δz
2

(

dPc

dSw

) =
viscous

gravity

Shape groups
CS1 =

kxΔy
2

kyΔx
2
= CS2 =

kxΔz
2

kzΔx
2

And…
�o

�w
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Note that, consistent with the “convection–diffusion” formulation of the two-phase trans-
port equation with capillarity (Eqs. 5 and 7), the CVC1 scaling group refers to the slope of 
Pc(Sw)—i.e. to 

(

dPc

/

dSw
)

 —and not to the magnitude of Pc itself. This may seem like an 
abstruse and complicated quantity to “scale” from one system to another, but in numerical 
simulation calculations it is quite straightforward, e.g. If we have a function Pc1 = Pc1(Sw) 
and we double the value of the slope of Pc1 , then we can choose Pc2 = 2.Pc1(Sw) which has 
the required property.

In fact, Eq.  10 is the more rigorous expression of the viscous/capillary force ratio as 
it is a nonlinear function, unlike the simpler Peclet number, NPe =

(

vtL∕Dmax

)

 , given in 
Eq. (9).  NPe is a single number which was found by making the two-phase transport equa-
tion dimensionless. Of course, both quantities CVC1 and NPe will usually vary in the same 
qualitative manner, but we will show below that CVC1 is more useful.

Scaling theory is clearly of relevance when considering the effect of Pc on viscous fin-
gering, since there is an obvious connection between the magnitude of the Pc effect and 
the viscous/capillary force balance, as represented in the group, CVC1 . If CVC1 → ∞ , then 
the system is viscous dominated (the Buckley–Leverett limit in the convection/diffusion 
formulation) and effectively Pc ≈ 0 . The convection/diffusion (or convection/dispersion) 
formulation refers to the two-phase equations of flow in porous media when cast in the 
fractional flow/Buckley–Leverett form including capillarity as in Eqs. (5) or (8). However, 
if CVC1 → 0 , then the system is capillary dominated and the system will be in a strongly 
(nonlinear) diffusive flow regime, and any shocks will be dispersed.

Scaling theory can also be applied in another way as we will demonstrate in more detail 
later in this paper; but the flavour of the application is as follows. Suppose capillarity (say 
a large water wet Pc ) actually suppressed viscous fingering at the lab (~10–50 cm) scale 
for an adversity viscosity ratio flood (high �o∕�w ) in a porous medium. This will appear 
experimentally as an “almost stable” two-phase displacement, and will not show the char-
acter of well-developed viscous fingering. Indeed, such an experiment will be presented in 
this paper. For such a case, we may apply scaling theory by rigorously scaling up our lab 
system in size (increasing Δx in Eq. 10) but holding the (WW) Pc the same as the experi-
mental curve. This means that as the size of the system increases, then CVC1 will increase, 
i.e. the viscous forces will gradually dominate and the viscous fingering will emerge at a 
larger scale, well above that which can be observed in the lab. That is, the viscous fingering 
will appear at the field scale but not at the laboratory scale; this is the opposite of what is 
sometimes said of VF (i.e. that it is “a lab-scale phenomenon”!).

We will return to the application of scaling theory later in this paper, where we will 
show (a) experimental results supporting what is said above, and (b) size scaling of the lab 
system showing emergent fingering as the system size increases.

4  Input Data for the Viscous Fingering Simulations, With and Without 
Pc

4.1  The Base Case Simulation

As a base case simulation example, a viscous unstable case with 
(

�o∕�w

)

 = 2000 mod-
elled in previous work will be used here to demonstrate the effect of Pc on viscous finger-
ing. This is taken from the direct modelling of an actual 2D slab immiscible water → oil 
displacement experiment showing clear fingering. This was simulated assuming only 
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viscous forces were acting using the simulation approach described in Sorbie et al. (2020) 
and applied to simulate this 

(

�o∕�w

)

 = 2000 case in Salmo et al. (2022) and Beteta et al. 
(2022a). A brief summary of the input data set and resulting simulation match is provided 
here for reference, further details of the simulation are available in the original publication 
(Beteta et  al. 2022a). Similarly, further experimental details are provided by A. Skauge 
et  al (2012). In this paper, we prefer to refer to viscosity ratio (µo/µw) throughout rather 
than “mobility ratio” for reasons discussed in detail in Sorbie et al (2020) and Salmo et al 
(2022). However, in this earlier work, both conventional (end point) mobility ratio, M (a 
number), and the local mobility ratio function (especially at the Shock front, M(Swf)), are 
quoted (Sorbie et al 2020); Salmo et al 2022).

A resin coated 30 cm × 30 cm × 2.5 cm Bentheimer sandstone slab was saturated with 
brine, characterised for permeability and porosity before being saturated with crude oil 
(2000 mPa s) and aged for 3 weeks at 50 °C. By  ageing the water wet Bentheimer with 
crude oil, the wettability was altered to oil wet or very weakly water wet (Zhou et al. 2000). 
The sample was then loaded into an X-ray scanner and the oil displaced with water at 20 
°C at an average velocity, v = 0.44 µm/s (i.e. 0.16 cm/h or 3.8 cm/day). Following 2.5 PV 
of water injection, the water was viscosified to 60 mPa  s with a high molecular weight 
co-polymer of acrylic acid and acrylamide (HPAM), and injection continued for a further 
1.5 PV. The in situ finger patterns, oil recovery, water cut, and differential pressure were 
recorded throughout.

The subsequent simulation represented the slab with a 2D 500 × 500 grid with a random 
correlated permeability field (dimensionless correlation length, λD = 0.03), a permeabil-
ity range of 0.01–10 D and an average permeability of ~ 3 D—Fig. 2. The random corre-
lated field has a correlation length of λD = 0.03, representing the small scale heterogene-
ity present in such sandstones. The effect of larger correlation length, up to 0.4, has been 
presented as part of separate publications (Beteta et  al. 2023; Salmo et  al. 2022). When 
considering larger scale heterogeneity, such as layered systems resulting from fluvial depo-
sition, another mechanism will be introduced—viscous crossflow in its traditional sense, 
the flow from high permeability to low permeability layers (and vice versa). Some of these 
large-scale heterogeneities are explored in an upcoming publication (Beteta et al. 2023).

In this paper, the main focus is to include the effects of capillary pressure (Pc) on the 
emergence and damping of viscous fingering across a range of length scales from the lab 

Fig. 2  Simulation grid of 
500 × 500 cells and the applied 
permeability field
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scale to the field scale. The base case model, as noted earlier in this paper, is the viscous-
dominated  (GVC1 → ∞) mo/mw = 2000 case for all the experimental scale simulations; full 
details are given in previous papers (Salmo et al. 2022; Beteta et al. 2022a). The experi-
ments modelled were viscous dominated and hence the experimental scale simulations had 
Pc = 0. When we make Pc ≠ 0 in our multi-scale simulations, then strictly at the lab scale 
there may be a capillary end effect, which will of course reduce as the size of the system 
increases. However, we view this as an artefact and we remove it in these simulations (at 
all scales). This is done simply by changing the boundary conditions or by taking a system 
with additional grid blocks and defining the target system as being somewhat shorter (both 
methods give virtually identical results). In both cases, then the outlet boundary condition 
is simply a constant pressure outlet and the production of each phase from the last block is 
the sum of the local fraction flows multiplied by the total flow rate.

Although we are mainly interested in the waterflood in this work, both the waterflood 
and the tertiary polymer flood were simulated, and so, recoveries, watercuts and pressure 
drop profiles for the whole flooding sequence are reported here.

Relative permeabilities (RPs) were generated utilising the LET correlations (Lomeland 
et al. 2005) to give greater flexibility in the form of the curves. As discussed above, the 
relative permeabilities were derived from a fixed fractional flow curve using Swf = 0.19 and 
maximising total mobility. The generated relative permeabilities, fractional flow and total 
mobility are given in Fig. 3. The relative permeabilities in Fig. 3 do not look very “con-
ventional”, and this matter is discussed in some detail in Appendix of Salmo et al. (2022), 
which refers back to the earlier work of Maini and co-workers on this issue (Maini et al. 
1990; Maini 1998).

The resulting simulation match to the experimental data is presented below in terms of 
oil recovery factor, water cut and pressure drop profiles (vs. PV) in Fig. 4, and the experi-
mental and simulated finger patterns are shown in Fig. 5. It can be seen that an excellent 
match to all experimental data is obtained using this methodology. As such, this data set—
with fully developed, experimentally matched, fingers—provides a sound base case from 
which the role of wettability/capillarity can be explored through numerical modelling.

For the viscous-dominated base case simulation, the treatment of the boundary condi-
tion (at the lab or field scale) is straightforward. The inlet flux is a fixed flow rate, and 
the outlet flux is the (volume conserved) oil/water flows calculated with zero capillary 
end effect (a total flux preserving Dirichlet condition). At the lab scale, the presence of 
a nonzero capillary pressure means that there may be a capillary end effect in an actual 

Fig. 3  Simulated 2000 mPa s slab flood—relative permeabilities (left) and fractional flow and total mobility 
(right)
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lab-scale experiment. This experimental artefact is ignored in these simulations to bring 
out the main physics in the body of the system—either lab or field. Using the above bound-
ary conditions is essentially “benign” in terms of the capillary end effect.

Given that we do not include the capillary end effect artefact (at any scale), the simula-
tion model setup is completely routine.

The glass bead pack experiments presented in this paper are for (µo/µw) = 100 in the experi-
ments, rather than the 2000 value in the numerical example. However, in our previous papers 
(Salmo et  al 2022; Beteta et  al. 2022a, b) we have presented experiments and simulations 
over the entire range from (µo/µw) = 100 (Beteta et al. 2022b) and then over the range from 
(µo/µw) = 400 70 7000 (Salmo et al 2022; Beteta et al. 2022a). In terms of the instability, we 
see very clear immiscible viscous fingering in ALL cases including the (µo/µw) = 100 case. 
Theoretically, as long as we can reach the viscous-dominated limit (in terms of the viscous/
capillary group, CVC1 → ∞ (large)), we will certainly see immiscible fingering. Capillarity 

Fig. 4  Simulated 2000 mPa s slab flood (solid lines) versus experimental data (solid points)—recovery fac-
tor, water cut and normalised pressure drop

Fig. 5  Simulated 2000 mPa s slab flood (bottom) versus experimentally observed finger patterns (top)
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will have the same overall qualitative damping effect at an appropriately low value of GVC1 
whatever the (µo/µw) ratio, although the fine details will differ a little.

4.2  Capillary Pressure Functions for Various Wetting Scenarios

As discussed above, “wettability” here is characterised by the form and characteristics of 
the capillary pressure function, Pc

(

Sw
)

 . We use the abbreviations WW, MW and OW to 
describe water wet, mixed wet and oil wet cases, respectively. For the purposes of this 
work, these are defined as shown in Fig.  6. The WW Pc function shows only positive 
( Pc

(

Sw
)

≥ 0 ) decreasing values starting from a maximum value of Pc,max at Sw = Swi . All 
WW curves have exactly the same form and only Pc,max is changed in the calculations; this 
is denoted “WW Pc ” in our calculations; Curve A in Fig. 6. The OW Pc curves all start at 
Pc = 0 at Sw = Swi and either (a) continuously decrease monotonically where Pc

(

Sw
)

< 0 
to a value of −Pc,max at Sw = (1 − Sor ) ; this case is denoted as “continuous OW Pc”—
Curve B in Fig. 6; or (b) maintain the value of Pc

(

Sw
)

= 0 (or any constant value) from 
Sw = Swi to Swx , followed by a continuous decrease where Pc

(

Sw
)

< 0 for Sw > Swx to a 
value of −Pc,max at Sw = (1 − Sor ) ; this case is denoted “piecewise OW Pc”—Curve C in 
Fig.  6. The reason for taking these two forms of the OW Pc cases will become evident 
when the results are presented below. The MW case has both a positive and a negative 
branch as shown in Fig. 6; however, we do not show any results for this case, although we 
have carried out the simulations for reasons explained later.

Fig. 6  Capillary pressure curves of form A, B (left) and C (right)

Fig. 7  D
(

Sw
)

 functions for each capillary pressure set—a Curves A and B and b Curve C
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These Pc functions lead to the corresponding D
(

Sw
)

 functions in Eq. 7 which appear 
in the flow equations; the form of D

(

Sw
)

 is not obvious since it also involves phase 
mobilities. The D

(

Sw
)

 functions corresponding to the various Pc curves are plotted in 
Fig. 7. For these specific capillary pressure functions with the highest capillary pressures 
( Pc,max ~ 1psi, in this case), the resulting D

(

Sw
)

 functions for both the WW and OW Pc 
cases have an approximate maximum value of, Dmax ≈ 1.3 ×  10–3  cm2/s. Recall from the 
above that the velocity of the base case 2D slab flood is, vt = 4.4 ×  10–5  cm2/s, and the 
system size is, L = 30 cm; this gives a Peclet number (Eq. 7b) of NPe = (vtL)∕Dmax ≈ 1 , 
and for such a low Peclet number (for Pc,max ~ 1psi), we may expect a significant effect 
of capillarity in this base case flood including capillary pressure of this value. The cor-
responding Peclet numbers for the Pc,max ~ 0.1 and 0.01psi values are NPe ≈ 10 and 100, 
respectively.

However, we also note here that this Dmax value occurs close to the Sw = Swf  shock 
front saturation for the WW Pc case (see Fig. 7a—Curve A), but the Dmax for the OW Pc 
is at much higher Sw value, where Sw >> Swf (see Fig. 7a—Curve B and Fig. 7b—Curve 
C). We will return to these observations later.

Considering the sensitivity of viscous fingering to wettability, then for “conventional” 
relative permeabilities (RPs), these functions are thought to have particular forms for water 
wet and oil wet systems. The new approach to immiscible fingering outlined in Sorbie et al. 
(2020) for the displacement of viscous oils essentially abandons the conventional idea of 
RPs. It takes as the primary input the fractional flow (denoted fw*) and then calculates 
the corresponding maximum mobility “relative permeabilities” (RPs) which are essentially 
relegated to “flow functions”. This conceptual approach is fully discussed in Sorbie et al. 
(2020) and a full critique of the RP issue for viscous oil is given in Appendix of Salmo 
et al (2022), Appendix A: Some Comments on “Experimentally Measured” Relative Per-
meabilities (RPs) for Unstable Immiscible Displacements. The “RP flow functions” which 
the current method derives are precisely “experimental flow curves” since they give an 
excellent match to all aspects of core flood results (Beteta et al. 2022b) and also the vis-
cous unstable slab flow results (Beteta et al. 2022a; Salmo et al. 2022).

It is known that strictly the Sor (and Swi) may depend on the force balance in the 
system of viscous/capillary forces; the various definitions of “Sor” are discussed in vari-
ous papers (e.g. see Ryazanov et al., 2009). However, here we take the two-phase flow 
“standard model” of assuming that the end-point rel perms of each phase are zero; i.e. 
at Swi, then krw = 0 and at Sor, then kro = 0. Thus, irrespective of the form of the Pc 
curve, the phase mobilities (λo and λw) are of course also zero at these end points and 
therefore the D(Sw) = 0, as shown in the paper. In fact, the only end point that is impor-
tant in this work is at the Sor end, and since no blocks actually fully reach this value due 
to the adverse viscosity ratio, then this point is unimportant here.

4.3  System Heterogeneity, Variable P
c
 and the Leverett J‑function

In this work, although the permeability field is represented as a random correlated field 
which is of course heterogeneous, most simulation cases including WW or OW Pc func-
tions use a single Pc curve as shown in Fig. 6. We have also performed simulations includ-
ing the effect of permeability heterogeneity on capillarity by using the Leverett J

(

Sw
)

-func-
tion to rescale both the WW and OW curves, which is given by Eq. 11 (Leverett 1941):
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where k is the local permeability, ϕ is the porosity, �ow is the o/w (oil/water) IFT and �ow 
is the o/w contact angle. These calculations will be presented as part of a later paper; how-
ever, we can comment here that these results including the J-function scaling of the Pc do 
not significantly change the conclusions of this work.

5  Viscous Fingering Simulations of Water‑Wet (WW) Cases at Different 
Scales

5.1  Viscous Fingering at the Lab Scale: The WW P
c
 Case (Curve A Type)

The viscous-dominated case ( Pc = 0 ), for the water → oil displacement case for viscos-
ity ratio 

(

�o∕�w

)

 = 2000 is presented in Sect. 4.1 , and this is the base case on which the 
further cases including capillary pressure are based. We start by simulating the water 
wet (WW) Pc case (Curve A; Fig.  6) comparing this base case ( Pc = 0 ) with the cases 
for successively higher Pc values,  Pc,max

(

Swi
)

 = 0.01, 0.1 and 1 psi. The results for these 
four calculations are presented in Fig. 8 which shows a snapshot of the water saturation 
distributions at 0.04PV of injection which is the WBT (water breakthrough time) for the 
viscous-dominated case.

The results in Fig. 8 show that Pc vales of Pc,max = 0.1 or 1 psi almost completely “wash 
out” the fingering in these WW cases. Only when a very low Pc,max = 0.01psi is used do the 
fingers still clearly appear, and even this case the fingers are still visibly more dispersed 
than the purely viscous-dominated ( Pc = 0 ) case. Clearly, a very small value of Pc , as 

(11)J
�

Sw
�

=
Pc

�

Sw
�√

(k∕�)

�ow. cos �ow

Fig. 8  Water saturation finger patterns after 0.04 PV of water injection (WBT for viscous-dominated case 
( Pc = 0 )) for water wet Pc curves (type A); the corresponding Peclet numbers for the simulations including 
Pc are NPe = 100, 10 and 1 for the cases with Pc,max

(

Swi
)

 = 0.01, 0.1 and 1 psi, respectively
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manifested through the D
(

Sw
)

 function, can disrupt the formation of viscous fingers by 
damping them out. This finger spreading occurs both in the direction of flow in these lin-
ear 2D floods and in the transverse direction. Recall from the above that the values of the 
calculated Peclet number for the three cases in Fig. 8 were NPe ≈ 1 , 10 and 100, for the 
cases with Pc,max = 1 , 0.1 and 0.01psi, respectively. Based on these values of NPe , we might 
qualitatively expect the lowest capillary pressure case to show some degree of fingering. 
We noted above that the value of the shock front saturation in the viscous-dominated flood 
( Pc = 0 ) is Swf  = 0.19, and it is probably the magnitude of the D

(

Sw
)

 function at this satura-
tion value that is important, and this will be confirmed below.

The corresponding calculated profiles of cumulative oil recovery, watercut and pres-
sure drop vs. PV—in addition to the response of the application of polymer viscosified 
water at 2.3 PV (polymer viscosity �p = 60 mPa s)—are shown in Fig. 9. It is interest-
ing that, despite the differences in fingering patterns, this shows that all four cases give  
similar results for all calculated quantities for both the waterflood and the polymer flood, 
with the purely viscous case ( Pc = 0 ) having a slightly lower cumulative oil recovery. 
However, this is partly a result of the choice of scale here. The inset plot shows the 
water cut at early time (breakthrough). These clearly show some differences, and the 
actual breakthrough time is an important feature of any calculation. Thus, it would not 
be correct to say the fingering does not affect recovery. This may be a little surprising 
but, in applying our VF ( f ∗

w
∕max . �T (Sw) ) methodology, we have found that the key fac-

tor governing the final results is the choice of f ∗
w
 and the corresponding max mobility 

relative permeabilities (RPs). In modelling the viscous-dominated experimental floods 
(Beteta et  al. 2002a), we have also found that these factors ( f ∗

w
and max.�T (Sw) ) can 

also accurately predict the response to the tertiary polymer. We also note from Fig. 9 

Fig. 9  Oil recovery factor, water cut and normalised differential pressure for the no Pc case as well as the 
three water wet (Pc curve  A) cases. Inset plot showing changes in water flood recovery (left) and water 
breakthrough (right)
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that the response of the system to the application of tertiary polymer is also almost iden-
tical for all cases, in terms of oil recovery and watercut profiles (vs. PV injected). The 
first conclusion from these calculations is that for a WW system, then water → oil dis-
placements even with a very high (μo/μw) ratio (2000 in this case), then very low levels 
of capillary pressure can wash out viscous fingering at the lab scale, and this appears to 
be correct. In the following section, we present experimental results which support this 
finding. A further conclusion from this WW Pc calculation might appear to be that we 
would then not expect to see any viscous fingering at the larger (field) scale, but this is 
incorrect as we will demonstrate in Sect. 5.3. 

5.2  Experimental Verification of VF Suppression in WW Bead Packs

An immiscible water → oil displacement experiment with 
(

�o∕�w

)

 = 100 was carried out 
in this work as part of our immiscible viscous fingering (VF) experimental programme. 
The pack is a Perspex (Plexiglass) walled container with a porous medium pack size 
8cm x 49cm and 0.5cm (width–length–depth) which is packed with ballotini beads with 
a diameter size distribution ~ 150–250 µm. As supplied and washed, the beads are quite 
strongly water wet and this was tested qualitatively by noting that a drop of water placed 
on the pack was immediately imbibed. The pack at 100% water saturation (distilled 
water) was flooded with �o = 100 mPa s (clear) mineral oil which displaced the water 
in a very stable manner leaving an initial low water content of ~ 2–3% (by volume bal-
ance). The initial condition of the pack before waterflooding was then  Soi ~ 0.97–0.98 
of clear 100 mPa s mineral oil and Swi ~ 0.02–to 0.03. At this point, blue dyed water of 
viscosity �w = 1 mPa s was injected to displace the �o = 100 mPa s clear oil. The dis-
placement sequence is shown in Fig.  10 where two groups of 12 × time snapshots are 
shown in this figure as follows: (i) in Fig. 10a on the left, the early time displacement 
profiles to 0.24PV are shown in 0.02PV time steps from top left to bottom right (i.e. up 
to 12 × 0.02 = 0.24PV of injection); (ii) in Fig. 10b on the right, the later time displace-
ment profiles to 0.96 PV are shown in 0.08PV time steps from top left to bottom right 
(i.e. up to 12 × 0.08 = 0.96PV of injection). The video of this flood is given in the ancil-
lary uploaded material supplied with the paper (supplementary 1).

The most important observation here is that although we might expect to see immis-
cible viscous fingering for this 

(

�o∕�w

)

 = 100 viscosity ratio, the front is only slightly 
distorted with no obvious evidence of instability; see Fig. 10. Indeed, this displacement 
could be due to a slight amount of permeability heterogeneity in the pack. A second 
important observation (from Fig. 10b) is that the water breakthrough (WBT) is between 
frames 5 and 6 in this figure—i.e. between 0.4 and 0.48PV of water injection, i.e. WBT 
at ~ 0.44PV; that is, at WBT the average oil saturation in the pack is So ~ 0.5 (since Swi 
was so low). This implies that the Sw front height at the shock is around Swf  ~ 0.32–0.4, 
typical of what a 1D displacement might calculate for this viscosity ratio.

We conjecture here (and later prove) that this behaviour is due to capillary pressure 
in this water wet (WW) system. The WW Pc stabilises the front sufficiently such that the 
water finger width is of order or somewhat larger than the pack width (8cm). Using the 
Young–Laplace equation, Pc

(

Sw
)

=
(

2�ow. cos �ow∕r
)

 , and assuming �ow = 25mN.m and 
cos �ow ~ 1, and estimating the average pore size, < r > , in our pack of beads with diam-
eter range 150–250 µm to be in the range < r >  ~ 40 to 60 µm, this would give a Pc value 
of  Pc ~ 1250–850 Pa (i.e. Pc ~ 0.18–0.1 psi). Given that the permeability of this pack is 
k ~ 35 D, then this magnitude of Pc is more than enough to damp out fingering.
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We now show that, although one might think that this implies that, if no immiscible 
fingers are observed in a lab experiment, then none will be seen at the field scale, is 
incorrect. Whether or not viscous fingers will appear is a matter of length scale of the 
system, as will be shown using scaling theory in the next section.

5.3  Viscous fingering simulations at the field‑scale WW P
c
 case: applying scaling 

theory

In the light of the simulations of immiscible fingering, and its damping by capillary 
forces in WW systems, we now apply scaling theory to examine the size scaling of these 

Fig. 10  Displacement of 100 mPa s (clear) oil by (blue dyed) 1 mPa s water in a water wet bead pack; a 
early time in 0.02 PV increments (up to 0.22PV) and b later time in 0.08 PV increments (up to 0.88PV),
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initial findings, again basing our calculations on the 
(

�o∕�w

)

 = 2000 base case above. 
The capillary pressure, Pc

(

Sw
)

 , is a local function, and as we go from the lab scale to 
the field scale, it does not change, under the usual assumptions of the flow equations in 
porous media. That is, the related function (dPc

(

Sw
)

∕dSw) also remains constant with 
length scale. Therefore, consider the form of the viscous/capillary scaling group, CVC1 , 
(Eq. 8) as follows:

where we identify the fluid velocity, V = q∕(Δy.Δz) as the average fluid velocity (this flow 
field by definition is kept the same throughout the model with size scaling, even for a 3D 
system). Thus, suppose we evaluate this group for a WW Pc case at the lab scale where the 
viscous fingering is highly suppressed, e.g. as in the WW Pc case above with Pc,max = 1 psi 
(see Fig. 8). For this laboratory system, the viscous/capillary scaling group is a number, 
say � , Eq. 13.

We can see that if we simply make the system larger, i.e. increase Δx, then viscous/cap-
illary force balance increases linearly with Δx. Note that to keep the system otherwise 
scaled, there is also a “shape group” (see Table 1) that must also be honoured (Eq. 14), as 
follows:

However, this shape group criterion is easily dealt with if all  kx and  ky in every grid block 
and the exact shape of the system is the maintained. As the system is expanded in size by a 
factor of say α, that is, the system lab system size Δx is expanded to α. Δx, the new value 
of CVC1 is clearly given by Eq. 15:

and the viscous/capillary ratio increases accordingly. Thus, we can examine effect of sim-
ply “inflating” the system which increases the viscous/capillary scaling group in a com-
pletely consistent manner. This is shown for the laboratory-scale example in Fig. 8, where 
we show the simulation as the size is increased by a series of “inflation” factors α1, α2, etc., 
as shown in Fig. 11.

From the results in Fig. 11, it is clear that, although the immiscible fingering in a WW 
system may be suppressed by capillary forces at the laboratory scale, it simply “emerges” 
at the larger scale. In the example presented in Fig. 11, the fingers emerge quite clearly at 
the scale of about Δx ≈ 30 m ( CVC1 = 100� ). As the system is inflated to the field scale 
(Δx = 300 m; where CVC1 = 1000� ), the fingering is almost indistinguishable from the 
viscous-dominated cases. Note that the lab- and field-scale cases—as shown from scaling 
theory—are actually absolutely identical in the purely viscous force case ( Pc= 0 ) as shown 
in Fig. 11 (two top right cases). This assumes that the permeability structure and gridding 

(12)CVC1 =
q.Δx.�o

kx.Δy.Δz
(

dPc

dSw

) =
V .Δx.�o

kx

(

dPc

dSw

)

(13)CVC1_LAB = � =

(

V .Δx�o

kx
(

dPc∕dSw
)

)

LAB

(14)CS1 =
kxΔy

2

kyΔx
2

(15)CVC1 = �.�



105Immiscible Viscous Fingering: The Effects of…

1 3

are identical; i.e. that the dimensionless fluid mixing lengths are the same. This is evident 
from scaling theory which shows that only the shape group ( CS1 ) needs to be preserved.

We note that if we had kept WW Pc lab-scale case at exactly the same size (top left 
Fig. 11; 0.3 m × 0.3 m), then the identical figures for the 10ζ, 100ζ and 1000ζ scaling 
in Fig. 11 are produced by simple increasing V by exactly the same α1, α2 and α3 fac-
tors. This is evident from the CVC1 group in Eq. 13 which shows that the sensitivity to 
Δx and V are identical; we have carried out these calculations, but the results are not 
presented here since they are identical.

Before proceeding, we also comment on the issue of fingering at the experimental 
and field scales. It is evident from the above simulations (and those to come), the two 
possible lab-scale observations are that we either do or do not observe viscous finger-
ing. If fingering is observed then it will also occur at the larger scale assuming that 
the system dispersivity scales with lengthscale no worse than say as referred to by 
Arya et al (1988). It is hard to conceive of (geological) cases where this would not be 
qualitatively true, and viscous fingering would be observed at some higher lengthscale. 
If viscous fingering is not observed at the lab scale, then this may mean that the capil-
lary forces are simply too big, and if this is the cause, fingering would again emerge a 
larger scales. If the reason for the lack of lab-scale fingers is that the system is simple 
already stable, then probably no fingering would emerge at the larger scale, although 
“channelling” may occur which bears some resemblance; but in general the matter is 
open*. There are further issues with boundary conditions which is a topic too general 
for discussion here, but suffice it to say that, in this work, the boundary conditions are 
taken as being “very similar”, which may or may not be the case as a real system goes 
from the lab to field scale. *Although he matter is “open” in for the general case, this 

Fig. 11  Water saturation finger patterns with and without WW Pc across a range of system size inflation 
factors (α1, α2, α3, etc.)
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paper proposes most of the concepts and numerical tools required to decide what the 
case actually is for any given set of mathematical assumptions e.g. exact nature of the 
mixing with lengthscale, the boundary conditions, the pattern of heterogeneity, etc.

6  Viscous Fingering Simulations for Oil Wet (OW) Pc Cases

6.1  VF Simulations for Continuous OW Pc Curves (Curve B Type)

We now consider the modelling of oil wet (OW) systems using the same base case labo-
ratory-scale model as used for the WW case (see Sect. 5). The simulations presented in 
this section use the continuous OW Pc curves shown as curve B in Fig. 6. This starts at  
Pc(Swi)= 0 and slowly curves to a negative Pc at a lowest value at Sw =

(

1 − Sor
)

 as speci-
fied; this is referred to as the maximum value, Pc,max , although strictly it is actually |

|

Pc,max| , 
as explained in Sect. 4.2. N.B. Pc(Swi) could start at any value  Pc(Swi) = C (where C may 
be positive or negative) and decrease as in the continuous Curve B case.

Figure 12 shows a snapshot of the saturation distributions at 0.04PV of injection (WBT) 
for the viscous-dominated ( Pc = 0 ) case and for the OW cases with Pc,max = 0.01, 0.1 and 1 
psi (negative values). It is immediately clear from these results that the OW Pc does cause 
some stabilisation of the fingers, just as in the WW case. So, capillarity is a finger sup-
pressing mechanism for any wettability state. However, observing the OW simulations in 
Fig.  12, we note that the degree of capillary suppression of the fingers is much less for 
the OW case than for the corresponding WW case. Even the (negative) Pc,max = 1psi case 
still shows some remnant fingers which are identifiable (unlike the WW fingers which are 
completely washed out). Referring to the D

(

Sw
)

 functions for the OW Pc cases in Fig. 12, 
we can calculate the Peclet numbers for the three cases as NPe ≈ 150, 15 and 1.5 for the 
Pc,max = 0.01, 0.1 and 1 psi, respectively. These are slightly higher than the NPe values for 

Fig. 12  Water saturation finger patterns after 0.04 PV water injection (WBT for the viscous-dominated 
case) for the oil wet (OW) Pc curves (type B)
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the WW Pc cases, but the changes in finger patterns are much more significant than these 
small increases should indicate.

It soon became evident that the reason for this difference between the WW and OW 
cases is that the corresponding capillary diffusion term, D(Sw) , was lower in the region 
of low water saturation, since the OW Pc curve (Curve B) was closer to zero and almost 
flat in the region, and hence (dPc∕dSw) is small (see Fig. 7). Specifically, we conjectured 
that the important issue in determining the finger suppression by capillarity is the value 
of this quantity ( D(Sw) ) in the region of the viscous-dominated ( Pc = 0 ) shock front 
saturation, Sw = Swf  . We will confirm this is the case in the next subsection.

For the viscous-dominated and the OW cases in Fig.  12, Fig.  13 shows the corre-
sponding oil recovery, watercut and pressure profiles vs. PV. Again, as for the WW 
cases, these OW cases agree remarkably closely in all these other aspects, i.e. the over-
all averaged recoveries, etc., are all very similar. Also, the incremental recovery by the 
application of tertiary polymer is almost identical in each case.

It is clear that carrying out the same rescaling exercise as presented for the WW case 
in Sect. 5.3 for the OW case will give qualitatively very similar results. That is, as the 
OW Pc is held constant and the system is “inflated” (as in Fig. 11), then viscous fingers 
would again emerge at the larger length scale. In fact, if we compared this OW Pc case 
in Fig. 12 with the WW Pc case above, then the OW fingers would clearly emerge “ear-
lier”—that is at a smaller system size—than the WW fingers. We do not show these 
results here, since we take this as being obvious to the reader.

Before presenting a more detailed analysis and implications of these findings, we will 
present the results for OW systems of the type shown in Curve C (Fig. 6) and the experi-
mental results for the OW system.

Fig. 13  Oil recovery factor, water cut and normalised differential pressure for the no Pc and the three oil 
wet (Curve B) cases. Inset plot showing changes in water flood recovery (left) and water breakthrough 
(right)
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We also note here that we have performed further simulations for the mixed wet case 
(MW), but this also caused the same effects as the WW and OW cases, and these MW 
simulations are not presented here.

6.2  VF simulations for piecewise OW P
c
 curves (Curve C type)

In this section, we set out to test the conjecture that, in an OW system, the exact saturation 
point, Sw = Swx , at which the PC slope (dPc∕dSw) deviates from 0 (or a very small value) 
relative to the Buckley–Leverett (BL) shock front height ( Swf  ) is an important factor in fin-
ger stabilisation in OW systems. Indeed, the generalisation of this is that the value of D(Sw) 
at Sw = Swf  is always important.

In order to achieve the above goal, the simulations presented in this section use the 
piecewise OW Pc curves shown as curve C in Fig. 6. In this form of the Pc curve, the Pc 
is identically 0 (or constant) up until the value of Sw = Swx , beyond which it then reduces 
to some lower Pc,max (i.e. Max │ Pc │). In the base case example, we have noted that the 
Swi = 0.13 and that the shock front height is Swf  = 0.19 (see Fig. 6), so we use Curve C OW 
Pc functions with chosen values of where the Pc function goes below 0 at, Swx = 0.15, 0.17, 
0.19, 0.21 and 0.23 and in all cases, we take the largest negative Pc,max = 1 psi. Figure 14 
shows the water saturation distributions at WBT (0.04PV) for these five cases compared 
with the viscous-dominated ( Pc = 0 ) case and the continuous OW Curve B case (again 
with Pc,max = 1psi). The corresponding oil recovery factors, water cuts and normalised dif-
ferential pressures are shown in Fig. 15.

Before discussing these results, we note that the Peclet number, as defined in Eq. 9, is 
actually the same for all of these cases with nonzero Pc in Fig.  14. The calculated NPe 
from the D

(

Sw
)

 function in Fig. 14 (b) is NPe ≈ 1.7 (very similar to the previous OW and 
WW cases with Pc,max = 1psi). Therefore, considering only this number is clearly quite 
inadequate to distinguish between different cases which show fingering or highly dispersed 
behaviour.

Fig. 14  Water saturation finger patterns after 0.04 PV water injection (WBT for the viscous-dominated 
case) for the oil wet Pc curves (type C) vs no Pc and type B (1 psi) cases
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The first important result is that the two cases in Fig. 14 with Swx = 0.21 and 0.23 (i.e. > Swf  ) 
show quite fully developed viscous fingering, which is still visibly slightly different from the 
viscous-dominated ( Pc = 0 ) case. In these two cases, the changes in the water saturations dis-
tributions (compared with the Pc = 0 case) are seen well behind the shock front, closer to the 
inlet side of the system. However, these two cases, if observed in an experiment would be con-
sidered to show clear well-developed viscous fingering. Turning to the cases with Swx = 0.15 
and 0.17 (< Swf  ), we can see that the finger structure is in the transition towards being dis-
persed, with the 0.15 case being much closer to the continuous OW Pc case (curve B). These 
results confirm our conjecture that the position of the point Swx relative to the shock front Swf  
is of key importance in the capillary suppression of viscous fingers. We believe that this has 
not previously been observed.

In terms of recovery, water cut and pressure drop, it can be seen from Fig. 15 that there is a 
modest impact of any of the introduced capillary pressure curves—other than a slight reduc-
tion in pressure during the initial injection of viscosified brine. 

All of the results in this paper so far will be analysed in more detail in discussion section. 
We now go on to present experimental results on the OW Pc case, which is fully consistent 
with the above finding.

Fig. 15  Oil recovery factor, water cut, and normalised differential pressure for the oil wet Pc curves (type 
C) vs no Pc and type B (1 psi) cases. Inset plot showing changes in water flood recovery (left) and water 
breakthrough (right)
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6.3  Experimental verification of oil wet (OW) viscous fingering for 
(

�
o
∕�

w

)

 = 100

To support the assertions above about the occurrence of viscous fingering in oil wet (OW) 
systems, we present an OW unstable immiscible pack flood, in the same experimental setup 
as for the WW case in Sect. 5.2, again with viscosity ratio 

(

�o∕�w

)

 = 100. To make the porous 
medium oil wet, the ballotini beads were treated with trichloro (octadecyl) silane. The wetta-
bility adjustment method followed a modified version of the procedure by Hobrook and Ber-
nard (1958), whereby the glass beads were saturated in a 5% trichloro (octadecyl) silane in 
decane solution for a period 24 h before being washed with 100% decane and then mineral oil.

Fig. 16  Displacement of 100 mPa s oil by 1 mPa s water in an oil wet bead pack. a Early time in 0.02 PV 
increments and b later time in 0.08 PV increments (right)
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To check the wettability, we noted that water formed a clear non-wetting drop on the oil 
wet beads but that mineral oil would readily spread on it and imbibe into the bead slurry. The 
OW pack was then reassembled in the same system as the WW case (Sect. 5.2) and flooded 
with clear mineral oil with viscosity, �o = 100 mPa.s, which was carried out in the absence of 
water, so the pack initially has Swi = 0 and Soi = 1. Blue dyed water with �w = 1 mPa.s was then 
injected, giving 

(

�o∕�w

)

 = 100 at a constant velocity of 3 m/day.
Figure 16 shows the successive snapshots of the early (to 0.24 PV) and slightly later (to 

0.96 PV) period of the water injection in this OW system, using the same time increments as 
in the earlier WW case.

The most important result in Fig. 16 is that very clear and well-developed viscous fingering 
is observed for this OW adverse viscosity ratio case right from the start and that water break-
through (WBT) occurred at ~ 0.3 PV, which is significantly earlier than in the WW case, where 
WBT was at ~ 0.44PV. A more subtle feature of this OW VF case is revealed by observing that 
at the inlet end (bottom) of the system, the (blue) water saturation is clearly spread across the 
near-inlet pack. This implies that there is a negative branch of the OW Pc curve for this system 
(which we did not measure), since the generic behaviour of this system is very similar to the 
OW PC case where Swx > Swf  (see Fig. 14). A video of this flood is available in supplemen-
tary 1.

7  Summary, Discussion and Conclusions

7.1  Summary of the Study

This paper presents a study of immiscible viscous fingering in a two-phase system 
where water displaces oil in a porous medium including the effects of wettability/cap-
illarity. Previous work from the authors presented a novel method for modelling vis-
cous fingers directly which correctly reproduced the complex fingering patterns seen 
in immiscible 2D unstable two-phase viscous-dominated displacement experiments in 
2D rock slabs (Sorbie et  al. 2020; Salmo et  al. 2022; Beteta et  al. 2022a). The origi-
nal method solved the viscous fingering problem for the purely viscous-dominated case, 
where the viscous /capillary scaling group, CVC1 , was effectively infinite. In this paper, 
we take the flow function derived from our method to be the viscous-dominated quanti-
ties we require. Since it has already been shown that these flow functions will give well-
developed viscous fingering, they were therefore used to study the degree of finger sup-
pression by capillary forces as the viscous/capillary balance decreases. The three novel 
aspects of this work are as follows:

The effects of Pc on fully developed viscous fingering is demonstrated using direct 
numerical simulation for both WW and OW systems. The qualitative aspects of the WW 
and OW systems are shown to be different. As observed experimentally, viscous finger-
ing is predicted to occur much more readily in an OW system—i.e. fingers are more 
suppressed in a WW system—and the primary reason for this behaviour is explained. 
The choice we make of Pc curves in this paper is quite general showing the main char-
acteristics of WW, OW and MW systems (MW results not shown). It is the relative size 
of the terms 

(

1

NPe

)

D̃
(

Sw
)

vs. �u
(

Sw
)

 (see Eqs.  (8) and (9) for NPe) that is important. 
Later, we will show that the relative value of these terms close to the BL shock front 
 (Sw =  Swf) is of particular importance.



112 A. Beteta et al.

1 3

Scaling theory, following Rapoport (1955), is applied in a novel way to show the 
scale dependence of immiscible fingering in porous media. Even the highly suppressed 
fingering of a lab-scale WW Pc system emerges quite clearly at some larger scale, as the 
viscous/capillary scaling group, CVC1 , increases from its value at the laboratory scale.

Experimental results for WW and OW water → oil displacement experiments for 
adverse viscosity ratio floods with 

(

�o∕�w

)

 = 100, in a ballotini pack are presented which 
qualitatively support our numerical findings.

7.2  Discussion of Results

For the first time, a macroscopic simulation study including clear viscous fingering in the 
viscous-dominated limit ( CVC1 → ∞ ) is presented demonstrating the effects of wettability/
capillarity on WW and OW systems. It is found that viscous fingering is more suppressed 
in WW systems than in OW systems and this corresponds well with experimental observa-
tion both in the literature (Zhao and Mohanty 2019; Zhao 2020) and in the experimental 
evidence presented in this work.

Wettability and viscous fingering In explaining this difference between WW and OW 
systems, we first conjectured and then demonstrated that the key factor was the magni-
tude of the nonlinear diffusion term, D(Sw) , in the region of the BL shock front (where 
Sw = Swf  ), and this is shown schematically in Fig. 17. This figure shows the BL shock front 
in the Sw∕x profile at a given time indicating the saturation value at the shock, Sw = Swf  
(Fig. 17a). The Type C piecewise OW Pc curve is shown schematically (Fig. 17b), where 
the region between Swi ≤ Sw ≤ Swx is very “flat”, it is shown as about zero in this figure 
( Pc ≈ 0 ), but it simply needs to be constant, so that 

(

dPc∕dSw
)

≈ 0  Hence this leads to 
the form of the nonlinear diffusion term due to capillarity, D(Sw) , being almost zero in this 
region (i.e. Swi ≤ Sw ≤ Swx ), as shown in Fig. 17c. In the region Swx ≤ Sw ≤ (1 − Sor) , the 
Pc curves become successively more negative and the value of 

(

dPc∕dSw
)

≠ 0 (negative) 
and initially increases (gets more negative) with Sw , and hence D(Sw) > 0 in this region. 
This quantity must show a maximum and then limit to D(Sw) = 0 at Sw = (1 − Sor) since 
the oil mobility ( �o ) becomes zero at this point (Eq. 7). Finally, depending on whether the 
front height Swf  is greater or less than the value of Swx , then distinctly different behaviour is 
observed. If Swf < Swx , then the effect of capillarity at the front is small and hence the fin-
gers can form in a manner very similar to the viscous-dominated case. The effect of D(Sw) 
only occurs some distance behind the front where it has the effect of merging the fingers in 
that region and giving an area of more dispersed Sw . If Swf > Swx , then the capillary effect 
strongly disperses the incipient viscous fingers in the region of the shock front and very 
effectively hinders the fingers from forming. Both of these are indicated in Fig. 17d where 
an example of the 2D water saturation distribution, Sw(x, y) , is shown; the upper  Sw(x, y) 
pattern in this figure is for the case of Swf < Swx , and the lower one is for Swf > Swx.

Scaling and viscous fingering As long as the simulation actually produces viscous fin-
gers for the viscous-dominated ( Pc = 0) case, scaling theory using the viscous/capillary 
scaling group, CVC1 , (and the appropriate “shape group”, CS1 ) shows that as the size of the 
system increases, these fingers will emerge. This always occurs, even if the fingers cannot 
be seen at the lab scale, which is most likely the case for a water wet (WW) system. The 
corollary is also true, that if we observe immiscible fingering in the lab system, then the 
system is most likely to be oil wet (OW) or very close to neutral wet where 

(

dPc∕dSw
)

≈ 0.
In summary, this rescaling methodology points very logically to at least two major conclu-

sions: (i) since the effect of the Pc (WW, OW or MW) will always reduce with length scale as 
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the system increases, then at any adverse viscosity ratio (let us arbitrarily say 
(

�o∕�w

)

 > 10) 
then viscous fingering (VF) will always emerge at some length scale; (ii) especially in WW 
systems, then this VF may be almost “invisible” in lab-scale experiments where the WW Pc 
will wash out any viscous fingering as shown in our experiments (Fig. 17).

We note that a view often expressed in the porous media/reservoir engineering com-
munity is that: “immiscible viscous fingering is really a lab-scale phenomenon, which 
probably does not occur in the field”. This work indicates that the opposite is actually 
true; i.e. immiscible viscous fingering is actually quite difficult to see in the lab in a 
porous medium. However, if it does occur, then VF is easier to see in an OW (or neutral 
wet) system rather than in a WW system at the lab scale; more precisely in a system 
where D(Sw) ≈ 0, especially in the region of the shock front at Sw = Swf .

Non-equilibrium Pc and viscous fingering Finally, in all of the simulations presented 
here, we are using equilibrium Pc curves, i.e. assuming that the capillary pressure locally 
achieves its equilibrium value. There may be an effect of non-equilibrium Pc behaviour in 
viscous fingering. A large literature exists on non-equilibrium Pc in two-phase transport 
from Barenblatt et  al. (2003); and many earlier references therein), to later development 
and the review in Aryan and Kovscek (2013). Our initial thoughts are that this would tend 
to enhance viscous fingering, particularly in WW systems. We believe that, using the meth-
ods developed in this work which give very well-developed fingering in the viscous-domi-
nated case, non-equilibrium Pc effects on fingering can now be fruitfully explored.

7.3  Specific Conclusions of this Work

The detailed conclusions of this study are as follows:

Fig. 17  Schematic representation of a the Buckley–Leverett saturation profile; b the type C Pc curve; c the 
D(Sw) function; and d the resulting water saturation finger patterns
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Our previous work, and the additional results in this paper, shows that fully developed 
viscous fingering is now straightforward to produce for the viscous-dominated case ( Pc = 0; 
or scaling group CVC1 → ∞ ) using direct numerical simulation by applying our recently 
proposed methodology (Sorbie et al. 2020). In reality, where there will be both viscous and 
capillary forces, viscous fingering can be observed experimentally at the lab scale (under 
certain conditions) and always (in our view) at the field scale, for values of 

(

�o∕�w

)

 >  > 1. 
Indeed, in the viscous-dominated limit, there is a direct scaling from the lab scale of a 2D 
experiment directly to the field scale, if the mixing length scales directly with system size; 
i.e. dispersivity, � ≈ �x∕2 , where the grid size, �x = L∕N , where L is the (lab or field) size 
and N is the (same) number of grid blocks. This is demonstrated numerically in this paper.

Using our methodology to derive the viscous-dominated case and including water 
wet (WW) Pc in our simulations (Curve A Pc ) shows that, at the experimental (lab) scale 
almost any level of WW Pc will significantly suppress clearly observable VF even in highly 
adverse viscosity ratios, such as in the 

(

�o∕�w

)

 = 2000 base case used in this work. Experi-
mental results from a WW pack flood with 

(

�o∕�w

)

 ≈ 100 are presented to confirm this 
conclusion; viscous fingering is almost completely suppressed in this water → oil displace-
ment flood.

Following this second conclusion, the simulation results for the WW Pc case with a 
“high” Pc effect (Curve A Pc ) were taken where the fingers were completely suppressed; 
this implies a finite and “low” value of the viscous/capillary scaling group, CVC1 = � . This 
simulation case was then systematically rescaled by holding the Pc constant (i.e. dPc∕dSw 
is constant in CVC1 ) and the system size was increased. This changes the viscous/capillary 
force balance, represented by the scaling group, CVC1 (with a constant shape group CVC1 ). It 
is demonstrated that as the system size increases, the effect of the Pc becomes less impor-
tant ( CVC1 > 𝜁 ) and fully developed viscous fingering emerges at the larger scale (where 
CVC1 >> 𝜁 ). Indeed, for WW systems viscous-dominated viscous fingering is quite diffi-
cult to observe at the lab scale, but it nevertheless exists at the field scale. This probably 
explains why virtually no experimental results showing clear viscous fingering have been 
produced for a lab-scale strongly WW system.

Adverse viscosity ratio calculations have been carried out in oil wet (OW) systems 
(Curves B and C type Pc ), in which we demonstrate that it is much more likely to observe 
viscous fingering than in the WW case. However, the fingering can still either appear or 
be suppressed at the laboratory scale in OW systems; see conditions in conclusion below. 
In the OW system, the Pc shows a region between Swi and Swx where 

(

dPc∕dSw
)

≈ 0

(and hence D(Sw) ≈ 0 ), at which point there is a turnover point where Pc becomes < 0, 
(i.e. 

(

dPc∕dSw
)

< 0 and hence D(Sw) > 0 ; Curves B and C). This is supported experi-
mentally in this work by using the same bead pack as used for the WW displacement for 
(

�o∕�w

)

 = 100, but the pack was converted by silanisation to being OW. In this experiment 
clear viscous fingering is observed, in obvious contrast the WW case.

There are conditions for clear viscous fingering in the OW Pc lab case mentioned 
in the  conclusion above, as follows: Viscous fingering in the OW case is most strongly 
enhanced if (i) in the region Swi ≤ Sw ≤ Sw then the Pc is constant (i.e. 

(

dPc∕dSw
)

≈ 0 and 
ideally 

(

dPc∕dSw
)

= 0 , as in Curve C), and (ii) if the Pc turnover point at Sw = Swx is some-
what above the Buckley–Leverett front height ( Swf  ) of the original f ∗

w
 used in the simula-

tion; i.e. the condition Swf < Swx favours fingering for the OW case. Likewise, the condition 
Swf > Swx  leads to finger suppression for the OW case. Around this point at Sw = Swx the 
simulated viscous fingering shows very considerable sensitivity to capillary pressure.
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The generalisation of the above conditions for viscous fingering to occur at the lab (or 
any) scale for a system of any wettability WW or OW (mixed or neutral wet) is simply 
related to the value of D(Sw) in the region of the BL shock front. If D(Sw) ≈ 0 (or is very 
low) close to Sw = Swf  , then well-developed fingering will be observed, if not the fingering 
will be suppressed (somewhat or completely). For a given system, there is therefore a value 
of the viscous/capillary scaling group ( CVC1 ) which will determine if the fingers form for 
a given 

(

�o∕�w

)

 >  > 1 case; if CVC1 > 𝜁crit , then fingers will form, but due to the nonlin-
earity of the system, this is not a single number for all systems. Thus, a simple “capillary 
number” (like the “Peclet number” used here) is not of particular use in this respect, as a 
predictor of when developed viscous fingering will be observed.

A practical corollary going from the observed fingering experiments back to the wet-
ting state of the system, is as follows: From the above analysis, it is evident that if well-
defined immiscible viscous fingering is observed in the lab, then the experimental sys-
tem is almost certainly oil wet (OW) or very weakly wetting (close to neutral wet with 
cos �ow ≈ 0 ), i.e. it will have a region above Sw = Swi to some value we denote as Sw = Swx 
where 

(

dPc∕dSw
)

≈ 0 . The experiments presented by Skauge et al. (referenced herein) over 
the last decade and more showed very clear fingering in 2D slabs of size ~ 30cm x 30cm. 
These were Bentheimer sandstone slabs which were conditioned (at Sw = Swi ) by viscous 
reservoir crude oils at slightly elevated temperature, which rendered the system OW (or 
very weakly wetted by either phase) in the definition of this work, and hence viscous fin-
gering could be observed very readily. Thus, these unstable immiscible floods are indeed 
“viscous dominated” and hence show clear viscous fingering.
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