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Abstract
Numerical solutions of the reaction–diffusion system of equations in three dimensions pro-
vide a systematic procedure to generate a variety of porous media structures of a chosen 
porosity. A way to characterize such geometries is by their Minkowski functional densities 
and their average pore diameter. We generated multiple porous geometries of the granu-
lar and foam-like types. Hydraulic flow through these series of geometries is simulated to 
study the dependence of the permeability k and the Forchheimer parameter � on the chosen 
geometrical identifiers. Both k and � exhibit two distinct behaviors aligned with the two 
distinct generated types of geometries when scaled with the Euler characteristic. A good 
correlation for dimensionless k as a function of the Minkowski functional densities and the 
average pore diameter was found for both types of geometries with an accuracy of 15% and 
18%, respectively, while no good correlation was found for � , implying that more geomet-
rical information is needed beyond the proposed one. From the correlations, it was found 
that, together with the porosity, the mean curvature is also a good parameter to characterize 
the permeability.
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• Porous media generation based on solutions to reaction-diffusion equations
• Model porous structures characterized through Minkowski functionals and average 

pore diameter
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1 Introduction

In the phenomena of flow-through porous media, the geometrical characterization of 
the pore space on a representative elementary volume (REV) relevant to determine flow 
behavior remains a fundamental open question of great practical implications. Transport 
phenomena in porous media are involved in a wide range of applications, from biophys-
ics (Khaled and Vafai 2003) to petroleum engineering (Parker 1989), and include porous 
structures of extreme diversity. The search for a set of geometrical parameters that fully 
characterize a porous structure in order to obtain constitutive relations for the transport 
properties for a wide range of applications seems to be a formidable task.

Originally porous structure was thought to be sufficiently parameterized by its porosity 
� , pore size d and tortuosity � , and most commonly used approximate relations for physi-
cal properties such as permeability, formation factor, electric tortuosity or capillary pres-
sure involve these parameters (Bear 1988). However, dependence on � , d, and � alone has 
proved to be insufficient given the diversity of porous structures, and the predictive power 
of such relations is very limited. During this century, the inclusion of Minkowski function-
als (porosity is one of them) in porous geometry characterization has been explored with 
varying degrees of success (Armstrong et al. 2019; Mecke 2008; Slotte et al. 2020; Vogel 
et al. 2010).

To determine flow properties on porous media, specially for the permeability depend-
ence on geometrical characteristics of porous structures, researchers have employed com-
putational fluid dynamics simulations for the past decades. For the simplicity involved in 
including complex geometries and parallelization, the lattice-Boltzmann method is a com-
mon choice for flow simulation in porous media (see most of the cited references in the 
rest of this paragraph). To perform flow simulations, it is necessary to determine the geom-
etries of the flow domain, the pore space, and to this end one can either reconstruct real 
porous material or artificially create such intricate domains. Information from real media 
samples is commonly obtained through X-ray tomography, from which a three-dimensional 
direct measurement of the pores space can be obtained and used to study the flow proper-
ties (Vogel et  al. 2010; Mahmoodlu et  al. 2016; Santos et  al. 2022). Artificially created 
porous geometries for flow studies include the use of networks of tubes (Blunt and King 
1990), fractal geometries (Lenormand 1990), and volume tessellation techniques (Xiao and 
Yin 2016).

In this work, we take advantage of the known feature of the solutions of some reac-
tion–-diffusion equations to mimic patterns observed in nature, to generate geometries that 
resemble those of porous media (Halatek and Frey 2018). We choose to work with the 
Gray–Scott system of equations to produce the basis from which families of model porous 
geometries were generated. Geometrical parameters, including the Minkowski functional 
and the average pore diameter, were computed for the set of model porous structures. 
Lattice-Boltzmann simulations were performed to compute the flow through the created 
geometries and to study the relation of the volumetric flux to the pressure gradient, and 
determine any possible relation with the geometric parameters.

The manuscript is organized as follows: first in Sect. 2, we do a brief introduction of 
the porous geometry parameters that are commonly used to characterize it. In Sect. 3, a 
detailed description of the porous geometry generation is presented. Section  4 presents 
the flow simulation details. Results for permeability as a function of the Minkowski func-
tionals and the average pore diameter are found in Sect.  5, and similar results for the 
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Forchheimer coefficient can be found in Sect. 6. Finally, in Sect. 7 a summary and conclu-
sion is presented.

2  Porous Geometry Characterization

Let us start with a brief review of Minkowski functionals. A porous geometry can be 
thought as a d-dimensional compact object X embedded in a d-dimensional Euclid-
ean space Ω . Hadwiger’s characterization theorem (Klain 1995) demonstrates that any 
additive, motion invariant, and conditionally continuous functional on a finite union of 
compact convex sets in Euclidean space can be written as a linear combination of d + 1 
geometric measures known as intrinsic volumes or Minkowski functionals (MF) (Mecke 
2008). In d = 3 , the four Minkowski functionals are defined as:

with dv the volume element on Ω , ds the surface element on X with principal radii of 
curvature given by r1 and r2 , �X the boundary of X, �(�X) the Euler characteristic of the 
bounding surface, and �(X) the Euler characteristic of the solid object (Ohser and Mück-
lich 2000). The MF comprises a set of measurements in various dimensions: M0 corre-
sponds to the volume, M1 to the surface area, M2 to the mean curvature, and � is a topo-
logical quantity (dimensionless) related to the number of isolated objects (N), redundant 
loops (O), and cavities (C) through �(X) = N − O + C . Permeabilities are not an additive 
quantity, and consequently, they are not covered by Hadwiger’s theorem. However, if they 
happen to be functions of a set of additive measures, then they will also be a function of 
the MF. Assuming the main dependence of the permeabilities come from their MF depend-
ence, we will make use of them as a way to parametrize any given porous geometry. We 
expect the functional dependence of the permeability to be independent of the scale of the 
material sample so we will work with the volume-normalized MF defined as

with V the volume of Ω . Note that m0 coincides with the standard definition of porosity � . 
The computation of the MF densities of the computer-generated geometries to be used will 
be performed through the algorithm outlined in (Michielsen and Raedt 2001). The MF den-
sities are properties associated with the integral geometry of the sample so the information 

(1)M0(X) = ∫X

dv ,

(2)M1(X) = ∫
�X

ds ,

(3)M2(X) = ∫
�X

[

1

r1
+

1

r2

]

ds ,

(4)M3(X) = ∫
�X

ds

r1r2
= 2��(�X) = 4��(X)

(5)mi =
Mi

V
,
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regarding the detailed pore structure is not contained by them. Additionally, one of the 
basic elements of pore structure information is the average pore diameter size d̄ defined as:

where f(r) is the normalized pore diameter frequency distribution, i.e., ∫ ∞

0
f (r)dr = 1 , 

such distribution can be discretely estimated through the morphological operations of ero-
sion and dilation as outlined in (Vogel et al. 2010). It will be useful for later convenience 
to write dimensionless versions of the MF densities and the average pore diameter. To 
that end, we will use the following topological length H as characteristic length for this 
purpose1

Given the topological nature of H, its computation carries no associated numerical error 
and H itself is insensitive to the roughness of the solid–fluid inter-phase. Using H, we can 
define the independent dimensionless variables

These variables will be relevant when analyzing the dependence of the permeability with 
the MF densities. Note that despise using H we will still use d̄ as the relevant characteristic 
length when computing the Reynolds number.

3  Porous Geometry Generation

The systematic generation of porous geometries is based on a special treatment, outlined in 
the rest of this section, of a class of solutions to the Gray–Scott reaction–diffusion system 
of equations given by

where Du and Dv are diffusion coefficients associated with the species concentration u and 
v, respectively, f is known as the feed parameter, k is known as the kill parameter. Periodic 
boundary conditions were used in all boundaries, and spherical initial distributions were 
given by:

(6)d̄ = ∫
∞

0

rf (r)dr

(7)H =
(

−m3

)−
1

3 .

(8)𝜙0 = m0 , 𝜙1 = Hm1 , 𝜙2 = H2m2 , 𝜙d =
d̄

H
,

(9)
�u

�t
= Du∇

2u − uv2 + f (1 − u) ,

(10)
�v

�t
= Dv∇

2v + uv2 − (f + k)v ,

(11)u(r, �,�) = He(r − rc) +
1

2

(

1 − He(r − rc)
)

+ U[0,1] ∗ 0.01 ,

1 Note that m3 is expected to be negative for a connected porous geometry.
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where He(x) is the Heaviside step function, U[0,1] is a random variable sourced from a uni-
form distribution defined between [0, 1], and (r, �,�) are spherical coordinates centered at 
the cube center, and rc is a constant. Table 1 shows the values of the coefficients used in 
(9)-(10) that produced a series, or families, of distinct structures that we named from A to 
H.

The system (9)–(10) is solved numerically via a finite difference scheme on a cube ΩLGS
 

of size L
GS

 with periodic boundary conditions. As time evolves, the patterns generated by 
the solutions reveal a class of solutions whose iso-surfaces are reminiscent of the internal 
boundaries encountered on porous media, see Fig. 1.

The initial configuration evolves into complex patterns that extend all over the com-
putational domain, like those shown in figure 1. Once a steady state has been reached the 

(12)v(r, �,�) =
1

4

(

1 − He(r − rc)
)

+ U[0,1] ∗ 0.01,

Table 1  Diffusion–reaction 
coefficients used to generate each 
of the geometry families

Family Du Dv f k rc

A 8 × 10−5 5 × 10−6 0.25 0.0585 5
B 8 × 10−5 5 × 10−6 0.25 0.0585 5
C 10−4 5 × 10−6 0.04 0.06 5
D 10−4 5 × 10−6 0.04 0.06 5
E 3 × 10−5 5 × 10−6 0.04 0.07 7
F 3 × 10−5 5 × 10−6 0.04 0.07 7
G 3 × 10−5 10−5 0.03 0.07 7
H 3 × 10−5 10−5 0.03 0.07 7

Fig. 1  Iso-surfaces for solutions to the reaction–diffusion system for two set of parameters {Du,Dv, f , k} , the 
parameters on the figure on the left(right) correspond to family A/B(C/D) in Table 1. The solutions were 
obtained on a cube of length L

GS
= 192
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computed distributions u, or v, can be transformed into a porous geometry with porosity � 
through the following procedure.2

1. The support of the numerical solution {u, v} is reduced to a discrete set of points located 
on a cube ( ΩL� ) of size L′ < L

GS
 centered on the original L

GS
 sized cube ΩLGS

 . Therefore, 
we will consider only a subset of the found solution to generate the porous geometry. 
This removes some undesired boundary behavior that causes the geometry to not have 
the properties of a representative elementary volume (REV).3

2. We find an iso-surface uc , or vc equivalently and treat it as a basic fluid–solid boundary of 
the porous geometry. This means that the domain where ul < uc , or ul > uc alternatively, 
is taken as the pore space, while its complement its taken as the solid space, see Fig.2. 
The choice ul < uc or ul > uc , to decide which domain is the pore space, will produce 
two distinct families of geometries, that are in a sense complementary and that show 
very different flow properties. This is the reason why, in Table 1, there are two families 
per choice of parameters in the Gray–Scott system of equations (9)-(10), and so family 
A is complementary to family B in the sense stated above. This results in a preliminary 
porous geometry defined on a cubic lattice of size L′ . The information for this prelimi-
nary geometry is saved on a function P(x) with x ∈ ΩL� and P(x) ∈ {0, 1} where 0 and 
1 denote the belonging to the solid and pore space, respectively.

3. The preliminary porous geometry might have pore diameters as small as a single com-
putational node causing potential problems on those sections when a flow is run through 

Fig. 2  Transverse cut of the two solutions shown in figure  1 was only the L = 96 central cube has been 
considered as support for the solution. On the left part of each image, a particular iso-surface uc is shown, 
and on the right-hand side, we see in black the union of iso-surfaces ul < uc and in gray we have the union 
of iso-surfaces ul > uc . In both cases, if the black section is chosen as the pore space a porosity of � = 0.55 
is found otherwise a porosity of � = 0.45 is found. Note that the two geometries that can be generated from 
a single solution have different structure, see figure 6 for more examples. It might seem that if the black sec-
tion is taken as the pore space it will not be connected; however, we have to remember that the geometry is 
three dimensional and the connection will occurred through other planes

2 This means the MF associated with the generated geometry will be the time-independent MF associated 
with the steady-state Gray–Scott solution with the given initial conditions.
3 We have verified this claim by generating geometries using the full support of the solution and verifying 
their MF densities do not behave as those of a REV.
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it.4 To remove this potential issue, we increase the resolution of the sample by expanding 
the sample onto a cube ΩLs

 of length Ls = sL� with s > 1 . This is done by turning each 
point x on the original cube ΩL� into a cube of length s. This procedure increases the 
minimum pore radius to s3 computational nodes. We found {s = 3, L� = 96} to be a good 
compromise between resolution and computational speed.

4. The potential porous geometry is further enhanced by removing any sections of the 
geometry that are disconnected from the main geometry body. The first step involves 
choosing one pair of parallel faces of ΩLs

 and identifying one as the inlet and the other 
as the outlet. We then take all pore points x belonging to the inlet and check which pore 
points y are connected to them. Any pore point z not belonging to this group of con-
nected points is converted into a solid point. This procedures ensures that the whole 
pore space is connected to the inlet.

5. We use the algorithms of (Michielsen and Raedt 2001) to compute the MF densities of 
the potential porous geometry. To verify that the sample corresponds to a representa-

Fig. 3  Porosity as a function of 
the sample length size for four 
of the used data sets. The full 
sample at Ls=3 = 288 is located 
beyond the point where the 
sample can be considered a REV. 
The same fluctuation behavior 
is observed for the rest of the 
data sets and for the remaining 
MF densities and average pore 
diameter

Fig. 4  a Plot of cumulative pore size ∫ x

0
rf (r)dr . b Plot of pore size distribution f(x). The plots are shown 

for three of the used data sets

4 We noted that a couple of these pathological points existed in all generated geometries.
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tive elementary volume (REV), we repeat this computation for all possible subsamples 
of size 0 < l < Ls . If the variations of the MF densities and the average pore diameter 
around the size of the sample are small, we can consider our sample to be larger than a 
single REV, see figure 3.

6. Once we have verified our sample behaves and is larger than a single REV, we can use 
the algorithm presented in (Vogel et al. 2010) to compute the average pore radius of 
the geometry, see Fig. 4, to visualize the pore distribution f(x) as well as the cumulative 
pore size d̄(x) = ∫ x

0
rf (r)dr . The porous geometry is now ready to be subject to hydraulic 

flow.

Following the previously outlined procedure, we generated 154 different geometries 
classified into 8 different geometry families. Each family corresponds to a different solu-
tion to the reaction–diffusion system (9)-(10). All solutions were obtained on a cube of side 
L through a finite difference scheme taking Δx = 0.01 and Δt = 0.9Δx3

4Du

 . In the table below 
the parameters and initial conditions in lattice units are shown for each of the families,5 see 
Fig. 6 to visualize the structure of some of these families. The range of the dimensionless 
densities �1−3,d and the number of data sets analyzed for each family set are specified in 
Table 2.

In summary, the pore space of each family is generated from level surfaces of a given 
Gray–Scott solution. The level surfaces are chosen such that the porosity/volume associ-
ated with their union gives out a specific porosity �0 . Due to this, we expect that, for a 
given family, the rest of the Minkowski functionals and the pore diameter to be functions 
of the porosity

This dependence can be seen in Fig. 5. From this figure, we can also see that there is a clear 
division between geometries in two groups or types. We will group together geometries A, 
C, E, and G into one group and the remaining B, D, F, and H into another one. Each type of 
geometries corresponds to one of the two ways of constructing a porous structure from the 

(13)�1 = �1(�0) , �2 = �2(�0) , �d = �d(�0) ,

Table 2  Range of dimensionless MF densities (using the length H) and dimensionless mean pore diameter 
for all geometry families

Family # Sets �0 �1 �2 �d

A 25 0.306 to 0.557 2.915 to 4.126 −0.934 to 0.302 0.863 to 1.053
B 14 0.411 to 0.559 2.946 to 3.432 0.063 to 0.682 1.128 to 1.608
C 26 0.301 to 0.558 2.902 to 4.017 −0.882 to 0.307 0.835 to 1.057
D 13 0.434 to 0.558 2.859 to 3.190 0.042 to 0.492 1.216 to 1.651
E 26 0.302 to 0.551 2.870 to 4.656 −1.258 to 0.257 0.895 to 1.037
F 12 0.437 to 0.554 3.091 to 3.749 0.166 to 0.774 1.106 to 1.594
G 26 0.307 to 0.553 2.975 to 4.962 −1.374 to 0.242 0.810 to 0.922
H 12 0.445 to 0.556 2.937 to 3.548 0.105 to 0.633 1.056 to 1.520

5 As discussed in step 2 of the previously outlined procedure, for each reaction–diffusion equation there is a 
way to construct two distinct and in a sense complementary porous geometries.
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solution to the Gray–Scott system, as described in step 2 of the outlined procedure at the 
beginning of this section.

Some clear differences between the two types of geometries are: 

1. The sign of d�1∕d�0 is different for each of the types of geometries, see Fig. 5a.
2. For {A,C,E,G} families �2 takes positive and negative values, while for {B,D,F,H} 

families it only takes positive values. From figure 5b), we can notice that both types do 
not overlap on the (�2,�0) space. We should note that they also do not overlap on the 
(�2,�d) space, see Fig. 5d.

3. For {A,C,E,G} families d�d∕d�0 changes sign in the range of porosities that were 
studied, while for {B,D,F,H} families geometries d�d∕d�0 remain positive. See Fig. 5c.

4. From a visual point of view, both geometries are also quite distinct. {A,C,E,G} families 
geometries resemble those generated from lumping together grains, see Figs. 6a andc. 
{B,D,F,H} families resemble those of foams, see Figs. 6b and d.

Although properties 1 to 3 are probably exclusive to geometries generated through the 
method outlined in this section, it is possible to classify other porous geometries into one 
of the two types by using the visual cues discussed in point 4 of the previous list. For exam-
ple, a porous geometry made out of packed grains will share similarities with {A,C,E,G} 
families, while a foam-like porous geometry will share similarities with {B,D,F,H} 

Fig. 5  a Dimensionless-specific surface area �
1
 vs porosity �

0
 for all geometry families. b Dimensionless 

mean curvature density �
2
 vs porosity �

0
 for all geometry families. c Dimensionless average pore diameter 

�d vs porosity �
0
 for all geometry families. d Dimensionless average pore diameter �d vs mean curvature 

density �
2
 for all geometry families
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families. We will then refer to the first group of geometries as granular geometries, and to 
the second group of geometries as foam-like geometries.

4  Hydrodynamic Setup

The geometries generated using the previously outlined algorithm define a cubic lattice of 
length L = 288 computational nodes, where each node can be part of either the fluid or the 
solid domain. Note that by construction the solid domain is a connected space. We now 
want to study the flow through these geometries in the case where one of the faces of the 
cube acts as an inlet at fixed pressure pi , while its opposite face acts as an outlet at fixed 

Fig. 6  Stream lines at Re𝜙 < 1 for stationary flow in some of the used data sets. a Family A with 
�
0
= 0.403 . b Family B with �

0
= 0.456 . c Family C with �

0
= 0.502 . Family D with �

0
= 0.454 . Notice 

that the geometries in a and b belong to complementary families (A and B), in the sense defined in step 2 of 
Sect. 3, and the same happens to geometries in c and d 
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pressure po , closing off the remaining four faces.6 To simulate this setup, we used a D3Q19 
lattice-Boltzmann method (LBM) where a distribution function fk is defined and computed 
over the lattice identified as the porous geometry. The distribution function is then used to 
compute the fluid velocity u at the lattice nodes. Lattice spacing as well as time steps can 
be conveniently set to unity. At every node r in the lattice, the distribution functions evolve 
in time according to

The coefficient � represents a relaxation time and is related to the fluid kinematic viscos-
ity � =

�−
1

2

3
 . We choose � = 0.55 , a common value for the method to be stable at moderate 

Reynolds number (Zhao 2013). The local equilibrium distribution function f eq
k

 is given by:

The equilibrium distributions depend on the macroscopic fields u , and � , the mass density 
and must be computed every time step through

The constants �k in the equilibrium function definition (15) take the values �0 = 1∕3 , 
�k = 1∕18 for k=1,...,6 and �k = 1∕36 for k = 7, ..., 18 . The set of microscopic velocities 
{ek ∶ k = 0, ..., 18} is given by:

Equation (14), with the chosen microscopic velocities, provides an algorithm for updat-
ing all the distribution functions fk at a given node in the lattice, as long as its 18 nearest 
neighbors in the lattice are inside the fluid domain. For nodes close enough to a solid wall, 
the distribution functions coming from neighboring nodes outside the fluid domain must 
be provided as a boundary condition for the method. When the neighboring nodes corre-
spond to the solid domain of the porous geometry, including the four closed off faces of the 
cubic domain, the half-way bounce-back conditions will be used (Zhang et al. 2012). When 
the neighboring nodes go outside the computational domain7 at the inlet and outlet, we 

(14)fk(r + ek, t + 1) = fk(r, t) −
1

�

[

fk(r, t) − fk
eq(r, t)

]

.

(15)f
eq

k
= ��k

[

1 + 3ek ⋅ u +
9

2

(

ek ⋅ u
)2

−
3

2
u2
]

.

(16)�(r, t) =

18
∑

k=0

fk(r, t) ,

(17)�u(r, t) =

18
∑

k=0

ekfk(r, t) .

(18)

e0 = (0, 0, 0), e1 = e4 = (1, 0, 0), e2 = −e5 = (0, 1, 0),

e3 = −e6 = (0, 0, 1), e7 = e10 = (1, 1, 0), e8 = −e11 = (1, 0, 1),

e9 = −e12 = (0, 1, 1), e13 = −e16 = (−1, 0, 0),

e14 = −e17 = (−1, 0, 1), e15 = −e18 = (0,−1, 1), .

6 We are assuming the generated geometry is approximately isotropic and any two faces can be chosen as 
the inlet and outlet. Note that this should be the case as the geometry was generated from an approximate 
isotropic solution to the reaction–diffusion system of equations.
7 We added a runway of 16 nodes to both inlet and outlet.
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will use the boundary conditions proposed in (Zou and He 1996; Hecht and Harting 2008) 
that fix the pressure to a constant value at both inlet and outlet. On the aforementioned 
setup, and for a slow enough flow, Darcy law (Darcy 1856; Bear 1988; Whitaker 1986) is 
expected to hold,

 where Δp is the pressure gradient between inlet and outlet, L is the length of the sample 
cube, � is the dynamic viscosity of the fluid, Q is the discharge rate at the outlet, and K is 
the permeability. As discussed in the introduction, the permeability is assumed to depend 
exclusively on the geometric properties of the sample. To be more precise regarding the 
validity of (19), it is useful to define the pore level Reynolds number Re� as

where the average pore diameter d̄ , see (6), is used as the pore characteristic length, Q

L2�
 

corresponds to the seepage velocity and is used as the characteristic speed at the pore level. 
We then expect Darcy to hold for Re𝜙 < 1 , while for Re𝜙 >> 1 a quadratic term known as 
the Forchheimer term is added and (19) is expected to take the quadratic form

where we will refer to � as the Forchheimer parameter. It will be convenient to rewrite the 
general form (21) as a function of the pore level Reynolds number as

with the dimensionless permeability k = K

H2
 , dimensionless Forchheimer coefficient 

b = H� , and Δ∗ given by

To compute the permeability k and Forchheimer coefficient b, we just need to analyze the 
relation between pressure gradient and discharge rate once the flow has reached a steady 
state. Some examples of steady stream lines, in different geometry families, obtained from 
the LBM method are shown in Fig. 6. We can notice that the shape of the stream lines dif-
fers for granular- and foam-like geometries, see Fig. 6. For granular geometries, the stream 
lines are what you expect from a fluid avoiding obstacles on its path; however, for foam-
like geometries we can see that the stream lines take advantage of the three-dimensional 
space and become more tortuous than their granular counterparts. We expect tortuosity to 
be an alternative classifying factor for the two types of observed geometries; however, we 
did not explore this possibility on this work.

(19)−
Δp

L
=

�

K

Q

L2

(20)Re𝜙 =

Qd̄

L2𝜈𝜙
,

(21)−
Δp

L
=

�

K

Q

L2
+ ��

Q2

L4
,

(22)Δ∗ =
d2

H̄2

1

k
Re𝜙 +

d̄

H
b𝜙Re2

𝜙

(23)Δ∗ ≡ −
d̄3

L𝜙𝜈2

Δp

𝜌
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5  Permeability

The permeability associated with any given data set can be obtained by computing the dis-
charge rate at the outlet for multiple stationary numerical solutions on a range of small 
Reynolds number Re𝜙 ≲ 1 . Fitting the data to Darcy law (19) allows for k = K

H2
 to be com-

puted, see Fig. 7 for some examples.
We will now assume that8 k = k

(

�0,�1,�2,�d

)

 , and our aim will be to find a good 
enough fit for the functional form of k

(

�0,�1,�2,�d

)

 and try to get a picture of how all 
Minkowski functionals affect the permeability. As mentioned in Sect. 3, due to the way the 
geometries were generated the Minkowski functionals are not independent. This implies 
that for any given family the dimensionless permeability k can be written as a single param-
eter function,9 for example we can choose the porosity as the independent parameter and 
write k = k(�0) . We exemplify this in Fig. 8, where we show k vs �0 and k vs. �2 , together 
with a fit for both cases for each of the families. In Fig. 8, all the generated structures are 
included, grouped in geometry families as defined in Sect. 3. In plotting k vs. �0 and k vs 
�2 in Fig. 8a and b, respectively, no selection of the rest of MF’s was imposed.

For granular geometries, the following fits were used10

The fit parameters can be found in Table 3. The fit k(�0) was inspired by the Kozeny–Car-
man equation. The fit satisfies the expected11 relation k(�0 → 0) = 0 . For the fit k(�2) we 

(24)k(�0) = b
�a
0

c + �d
0

,

(25)k(�2) = ek0−k1�2−k2�
2
2
−k3�

3
2 ,

Fig. 7  a Data fit to Darcy law for eight data sets representing each of the distinct geometries. b Data fit to 
Darcy law with the Forchheimer correction for eight data sets representing each of the distinct geometries

8 Note that k is dimensionless so it must be function of dimensionless variables, leaving �0−2,�d as the 
only options.
9 The only exception is k = k(�d) because there is a non-invertible relation between �d and the rest of the 
Minkowski functionals, see Fig. 5c.
10 Although a fit of the form k(�1) can in principle be found, we were unable to find any good enough fit. 
This probably means that the dependence on �1 is mostly implicit through the dependence of the permeabil-
ity with respect to porosity and curvature. The same will hold true for foam-like geometry.
11 The factor of H used to make the dimensionless permeability k is expected to go to a non-zero constant 
on the �0 → 0 limit.
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found that, if plotted in semilog scale, a polynomial behavior on �2 is needed to account for 
the multiple inflection points on the curve k(�2) , while the exponentiation is necessary to 
guarantee that12 k(�2 → ∞) = 0 . Note that a power law in �2 might not work in general as 
�2 can take both positive and negative values.

For foam-like geometries, we will instead use the following fits:

The fit parameters can be found in Table 4, note that due to the small number of data points 
we will use a three-parameter fit in contrast to the four parameter fit used in (24)–(25). 
Given the rapid increase in k with �0 that occurs on foam-like geometries, we used a power 
law combined with an exponential term. For k(�2) , we kept the exponential form but 
removed the cubic term, the reasoning for this is that there are not enough data points to 
correctly fit such parameter and there are no inflection points in the range of explored �2.

From the Δ(�i) columns of Tables 3 and 4, we can note that for most families k(�2) is a 
slightly better fit than k(�0) . This seems to indicate that the curvature �2 is probably a natu-
ral parameter to describe the permeability in conjunction with the porosity. We can also 
notice that the fit parameters for all granular geometries are roughly of the same order. The 
same holds true for foam-like geometries. We will then assume that we can incorporate all 
family geometries into a single fit k(�0,�1,�2,�d) . Based on the fits (24)–(27) as well as 
the fitting proposed by Slotte et al. (2020) for two-dimensional porous geometries, we were 
able to fit the numerical data for granular geometries into the trend function13

with the best fit values

(26)k(�0) = �a
0
e�0+�1�

2
0 ,

(27)k(�2) = ek0−k1�2−k2�
2
2

(28)k =
(

�0

)a(

�1

)�1
(

�d

)�d ek0−k1�2−k2�
2
2
−k3�

3
2

Fig. 8  a Dimensionless permeability k as a function of porosity �
0
 together with a fit of the form (24) for 

granular geometries and (26) for foam-like geometries. b Dimensionless permeability k as a function of 
dimensionless curvature density �

2
 together with a fit of the form (25) for granular geometries and (27) for 

foam-like geometries. All dimensional rescaling was made by using the length H = (−m
3
)−

1

3

13 We are assuming a simple power law dependence on �1 and �d . We can take the fit (28) as the lead-
ing order term of a more involved functional dependence. The same holds true for the fitting of foam-like 
geometries.

12 If the pores are assumed to be approximately of cylindrical shape then �2 → ∞ as �0 → 0.
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And for foam-like geometries into the trend function

with the best-fit values

In Fig. 9, a plot of the relative error for the dimensionless permeability can be found, and 
from it, we can see that the trend line approximates the expected value for each of the types 
of geometries with an error of less than 15% for granular geometries and less than 18% for 
foam-like geometries.

We can finally note that for both fits (28) and (30) the limit k(0,�1,∞,�d) = 0 is sat-
isfied, and there is an exponential dependence on the dimensionless curvature �2 and a 
power law on the porosity �0.

6  Forchheimer Parameter

The Forchheimer parameter associated with any given data set can be obtained by comput-
ing the discharge rate at the outlet for multiple stationary numerical solutions on a larger 
range of Reynolds number Re𝜙 > 1 . Fitting the data to the Forchheimer correction to Darcy 
law (21) allows for b = H� to be computed, see Fig.  7 for some examples. Ideally we 
would like to find if there is a good enough fit for the functional form of b(�0,�1,�2,�d) 
for both types of geometries and identify the main dependence on the different Minkowski 
functionals. Just as for the permeability, it should be possible to first do single parameter 

(29)
a = − 2.85, �1 = −3.40, �d = 1.58, k0 = 3.52, k1 = 5.12,

k2 =3.15, and k3 = 0.88.

(30)k =
(

�0

)a(

�1

)�1
(

�d

)�d ek0+�1�
2
0
−k1�2−k2�

2
2

(31)
a =6.48, �1 = −0.41, �d = −1.08, k0 = 9.7, �1 = −4.81,

k1 =2.34, and k2 = 1.85.

Table 3  Granular geometries fit parameters for k(�
0
) using (24) and k(�

2
) using (25) together with the 

maximum relative error Δ(�i) ≡ 100max|
Δk(�i)

k
| = 100max|

k−k(�i)

k
| with k the permeability as given by the 

numerical simulations

Family a b 103c d Δ(�0) k0 k1 k2 k3 Δ(�2)

A 4.24 5.05 8.41 7.78 5.01 2.37 2.58 3.00 1.16 3.28
C 4.15 3.58 7.05 8.54 4.80 2.32 2.79 3.10 1.09 5.86
E 3.53 0.79 2.07 9.91 4.74 2.48 2.40 2.85 1.03 1.96
G 3.54 0.76 2.58 9.60 4.2 2.12 2.26 2.43 0.79 2.36

Table 4  Foam-like geometries fit 
parameters for k(�

0
) using (26) 

and k(�
2
) using (27) together 

with the maximum relative error 
Δ(�i) ≡ 100max| Δk(�i )k | = 100max| k−k(�i )k |

 
with k the permeability as given 
by the numerical simulations

Family a �0 �1 Δ(�0) k0 k1 k2 Δ(�2)

B 20.38 22.32 −22.91 9.47 3.55 3.68 2.00 11.18
D 19.74 21.60 −21.62 4.66 3.53 4.15 2.10 2.38
F 26.32 27.29 −28.49 5.01 3.75 4.47 0.48 3.28
H 27.52 29.57 −32.85 6.92 3.69 3.91 1.29 1.77
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fits; however, we were only able to find simple fits for b(�2) . In Fig. 10b, b(�2) is shown for 
all geometries together with its fit. For completeness, we show in Fig. 10a the behavior of 
b(�0) , from it we can notice that b(�0) rapidly increases as �0 decreases and, as expected, 
the behavior of each family seems to resemble the behavior of other families belonging to 
the same type. For granular and foam-like geometries, we used a fit of the forms

with k3 set to zero for foam-like geometries given the lower quantity of numerical data 
in comparison with granular geometries. The fit parameters for both types of geometries, 
together with the maximum relative error Δ(�2) , are presented in Table 5.

We can already noticed that the fit is not as good as the one for the permeability for all 
types of families. However, it is quite notable that the exponential form (32) can capture 
most of the exhibited behavior of b(�2) . Unlike k, we were unable to find a good fit func-
tion for each of the types of geometries solely using the Minkowski functionals and the 
average pore diameter as in (28) or (30). Given that we expect each family to share geomet-
ric features, we are inclined to conclude that additional geometric parameters that specify 
the more detailed structure of the geometry become relevant.

(32)b(�2) = ek0+k1�2+k2�
2
2
+k3�

3
2

Fig. 9  Relative error of the trend 
functions (28) and (30) for all 
used geometries

Fig. 10  a Dimensionless Forchheimer parameter b as a function of porosity �
0
 . b Dimensionless Forch-

heimer parameter b as a function of dimensionless curvature density �
2
 together with a fit of the form 

(32), setting k
3
= 0 for foam-like geometries. All dimensional rescaling was made by using the length 

H = (−m
3
)−

1

3
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7  Conclusion

Making use of the reaction–diffusion equation, we were able to successfully implement a 
procedure that systematically generates porous geometries with distinct features for any 
given porosity. Such geometries were then characterized by their Minkowski functional 
densities and their average pore diameter. We generated 154 distinct geometries, arranged 
in 8 families sharing similar visual structure features and divided into two types of geom-
etries with distinct geometrical features. The first type resembles granular porous geom-
etries, while the second one resembles foam-like geometries. We subjected them numeri-
cally to a pressure gradient-driven hydraulic flow. Based on the mean pore diameter, the 
Reynolds number at pore level explored ranged from 0.2 up to 17.

From the observed relation between the discharge rate and the pressure gradient, we 
were able to compute the permeability and Forchheimer parameter for all generated geom-
etries. To analyze a possible relation between these coefficients, and the Minkowski func-
tional densities and average pore diameter, we used a dimensionalization involving the 
length derived from the Euler characteristic density. Under such dimensionalization and 
for each of the families, we were able to write down single parameter fits for the perme-
ability as function of the porosity �0 and the dimensionless mean curvature �2 , and for the 
Forchheimer parameter in terms of the dimensionless mean curvature �2 . Additionally the 
dimensionless permeability arranged itself with the two types of families allowing us to 
find a fit as function of the dimensionless Minkowski functionals and the dimensionless 
average pore diameter for each of both types of geometries with an expected error of less 
than 15% for the granular geometries and less than 18% for foam-like geometries.

The two types of geometries are (generation and visual wise) complementary to each 
other and occupy different regions of the (�2,�0) space, as seen in Fig. 5b), and different 
regions of the (�d,�2) space, as seen in Fig. 5d). It is unclear whether this is the only geo-
metric distinction between them, although looking at the stream lines, see Fig. 6, it seems 
to be an indication that tortuosity might be a better discriminatory quantity between the 
two observe types of geometries, and we leave the exploration of this possibility to future 
work.

The Forchheimer parameter also grouped itself into two types of families; however, 
we were unable to find a good fit for each type of geometry in terms of the Minkowski 
functionals and the average pore diameter. This seems to indicate the Minkowski function-
als and the average pore density is not enough to determine the Forchheimer parameter, 
and further geometry descriptors are probably needed. However, for each of the families 

Table 5  Granular and foam-like 
geometries fit parameters for 
b(�

2
) using (32) together with 

the maximum relative error 
Δ(�i) ≡ 100max| Δb(�i )b | = 100max| b−b(�i )b |

 
with b the Forchheimer 
parameter as given by the 
numerical simulations

Family k0 k1 k2 k3 Δ(�2)

A 4.53 5.77 4.55 0.70 27.4
C 4.97 6.54 4.55 −0.02 10.94
E 3.68 4.72 4.54 1.53 4.10
G 5.00 5.63 5.09 1.78 2.36
B 2.81 7.52 3.95 – 15.60
D 3.25 7.23 6.50 – 1.46
F 2.67 7.02 1.83 – 7.43
H 5.48 4.19 0.92 – 2.15
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a single-parameter fit, analogous to the one used for the permeability, in terms of the 
dimensionless mean curvature �2 was possible. The nature of �2 and its relevance on all 
found fits seem to indicate that it is a key Minkowski parameter when predicting either the 
dimensionless permeability k or the dimensionless Forchheimer parameter b, recalling that 
a dimensionalization using the Euler characteristic was used. It will be of interest to study 
the relevance of �2 on generic porous geometries.

Our results show that reaction–diffusion systems have the potential to produce model 
porous structures of arbitrary geometrical characteristics. Such structures are suitable for 
the study of the flow properties dependence on the geometric characterization of porous 
media. Numerical simulations suggest that scaling lengths with the Euler characteristic 
reveal a different behavior of the dimensionless permeability, and Forchheimer parameter, 
of the two types of porous structures studied. Our work can be extended to include inho-
mogeneities and anisotropies and can be used to numerically study flow in a wide range of 
porous structures.
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