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Abstract
The phenomenology of steady-state two-phase flow in porous media is convention-
ally recorded by the relative permeability diagrams in terms of saturation. Yet, theoreti-
cal, numerical and laboratory studies of flow in artificial pore network models and natural 
porous media have revealed a significant dependency on the flow rates—especially when 
the flow regime is capillary to capillary/viscous and part of the disconnected non-wetting 
phase remains mobile. These studies suggest that relative permeability models should 
incorporate the functional dependence on flow intensities. In the present work, a systematic 
dependence of the pressure gradient and the relative permeabilities on flow rate intensity 
is revealed. It is based on extensive simulations of steady-state, fully developed, two-phase 
flows within a typical 3D model pore network, implementing the DeProF mechanistic–sto-
chastic model algorithm. Simulations were performed across flow conditions spanning 5 
orders of magnitude, both in the capillary number, Ca, and the flow rate ratio, r, and for 
different favorable  /unfavorable viscosity ratio fluid systems. The systematic, flow  rate 
dependency of the relative permeabilities can be described analytically by a universal 
scaling function along the entire domain of the independent variables of the process, Ca 
and r. This universal scaling comprises a kernel function of the capillary number, Ca, that 
describes the asymmetric effects of capillarity across the entire flow regime—from capil-
larity-dominated to mixed capillarity/viscosity- to viscosity-dominated flows. It is shown 
that the kernel function, as well as the locus of the cross-over relative permeability values, 
are single-variable functions of the capillary number; they are both identified as viscos-
ity ratio invariants of the system. Both invariants can be correlated with the structure of 
the pore network, through a function of Ca. Consequently, the correlation is associated 
with the wettability characteristics of the system. Among the potential applications, the 
proposed, universal, flow rate dependency scaling laws are the improvement of core analy-
sis and dynamic rock-typing protocols, as well as integration into field-scale simulators or 
associated machine learning interventions for improved specificity/accuracy.
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List of Symbols
Ca	� Capillary number
fEU	� Energy utilization factor, or, energy efficiency
f	� Fractional flow
k̃	� Absolute permeability of the porous medium
kr	� Relative permeability
p̃	� Macroscopic pressure
r	� Non-wetting phase/wetting phase flow rate ratio
Sw	� Wetting phase saturation
q̃	� Flow rate
Ũ	� Superficial velocity, or, flow intensity
x	� Reduced macroscopic pressure gradient
xpm	� Vector containing the geometrical and topological parameters of the pore 

network
z̃ 	� Coordinate length along the macroscopic flow direction

Greek Letters
�̃
nw

	� Interfacial tension between the wetting and the non-wetting phase
�
A
	� Dynamic contact angle for advancing non-wetting/wetting phase meniscus

�
R
	� Dynamic contact angle for receding non-wetting/wetting phase meniscus

�	� Non-wetting/wetting phase viscosity ratio
�	� Non-wetting/wetting phase mobility ratio
�̃ 	� Dynamic viscosity

Subscripts and Superscripts
~	� A tilde above a letter indicates a dimensional variable; no tilde above a letter 

denotes a dimensionless variable
;	� A semicolon separates the group of a function’s arguments into independent 

variables and system parameters.
*	� An asterisk (as superscript) indicates a value corresponding to critical flow 

conditions
n	� Index (subscript) indicating a non-wetting phase variable
w	� Index (subscript) indicating a wetting phase variable
i, j, m	� Indices

Abbreviations
CFC(s)	� Critical flow condition(s)
IDCP	� Intrinsic dynamic capillary pressure
n/w	� Non-wetting phase/wetting phase
REV	� Representative elementary volume
SCAL	� Special core analysis laboratory

1  Introduction

Τwo-phase flow in porous media is a physical process whereby two phases flow simulta-
neously within a porous medium. A porous medium (PM) comprises a complex network 
of interconnected pores of sizes in the range of microns-to-millimeters. When the flow is 
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immiscible, i.e., the two phases do not mix, one of the phases is wetting the interstitial sur-
face of the pore network against the other, non-wetting phase.

Applications of two-phase flow in porous media are numerous within the industry, 
energy and environment sectors, e.g., enhanced oil recovery, CO2 sequestration and geo-
thermal harvesting, groundwater and soil contamination and subsurface remediation, the 
operation of multiphase trickle-bed reactors, the operation of proton exchange membrane 
fuel cells.

The size and time scales of the process span across many orders of magnitude. At the 
pore scale, the characteristic size is such that the flow takes place at the continuum scale 
(Stokes flow). Critical flow mechanisms occur within size domains spanning micro-to-mil-
limeter scales. An intrinsic characteristic of immiscible two-phase flow in porous media is 
the disconnection of the non-wetting phase. Fluid immiscibility, wettability and the com-
plex pore network structure (tortuosity, genus, dimensionality, micro-roughness, surface 
chemistry, etc.) result in the disconnection of the non-wetting phase into fluidic elements, 
namely ganglia and droplets, of correspondingly larger or smaller size when compared to 
the average pore size. Pore scale hydraulic instabilities-instigated by Haines jumps and the 
corresponding, propagating pressure pulses-trigger detachment of the non-wetting phase, 
break-up and pinch-off (Payatakes 1982; Berg et al. 2013) and lead to intermittent flows of 
the fluidic elements of the disconnected non-wetting phase (Reynolds et al. 2017; Spurin 
et  al. 2019) as well as pressure waves and flow instabilities (Hönig et  al. 2013; Rücker 
et  al. 2021; Karadimitriou et  al. 2023). These mechanisms have their share on increas-
ing the incessant power dissipation in the incoherent motion of fluidic elements. The 
Young–Laplace forces acting across the N/W menisci separating the fluidic elements of 
the non-wetting phase from the surrounding wetting phase within the network capillaries 
are comparable to the Stokes flow, viscosity-induced resistances. As a result, an average 
pressure gradient builds-up along the flow direction. Averaging is considered over time and 
space in terms of appropriately sized, representative time periods and volume elements. 
The contribution of these effects on the macroscopic pressure gradient(s) depends on the 
interstitial structure of the flow and the interaction, through momentum exchange, between 
the two fluids and the solid matrix. Viscosity- and capillarity-induced forces have key roles 
in the momentum exchange.

Depending on the flow conditions, different flow regimes establish. These have been 
identified both in model pore networks (Avraam and Payatakes 1995; Tsakiroglou et  al. 
2007) and in natural porous media (Armstrong et  al. 2017). In those regimes, a part of 
the  disconnected elements of the non-wetting phase in the form of ganglia and droplets 
(Payatakes 1982; Tallakstad et al. 2009; Georgiadis et al. 2013; Yiotis et al. 2013; Arm-
strong et al. 2016) eventually organize to form larger structures at the high-end of the size 
spectrum, namely connected pathways of the non-wetting phase (Rucker et al. 2015). Simi-
larly, at the low-end of the size spectrum, populations of very small droplets of the non-
wetting phase (Datta et al. 2014; Pak et al. 2015) may become so small and form emulsions 
with the wetting phase (Guillen et al. 2012; Unsal et  al. 2016; Rucker et  al. 2017; Arab 
et al 2018). Moving-up from the scale of a few thousands pores into the realm of cm and 
m (pore-to-core-to-formation), porous medium heterogeneities and discontinuities appear, 
e.g., cracks, fractures, layering, etc. The collective behavior of the interaction between the 
two phases and the structure of the pore network has adverse effects on the meter-to-the-
hundreds-of-meters-size domain. Two-phase flow in natural porous media then becomes 
a complex system and relevant issues on complexity, emergence, self-organization, etc., 
need to be considered (Cushman 1997; Faybishenko et al. 2015). So, long as the process 
may be observed and described at different size scales, it is essential to describe the flow at 
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the representative elementary volume (REV) over the scale associated with the problem of 
interest. The REV is associated with averaging or up-scaling all interacting flow phenom-
ena occurring within any statistically adequate volume and time frame and, in statistical 
mechanics terms, it must represent all possible fluidic microstates (Valavanides and Daras 
2016; Bedeaux and Kjelstrup 2022).

The industry standard for the analysis and modeling of immiscible, two-phase flows in 
porous media is built around the concept of relative permeabilities. These have been con-
trived to extend the classic Darcy’s law for one-phase (saturated) flow in porous media, 
into its fractional form version. Relative permeabilities are calculated from laboratory 
measurements, either with steady- or unsteady-state methods. In steady-state methods, the 
two phases are simultaneously injected at a fixed ratio into a core. When the system reaches 
steady-state conditions, the differential pressures are measured and the relative permeabili-
ties are calculated. The resulting description is phenomenologic. In practice, e.g., in Spe-
cial Core Analysis (SCAL), an appropriate number of specially selected cores at the size 
of centi-to-deci-meters are collected from the porous medium formation and then used as 
a model—or reference—medium to record the effects of simultaneous flow of model fluids 
(American Petroleum Institute 1998; McPhee et al. 2015). The core is placed tightly in a 
core holder and fluids are co-injected through the core at controlled flow rates. Measured 
values of flow rates versus pressure drops are then used to calculate the corresponding val-
ues of the relative permeabilities, so as to satisfy the Darcy fractional flow equations [see 
Eqs. (1), Sect. 2.1]. This is repeated for different flow conditions (e.g., by imposing differ-
ent flow rates) in order to derive look-up tables or diagrams that describe the behavior of 
the examined flow system under immiscible twο-phase flow conditions. In recent research 
efforts,  sophisticated micro-tomographic technologies (Georgiadis et  al. 2013; Wildens-
child and Sheppard 2013; Fusseis et al. 2014) have been implemented to scan the pore net-
work structure, reveal the saturation profile and the interstitial flow structure along the core 
(Youssef et al. 2014, 2017), or even to capture micro-events occurring at high resolution 
domains in terms of time and size scales, e.g., Haines jumps (Berg et al. 2013) or in-situ 
dynamic alterations of contact angles (Andrew et al. 2015; Singh et al. 2016). Obviously, 
such improved SCAL techniques require more elaborate interventions and support equip-
ment and are limited to relatively smaller core sizes. The output of SCAL measurements is 
a core-scale REV model (phenomenologic); the behavior of the core REV model is then 
incorporated into field-scale flow simulators.

Research efforts have dealt with the problem of correlating relative permeability val-
ues to values of saturation, assuming a priori that relative permeabilities are saturation-
dependent. The assumption of saturation dependency has been established from the early 
years of oil extraction, and still is the standard approach in the industry until today. The 
objective is to deliver functional forms for fitting laboratory measured saturation and rel-
ative permeability data charts, with scope to incorporate these, together with saturation 
charts of capillary pressure, into field-scale simulators. Established approaches on fitting 
relative permeability vs saturation data sets are based on interpolating relative permeability 
against saturation values, using power law relationships (Corey 1954; Brooks and Corey 
1964; Chierici 1984; Honarpour et al. 1986; Lomeland et al. 2005; Lomeland and Ebeltoft 
2008; Lomeland 2018). These models attempt to provide appropriate functional expres-
sions for fitting relative permeability values against saturation over the broadest domain 
possible in flow conditions. The Brooks–Corey and LET (Lomeland–Ebeltoft–Thomas) 
approaches are most commonly used in fitting data collected during core analysis. Their 
performance in adequately describing the phenomenology revealed by core analysis, as 
well as issues associated with sensitivity and uncertainty analysis of relative permeability 
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parameterization, is examined and discussed in a recent publication by Berg et al. (2021). 
Albeit saturation dependency of relative permeabilities is established in industry, there is 
skepticism on whether it is the most efficient approach in describing the process. As sat-
uration describes a volumetric state of the system but not a transport state, it brings no 
definite input to the momentum balance; therefore, it is questionable if it can provide any 
information on the kinetics of the macroscopic flow. In that context, it is questionable if 
saturation can be used as an independent variable per se (Valavanides 2018b). The long 
standing practice in defining the process state through combined relative permeability-cap-
illary pressure–saturation charts does not improve things. The conventional capillary pres-
sure–saturation data sets are obtained under static conditions; even so, they are not unique, 
as—due to hysteresis—they depend on the direction of the displacement, e.g., drainage or 
imbibition (Schluter et al. 2016; McClure et al. 2018).

The flow rate dependency of relative permeabilities has been identified as early as the 
first attempts to reveal the phenomenology of two-phase flow in porous media by Wyck-
off and Botset (1936). Nevertheless, a systematic laboratory study across different flow 
regimes was never followed upon, possibly because of cost and time issues in deploying 
such an extensive, multi-parametric study and because, at the early days of the oil era, con-
ditions were in consistency—to a certain degree—with saturation dependency. The last 
2  decades, the issue of flow dependency is reconsidered, as models based on saturation 
dependency alone proved to be inefficient in describing the flow at intermediate flow con-
ditions, i.e., when capillarity-induced resistances are comparable to viscous resistances. 
Theoretical, numerical, and laboratory studies of flow in artificial pore network models 
and natural porous media (Wildenschild et al. 2001; Nguyen et al. 2006; Aursjo et al. 2014; 
Sinha et al. 2017; Tsakiroglou et al. 2015; Krause and Benson 2015; Valavanides 2018a; 
Gao et  al. 2020; Yiotis et  al. 2019, 2021; Zhang et  al. 2021) have identified flow  rate 
dependency to be an underlying, inherent process characteristic, revealing a significant 
dependency of relative permeabilities on flow rates.

In parallel, research efforts to characterize a porous medium, implementing laboratory 
measurements under dynamic conditions (flow), namely dynamic rock typing, are cur-
rently in development (Mirzaei-Paiaman and Ghanbarian 2021). Studies have also shown 
the need to establish a comprehensive understanding of the degree and extent of how per-
tinent system characteristics and process parameters (interfacial tension, wettability, pres-
sure, temperature, etc.) affect the relative permeabilities (Esmaeili et al 2019, 2020; Kumar 
et al. 2020; Arab et al. 2018, 2020, 2021). Yet, extracting the flow rate dependency char-
acteristics from physical experiments in the laboratory is not an easy task, so long as the 
number of essential parameters, e.g., the viscosities of the two fluids, interfacial tension, 
wettability, do not scale similarly with flow intensity and pore network geometry. That 
increases significantly the number of independent variables and overloads the protocol of 
a systematic laboratory study. Moreover, because of end-effects in SCAL methods, there 
are issues associated with biasing of measurements. Virtual experiments are an alternative 
approach in dealing with the problem of scaling-up transport properties within a porous 
medium. Dynamic pore network simulators are an option; nevertheless, the computational 
time increases exponentially with network size—directly associated with the minimum size 
of the REV—as well as the degree of disconnection of the non-wetting phase.

Ιn the present work, we attempt to tackle the problem of flow rate dependency. We 
will see how a generic form of scaling function can be derived in order to describe the 
dependence of the reduced pressure gradient, x, or, equivalently, the relative permeabili-
ties, on the local flow rate intensities of the wetting and the non-wetting phases. The 
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latter is expressed in reduced form as the capillary number, Ca, and the N/W flow rate 
ratio, r.

The proposed universal scaling, Eq.  (18), integrates the contributions of the two 
main sources of flow resistance, the capillary resistances and the viscous resistances, 
in decoupled, appropriately reduced format. In particular, the contribution of viscous 
resistances is accounted by a linear term of the flow rate ratio, r, with coefficient of lin-
ear increase the viscosity ratio of the fluid system. Τhe contribution of capillary resist-
ances is accounted by a strongly decreasing function of the capillary number, Ca. This 
function provides an integrated description of the effects of capillarity related phenom-
ena occurring during the interaction of the interstitial flows within the pore network. It 
is conceptually identified as the Intrinsic Dynamic Capillary Pressure (IDCP) function 
of the flow system. The IDCP function can be used as an identity of the fluid system. It 
is invariant to viscosity ratio. Another characteristic property is the locus of flow condi-
tions whereby equal permeabilities are attained, namely the locus of cross-over relative 
permeabilities, also invariant to viscosity ratio. Both can be extracted from laboratory or 
virtual, steady-state co-injection experiments on any given flow system, implementing 
conventional SCAL techniques. Here, we will use the extensive data output produced 
from previous, systematic simulations, based on the DeProF model for steady-state, 
fully developed, two-phase flow in pore networks, Valavanides (2018a).

The novelty of the proposed scaling relays into improvements on the Darcy-scale 
description of steady-state, fully developed, two-phase flow in pore networks. The cur-
rent work is complementary to a previous work, implementing an energy efficiency 
analysis, Valavanides (2018b), for two-phase flow in porous media. In that work, we 
proved the existence of the locus of critical flow conditions (CFCs), whereby maximum 
utilization of the input hydraulic power is achieved, as well as the collapsing of all the 
loci pertaining to different viscosity ratios into a universal locus, pertaining to equal 
viscosities. Each locus of CFCs is unique; therefore, it can also provide the identity 
of the flow system, comprising the two fluids and the porous medium, using a differ-
ent norm (energy efficiency). In the current work, we have implemented fractional flow 
analysis and derived a scaling expression—a new phenomenologic law, Eq.  (18), for 
the flow rate dependency of relative permeabilities. Fractional flow analysis is comple-
mentary to energy efficiency analysis. The scope is to provide a clearer image of the 
combined effects of viscosity, interfacial tension, wettability, pore network geometry, 
flow intensity, etc., on the structure of interstitial flows and relative permeabilities. The 
practical implementations relay to the use of a true-to-mechanism phenomenological 
law for two-phase flow in porous media. Potential applications could be integration in 
field-scale simulators or machine learning interventions to improve specificity/accuracy/
training; also to improve existing SCAL protocols and associated workload in flow sys-
tem- or rock-typing applications.

The paper is organized in 6 sections, including this introductory section. Section 2 provides 
a basic analysis of steady-state, two-phase flow in porous media, and a discussion on the con-
cept of fully developed flow conditions. Section 3 presents the results of extended simulations 
with the DeProF model algorithm. Reduced pressure gradient values, x, are presented in plane 
(2D) diagrams; inherent trends are revealed and identified. Section 4, the core section of this 
work, presents how indicative, generic functional forms of Ca and r, describing the flow rate 
dependency of the relative permeabilities, are extracted from available data. The concept of 
intrinsic dynamic capillary pressure is also introduced here. Section 5 derives the correspond-
ing functional form of the energy utilization index, fEU, and the associated locus of critical 
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flow conditions; characteristic invariant properties of the process are also revealed. Discus-
sion, conclusions and suggestions for future research are presented in Sect. 6.

2 � Analysis of Steady‑State Two‑Phase Flow in Porous Media

2.1 � Basic Considerations

Consider the simultaneous, one-dimensional concurrent flow of a non-wetting phase and a 
wetting phase, at flow rates equal to q̃n and q̃w , respectively, through a stream tube of fixed 
cross-section within a porous medium, Fig. 1. The cross-section of the cylindrical control vol-
ume may have any arbitrary shape, so long as, it is large enough to be considered homogene-
ous and side boundaries have no significant effect on the flow structure.

As a result of the externally imposed flow  rates, corresponding pressure gradients, 
(Δp̃∕Δz̃)i , i = n, w, are induced upon the two phases. This type of concurrent immiscible flow 
is conventionally described by the set of phenomenological fractional flow Darcy relations,

where indices i = n, w indicate the wetting phase (w) and the non-wetting phase (n), both 
incompressible, q̃i are the corresponding flowrates across a porous medium surface of area 
Ã , perpendicular to the direction of macroscopic flow, Ũi are the corresponding superficial 

(1)
q̃n

Ã
≡ Ũn =

k̃

𝜇̃n

krn

(
Δp̃

Δz̃

)

n

and
q̃w

Ã
≡ Ũw =

k̃

𝜇̃w

krw

(
Δp̃

Δz̃

)

w

Fig. 1   A REV element of one-dimensional flow within a cylindrical, infinitely long, porous medium tube 
(top). The schematic drawings are successive scale-down depictions of the mixture of  the wetting phase 
(WP, blue) and the non-wetting phase (NWP, red) within the interstitial flow (inset, top), the disconnection 
of the non-wetting phase (bottom) and the associated hysteresis due to the different contact angles, advanc-
ing, bottom left, and receding, bottom right. (The inset is a snapshot from the Avraam and Payatakes (1995) 
flow experiments in model pore networks, courtesy of D.G. Avraam.)
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velocities, or flow  rate intensities, (Δp̃∕Δz̃)i the corresponding pressure differences over 
any length along the macroscopic flow direction, or pressure gradients along the stream 
tube, k̃ is the absolute permeability of the pore network and, �i are the dynamic viscosities 
of the two fluids.

Because of bulk viscosity and capillary hysteresis resistances, energy dissipation is 
manifested as pressure drop along the flow direction. A relative measure of the viscous 
forces over the capillary forces is provided by the capillary number. Here, we will use 
the conventional expression for evaluating the capillary number, Ca, as

where 𝛾̃nw is the interfacial tension between the two phases.
Please note that the expression, Eq. (2), is conventional. It does not take into account 

the contribution of the viscous forces induced by the flow of both phases, neither those 
induced by capillarity and wettability, associated with the contact angles of the menisci. 
The latter, together with the asymmetries and micro heterogeneity in pore geometry, 
and other intrinsic, hysteresis effects associated with fluctuation dissipation, are the 
main sources of what is referenced as “capillary resistances”. These contributions have 
a significant impact on the resulting macroscopic pressure gradient(s). In that context, 
Oughanem et al. (2015) have extended the definition of the capillary number to take into 
account the effect of wettability. Valavanides (2018b) has proposed to include implicitly 
the relative magnitude of viscous to capillary forces by considering an effective, appro-
priately scaled, definition of the capillary number. Yet, that requires an assessment of 
the flow system over a broad domain of flow conditions.

The flow rate ratio, r, is defined as

and is essentially a kinematic property of the flow.
Ca and r are considered as the operational or flow parameters of the process.
The set of flow parameters is complemented by the set of system parameters, namely 

the absolute permeability of the pore network, k̃ , the bulk viscosity ratio, � , defined as

the physicochemical characteristics of the two phases, e.g., the interfacial tension, 𝛾̃nw , the 
dynamic, receding and advancing contact angles of the menisci, �R and �A , and relevant 
wettability properties, as well as other geometrical, topological and structural characteris-
tics of the pore network.

So long as the process is regulated by imposing a set of flow  rate values, q̃n, q̃w , 
across a porous medium surface, Ã , the superficial velocities, Ũn, Ũw , can be con-
sidered to be the independent variables of the process. Therefore, without any loss 
of generality, Ca and r, from Eqs.  (2) and (3), can be considered as the independ-
ent variables in the set of the phenomenological (cause-effect) fractional flow Darcy 
relations that describe the steady-state process. In that context, the pressure gradi-
ents, (Δp̃∕Δz̃)i, i = n, w , are the dependent variables. The absolute permeability of 
the porous medium and the fluid viscosities are considered to be fixed; therefore, the 
relative permeabilities need to be determined for different flow conditions to form a 
definite set of cause-effect Darcy fractional flow relations. In the reservoir engineering 

(2)Ca =
𝜇̃wŨw

𝛾̃nw

(3)r = q̃n∕q̃w = Ũn∕Ũw

(4)𝜅 = 𝜇̃n∕𝜇̃w



529Flow Rate Dependency of Steady‑State Two‑Phase Flows in Pore…

1 3

domain, the applicable standard is to use one of the fractional flows, be it the non-
wetting phase, fn, or the wetting phase, fw, correspondingly defined as

In the present work, we use as independent variable, the flow rate ratio, r, instead 
of the fractional flow, because it has the advantage of a more convenient description of 
the sought physical process, especially in detecting the critical flow conditions of max-
imum energy efficiency (see Sect. 5 and Valavanides et al. 2016). Switching between 
flowrate ratio and fractional flow is directly applicable from Eqs. (5).

The mobility ratio, � , is defined as the ratio of the mobilities,

and is essentially a kinetic property of the flow as it relays to the pressure gradients, 
(Δp̃∕Δz̃)i, i = n, w.

When steady-state, fully developed flow conditions are established (see Appendix 
I), the pressure gradient is common in both fluids and the phenomenological (cause-
effect) fractional flow Darcy relations become,

Consequently, from Eq.  (6), it turns out that a basic flow characteristic of steady-
state fully developed flow is that the flow rate ratio becomes equal to the mobility 
ratio,

The equivalence between flow  rate ratio and mobility ratio in steady-state fully 
developed flow conditions is a critical characteristic property for the analysis of two-
phase flows in pore networks. The assumption in Eq.  (8) was referenced in earlier 
works (Avraam and Payatakes 1999; Valavanides and Payatakes 2001). Equality of 
pressure gradients is a trustworthy assumption, provided the flow is fully developed, 
and saturation gradients are negligible along any REV stream tube. This is equivalent 
to negligible end-effects if core-scale measurements are referred. On the same line, 
Standnes et al. (2017) have proposed a mechanistic model for estimating generalized 
relative permeabilities, whereby they have considered that equal pressure gradients 
settle in both phases within the representative volume element, neglecting end-effects. 
The kinematic-kinetic equivalence described by the expression in Eq.  (8) can also 
be used in practice  as a criterion on whether a specimen of pore network or porous 
medium can be considered as REV or not, and if fully developed flow conditions are 
established and to what degree, especially when end-effects are expected to be critical 
(Karadimitriou et al. 2023).

(5)fn =
q̃n

q̃n + q̃w
=

r

r + 1
and fw =

q̃w

q̃n + q̃w
=

1

r + 1

(6)𝜆 =
𝜆̃n

𝜆̃w

=

krn

𝜇̃n

(
Δp̃

Δz̃

)
n

krw

𝜇̃w

(
Δp̃

Δz̃

)
w

=
1

𝜅

krn

krw

(
Δp̃

Δz̃

)
n(

Δp̃

Δz̃

)
w

(7)fully developed flow → Ũi =
q̃i

Ã
=

k̃

𝜇̃i

kri
Δp̃

Δz̃
, i = n, w

(8)fully developed flow → r =
q̃n

q̃w
≡

1

𝜅

krn

krw
=

𝜆̃n

𝜆̃w

= 𝜆
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2.2 � The Reduced Pressure Gradient for Fully Developed Two‑Phase Flows in Porous 
Media

The conventional fractional Darcy description of immiscible, fully developed, two-phase 
flow in porous media is provided by Eqs. (7). We may recast these equations in a dimen-
sionless form as follows.

We introduce the normative pressure gradient of an equivalent one-phase (saturated) 
flow of the wetting phase, (Δp̃∕Δz̃)1Φ, at superficial velocity equal to Ũw,

We may then use this pressure gradient to normalize the pressure gradient, induced dur-
ing fully developed two-phase flow in a porous medium, into the reduced (dimensionless) 
macroscopic pressure gradient, x , given by

From the equivalence between flow rate ratio and mobility ratio, Eq. (8), at fully devel-
oped flow conditions, relative permeability values can be computed directly from the 
reduced pressure gradient, x, as

The above relations comprise the essential definitions of relative permeabilities. When 
fully saturated flow conditions are met, x = krw = 1.

Using the reduced pressure gradient, two-phase flow in porous media may be described 
by a generalized functional form,

where �A, �R , represent the dynamic advancing (A) and receding (R) contact angles of the 
o/w interface on the pore walls, and xpm is a (sub-) set of (all) the dimensionless geomet-
rical and topological parameters of the pore network that affect the flow (e.g., porosity, 
genus, coordination number, normalized chamber and throat size distributions, chamber-
to-throat size correlation factors).

The set of physical variables in the parenthesis comprise the set of independent vari-
ables. These are classified into two groups. The group of the flow parameters (Ca, r) can be 
regulated during the process, and the group of the system parameters 

(
�, �A, �R, xpm

)
 are 

considered to have fixed values per flow system. The two groups are separated in Eq. (12) 
by a semicolon. The benefit of describing the sought process at fully developed flow condi-
tions in the general form of Eq. (12) is the reduction in redundancies associated with the 
many physicochemical parameters of the flow system, without compromising the consist-
ency of the underlying, true-to-mechanism, flow model.

The functional form in Eq.  (12) is unknown. The objective of the present work is to 
extract a generalized, universal expression that can describe the physics of the flow consist-
ently and that can be appropriately adjusted to match the behavior of different flow sys-
tems. In the next sections, we will see how an explicit function of the generalized, reduced 

(9)Ũw =
k̃

𝜇̃w

(
Δp̃

Δz̃

)1Φ
eqn (2)

⇒

(
Δp̃

Δz̃

)1Φ

=
𝛾̃nwCa

k

(10)x =
Δp̃∕Δz̃

(Δp̃∕Δz̃)1Φ
=

Δp̃

Δz̃

k̃

𝜇̃wŨw

=
Δp̃∕Δz̃

𝛾̃nwCa∕k

(11)krw =
1

x
and krn = �rkrw = �r

1

x
or

krn

krw
= �r

(12)x = x
(
Ca, r, �, �A, �R, xpm

)
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pressure gradient, Eq.  (12), has been revealed by matching extensive, systematic simula-
tions, implementing a hybrid mechanistic-stochastic model (the DeProF model), over a 
broad domain (Ca, r) of fully developed flow conditions for a set of physicochemical flow 
system parameters 

(
�, �A, �R, xpm

)
 . Implementing a similar methodology, this functional 

form can be adapted to describe flows in different two-fluid/porous medium systems.

3 � Prediction of Relative Permeabilities for Steady‑State, Fully 
Developed, Two‑Phase Flow in Model Pore Networks

3.1 � DeProF Model for Two‑Phase Flow in Pore Networks

The DeProF model is a hybrid mechanistic-stochastic model developed to describe immis-
cible, steady-state two-phase flow in pore networks (Valavanides 2018a). The model is 
based on the concept of decomposition of the macroscopic flow into prototype flows, hence 
the acronym DeProF. It takes into account the pore scale mechanisms and the sources of 
nonlinearity caused by the motion of interfaces, as well as other complex, network-wide 
cooperative effects, to estimate the conductivity of different classes of model pore unit 
cells. The different classes of unit cells are partitioned not only on geometric configurations 
but also on flow configurations, e.g., conducting/non-conducting, fully or partly saturated 
and containing one or several n/w menisci. Some critical characteristics of the DeProF 
model comprise:

(a)	 Decomposition of the total flow into three constituent flows, namely Drop Traffic Flow, 
Ganglion Dynamics and Connected Pathway Flow, each with distinctive sizing of the 
disconnected fluidic elements of the non-wetting phase. All three comprise an ensemble 
of interacting fractional flows wandering within a phase space of constituent flows, see 
points (e) and (f).

(b)	 Dynamic contact angles for the receding and advancing interfaces associated with 
drainage and imbibition events within pore unit cells.

(c)	 Intermittent flow of fluidic elements is taken into account as a process stochastic prop-
erty, based on calculated stranding and mobilization probabilities.

(d)	 Scaling-up implemented by applying effective medium theory with appropriate expres-
sions for pore-to-macro-scale consistency for mass and momentum balances over the 
wetting and non-wetting phases, result in an implicit expression in the form of Eq. (12).

(e)	 Determination of the ensemble of physically admissible interstitial flow configurations 
or system flow microstates, consistent with the externally imposed flow conditions, 
satisfying Eq. (12).

(f)	 Implementation of ergodicity to calculate the expected macroscopic, average reduced 
pressure gradient, from the ensemble of physically admissible flow microstates, see 
(e), for different steady-state, fully developed flow conditions and flow systems.

Using the DeProF model, we may obtain a semi-analytical solution to the problem of 
steady-state, fully developed, two-phase flow in pore networks in the form of Eq.  (12). 
The model also predicts key physical quantities that describe the interstitial, bulk and 
interface structure of the flow: ganglion size and ganglion velocity distribution, fractions 
of mobilized/stranded populations, specific (per unit volume of porous medium) sur-
face  area, velocity and volume fractions of mobilized and stranded interfaces, degree of 
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fragmentation of the non-wetting phase. If the geometry of the pore unit cells is explicitly 
provided in analytic expressions, the DeProF algorithm is relatively fast, with typical times 
between 10 and 60  min per (Ca, r)-run on a desktop computer, depending on the user-
selected flow system properties and flow conditions.

3.2 � DeProF Model Simulations

Extensive simulations implementing the DeProF algorithm have been carried out over a 
model pore network with characteristic properties similar to a typical Berea sandstone. Out-
put data were used to derive maps describing the dependence of the flow structure on the 
independent flow variables, namely the capillary number, Ca, and the flow rate ratio, r (Val-
avanides 2018a). The simulations span 5 orders of magnitude in Ca (−9 ≤ logCa ≤ −4) 
and  in  r (−2 ≤ log r ≤ 2) . Fluid systems with various—favorable and unfavorable—vis-
cosity ratios, 𝜅 = 𝜇̃n∕𝜇̃w ∈ {0.2, 0.33, 0.67, 1.0, 1.5, 3.0, 9.0, 20} , have been examined. The 
model flow systems differ only on the value of the viscosity ratio. Properties pertaining to 
capillarity, i.e., the interfacial tension, wettability, expressed by the dynamic advancing and 
receding contact angles, as well as the model pore network geometric/topologic character-
istics, were kept fixed. The afore mentioned domain of flow conditions has been scanned 
in 41 steps over Ca, i.e., for values Camj = m × 10j, m ∈ {1, 2,… , 10}, j ∈ {−8,… ,−5} , 
and 21 steps over logr, i.e., for values log ri = −2 + 2i∕10, i ∈ {0, 1, 2,… , 20}.

Typical predictions of the reduced pressure gradient, x, for different values of Ca and 
r, and for different N/W viscosity ratio values, � , are presented in Fig.  2. Diagrams are 
shaped into two classes, “iso-Ca” iso-capillary (left) and “iso-r” iso-flow rate ratio (right).

In the following, we will identify and reveal some invariant characteristic properties of 
the process.

3.3 � DeProF Model Simulations: Deciphering the Results

In single-phase flows in pore networks, the macroscale pressure gradient scales linearly 
with the superficial fluid velocity—as long as the flow is maintained below the Forscheimer 
regime. Flow linearity is also observed for certain two-phase flow conditions, especially so 
when the momentum and/or energy exchange between the two phases and through n/w 
interfaces (menisci) is minimum. Such conditions are met when disconnected fluidic ele-
ments of the non-wetting phase are stranded and flow of the non-wetting phase is through 
continuous pathways (fingers), and/or any capillary interactions are negligible when com-
pared to the viscous resistances of the bulk phase flows.

This type of linear behavior is also predicted in the DeProF model simulations for cer-
tain flow conditions. In particular, we may note on the 

{
xi, log ri

}
 iso-Ca diagrams in Fig. 2 

that, at the high-end of the flow rate ratio domain, all curves pertaining to constant-Ca val-
ues tend to converge asymptotically to an inclined straight dashed line; its functional form 
is given by the expression

Equation  (13) states that at sufficiently large values of the flow  rate ratio, r → ∞, the 
reduced pressure gradient, x, becomes a linear function of r, by a linearity constant equal to 
the viscosity ratio. Essentially, Eq. (13) describes the decoupling between the wetting and non-
wetting phase flows. It can be recovered analytically by writing the definition of the reduced 

(13)for r → ∞, log x = log � + log r ⇔ x = �r ⇔ r =
1

�
x
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pressure gradient, x, as the ratio of the pressure gradient of the two-phase flow normalized 
with the pressure gradient that would have been built considering the flow of the wetting phase 
with superficial velocity equal to the superficial velocity during the two-phase flow, Eq. (10).

Now, considering the cases of very large values of the flow rate ratio, r → ∞ , the (com-
mon) pressure gradient (at steady-state fully developed flow conditions) approaches the fol-
lowing limit (of virtually saturated Darcy flow of the non-wetting phase),

Fig. 2   Paired diagrams of predicted reduced pressure gradient values, x, for different values of cap-
illary number, Ca, and flow rate ratio, r. Each pair corresponds to a n/w viscosity ratio value, 
� ∈ {0.33, 1.0, 1.5, 20} . Small markers depict raw  values predicted by DeProF simulations (Valavanides 
2018a). Markers are connected by straight line segments in groups of iso-Ca values (left parts of diagrams) 
and iso-r values (right parts of diagrams). In every diagram, the thick dashed line depicts an asymptote, the 
large blue circle and the red cross indicate characteristic values (see text)
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Then, at this limit, simply by inserting Eq. (14) into the definition of the reduced pres-
sure gradient, Eq. (10), we can recover a linear relation between the reduced pressure gra-
dient, x, and the flow rate ratio, r,

The higher the values of the capillary number, the earlier (in terms of flowrate ratio 
values) the approach to that decoupled-flow behavior, and the earlier Eq. (15) is recovered. 
Moreover, the logarithmic relation in Eq. (13) indicates that the gradient of the asymptote 
in the (log x, log Ca) diagrams in Fig. 2 should be 1:1, irrespective of the system properties. 
This can be verified by observation across all the 

{
xi, log ri

}
 iso-Ca diagrams, irrespective 

of the value of the viscosity ratio.
Considering the 

{
xi, logCai

}
 iso-r diagrams, aligned on the right columns in Fig. 2, we 

observe a similarly interesting trend. At the low-end of the capillary number domain, all 
iso-r curves tend to converge asymptotically to a straight line, illustrated by the dashed 
thick line with (negative) inclination. The inclination of the asymptote is −1 ∶ 1 , across all 
the 

{
xi, logCai

}
 iso-r diagrams, irrespective of the value of the viscosity ratio, � . Again, 

decoupling between the flows of the wetting and non-wetting phases occurs at very low-Ca 
values. The lower the value of flowrate ratio, this asymptotic behavior is observed from 
higher Ca values. Moreover, we may verify by direct measurements that, in all diagrams, 
irrespective of the value of � , the low-Ca asymptote crosses the x = 1 line (pertaining to 
“virtually saturated flow”) at the same value of the capillary number, logCapm = −4.75 . 
That is indicated by a large red cross ( ). In that context, the functional form of the low-Ca 
asymptote is given by

Also note, in Eq. (16), that the value of the constant, Capm , across all the fluid systems 
examined, is

Therefore, this value of Capm is considered to be a characteristic value (a property) of 
the fluid system. It depends on capillarity related characteristics, i.e., the tripartite inter-
action between interfacial tension, wettability (dynamic advancing and receding contact 
angles) and the pore network geometry. Should we have had the simulations rerun, with 
either a different wettability or different pore network geometry,  that value would had 
changed. The open question is how sensitive the behavior of the fluid system/process 
would be to such changes, not only in simulations of virtual systems but also in applica-
tions in natural systems.

We see that, at the extremities of the flow conditions, the conventional assumption of 
saturation dependency of relative permeabilities is recovered. Yet, this is only a small part 
of the entire domain of flow conditions. For the rest of the flow domain, the broad, central 
region of moderate Ca values, where viscosity-induced resistances compete with capillar-
ity-induced resistances, relative permeabilities are strongly nonlinear functions of the flow 

(14)lim
r→∞

Δp̃

Δz̃
=

𝜇̃n

k̃
Ũn

(15)x =
Δp̃

Δz̃

k̃

𝜇̃wŨw

r→∞
⟶

𝜇̃n

k̃
Ũn

k̃

𝜇̃wŨw

=
𝜇̃n

𝜇̃w

Ũn

Ũw

= 𝜅r ⇒ x
r→∞
⟶ 𝜅r

(16)For logCa ≪ 0, log x = logCapm − logCa ⇔ x =
Capm

Ca

(17)logCapm = −4.749 ⇔ Capm = 1.782 × 10−5



535Flow Rate Dependency of Steady‑State Two‑Phase Flows in Pore…

1 3

intensities of the wetting and non-wetting phases. In the following section, we will see how 
a universal functional form, x(Ca, r) , can be derived to fit the data, xij

(
Cai, rj

)
 , predicted 

from the DeProF model simulations.

4 � The Scaling Function for the Flow Rate‑Dependent, Reduced 
Pressure Gradient

4.1 � Introduction of the Scaling Function Model

We will continue with deriving a functional form for the reduced pressure gra-
dient, x(Ca, r) , in order to best fit the data, xij

(
Cai, rj

)
 , produced from the 

DeProF model simulations for 7 different systems of n/w viscosity ratio values, 
� ∈ {0.33, 0.67, 1.0, 1.5, 3.0, 9.0, 20} . The diagrams in Fig. 2 are representative data sets 
xij , for various viscosity ratio values.

We may start by examining the self-similar structure of the xij values on the iso-Ca, 
diagrams stacked on the left column diagrams, in Fig. 2. In parallel we will observe the 
inherent asymptotic trends described by Eqs. (15) and (16).

We may observe a systematic trend, repeating for every fixed value of Ca. As log r 
is progressively increased, x starts from a constant value and then it progressively 
increases—following a power law trend—toward attaining a linear dependence on r. 
This trend can be described with the following functional form

In Eq. (18), the constant value at the low-r regime, when �r → 0 , is represented by 
the term A, while the linear trend toward the asymptote line at the high-r regime, by �r . 
We may also observe on the left column diagrams in Fig. 2 that, the constant value of 
x attained at the low-r regime decreases with increasing Ca. Therefore A is correctly 
considered to be a function of the capillary number, A = A(logCa) . Moreover, all the 
iso-Ca lines converge asymptotically as r → 0 , at the same line, x = �r . At those condi-
tions, any capillarity effects, expressed by A(logCa) , should decrease with increasing 
Ca. This indicates that A(logCa) should be a strongly decreasing function of Ca. The 
same self-similarity repeats consistently for different viscosity ratio values, � . Focus-
ing now on the right-column diagrams in Fig. 2, we may observe the trend of the iso-r 
lines into converging asymptotically, as Ca → ∞ , to the horizontal axis at value x = 1 , 
indicating reduced pressure gradient values pertaining to saturated flow conditions. That 
is consistent with the definition of the reduced pressure gradient, Eq. (10), and gives an 
asymptotic behavior described by,

When flow conditions shift from intermediate to relatively high-Ca values, the inter-
stitial flow progressively mutates from prevailing ganglion dynamics to a flow mixture 
rich in drop traffic flow and connected pathway flow. With further increase in Ca the 
non-wetting phase flow becomes bimodal, comprising connected pathways and drop 
traffic flow, whereby the relatively large drops of the non-wetting phase shutter into 
smaller droplets. The latter progressively loose contact with the pore walls, and the dis-
connected flow mutates to an emulsion-type flow mode. Consequently, in Eq. (19), the 

(18)x(Ca, r) = A(logCa) + �r

(19)x(Ca, r)
Ca→∞
⟶ 1 + �r, A(logCa)

Ca→∞
⟶ 1
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effects of menisci and capillary resistances fade away, A → 1 , and viscosity becomes the 
regulating factor, �r . Details on the interstitial flow structure mutations as flow condi-
tions intensify can be found in Valavanides (2018a).

The functional form, A(logCa) , describing the effect of the n/w menisci at different 
Ca values is revealed in the following paragraph by simple, least squares fitting.

4.2 � Recovery of the Kernel Function A
(
log Ca

)

We will see how the kernel function A(logCa) in Eq. (18) can be recovered for the particu-
lar flow system we examined. In principle, we need to have a sufficient amount of relative 
permeability values extending across a broad domain of flow conditions Ca and r. In the 
present paradigm, we will tap on the extensive DeProF model simulations (virtual experi-
mens), covering a broad domain of flow conditions, logCa and log r , and for a variety of 
viscosity ratio values. Wettability and pore network geometry remained fixed across all 
simulations.

The reader who is not interested in following the technicalities of the fitting methodol-
ogy may skip the details and directly refer to the result expressed in Eq. (26).

The functional form of the kernel function, A(logCa) , depends on the particular fluid 
system examined. Similar paradigms, in extracting A(logCa) from laboratory experiments, 
are provided in Valavanides et al. (2020) and Karadimitriou et al. (2023).

4.3 � Extraction of the Kernel Function, A
(
log Ca

)
 , by Fitting

We will implement least squares fitting to recover the A(logCa) kernel function in 
Eq. (18). For any data set pertaining to a fixed-Ca simulation, logCai , we detect the value 
Ai = A

(
logCai

)
 , that minimizes the sum of the squares of the fitting errors in each of the 

iso-Ca data sets (each set depicted with connected line in the diagrams exhibited on the left 
columns in Fig. 2). This is expressed as

where Ni is the number of detected points (xij) pertaining to the constant capillary num-
ber value, Ca = Cai , for Ni different flowrate ratio values, rj, ( j = 1, 2,… ,Ni ≤ 21 ). Please 
note that the last expression for Ai in Eq. (20) is the average

We recall here that each set Ai = A
(
logCai

)
, 1 ≤ i ≤ 41 pertains to a particular value of 

the n/w viscosity ratio, � . So, for each examined value of the viscosity ratio, we get a dif-
ferent set comprising 41 pairs of values, 

{
Ai, logCai

}
, 1 ≤ i ≤ 41.

We repeat the procedure for each of the 7 viscosity ratio values, 
� ∈ {0.33, 0.67, 1.0, 1.5, 3.0, 9.0, 20} that we have examined in the DeProF model simu-
lations. These values are plotted in the diagram Fig. 3a. The 7 sets of coefficient values, 

(20)

min
Ai

(
Ni∑
j=1

[
x
(
logCai, log rj

)
− xij

]2
)

Eq. (18)

⇒
d

dAi

Ni∑
j=1

[
Ai + �rj − xij

]2
= 0

⇒ Ai =
1

Ni

(
Ni∑
j=1

xij − �

Ni∑
j=1

rj

)
, 1 ≤ i ≤ 41, j = 1, 2,… ,Ni ≤ 21,

(21)Ai =
⟨
Aij

⟩
j
, 1 ≤ i ≤ 41, 1 ≤ j ≤ Ni ≤ 21
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Ai, 1 ≤ i ≤ 41 , are depicted using 7 types of markers. Each type of marker indicates 41 
data values Ai, 1 ≤ i ≤ 41 , pertaining to the data fitting, Eq.  (20), for the correspond-
ing constant-Cai runs. It is obvious that the 7 sets of 

{
Ai, logCai

}
, 1 ≤ i ≤ 41 points are 

lined-up on a tight formation. We may assess how the “tightness” is distributed over the 41 
logCai values by calculating the corresponding variances.

The 41 Cai variances over the 7 viscosity ratios are evaluated by

The 41 variances per Cai of each set of logA values, pertaining to the 7 different vis-
cosity ratios, are presented in the diagram, Fig. 3b. Variances pertaining to the capillarity 
dominated regimes, logCa < −6, are a bit higher than those in the capillary/viscous flow 
regimes, −6 < logCa . Nevertheless, as the variances are quite small, we may calculate the 
average over the viscosity ratio values, ⟨Ai⟩m , as

The 41 averages calculated from Eq. (23) are plotted on the diagram Fig. 3c with 41 red 
dot markers ( ).

On the diagrams Fig. 3a and b, we may observe two distinct regions along the logCa 
domain. At the low-Ca regime, the markers are almost aligned on a straight line with 
negative inclination, to be calculated by fitting. As the capillary number is increased, the 

(22)�
2
i
=

1

7

7∑
m=1

(
logAi −

1

7

7∑
m=1

logAm

)2

, 1 ≤ i ≤ 41

(23)⟨Ai⟩m =
1

7

7�
m=1

Ai,m1 ≤ i ≤ 41, �m ∈ {0.33, 0.67, 1.0, 1.5, 3.0, 9.0, 20}

〈log 〉  ,    Eq. (23)

log (log ), Eq. (26)

C

logCa0

(a)

(b)

(c)

   0.33 

   0.67

   1

   1.5

   3

   9

 20
2,  Eq. (22)

2,  Eq.(22)

Fig. 3   a Values of the coefficients Ai, 1 ≤ i ≤ 41 , used in Eq. (23) for the 41 constant-Ca runs. Each type 
of marker indicates a set of 41 data values 

{
Cai,Ai

}
 and pertains to a system with different viscosity ratio 

values, 𝜅 = 𝜇̃n∕𝜇̃w . b Blow-up detail of the calculated variance in each of the 41 log logAi values over the 
7 viscosity ratios in (a). (c) The corresponding 41 �-averaged values, ⟨A⟩i , indicated by red dot markers ( ). 
These are fitted by a function A(logCa) (black, dash-dot curve), of the form Eq. (26)
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markers tend to progressively attain the lowest physically admissible value (logA → 0) , 
and in doing so, they align asymptotically to the horizontal direction.

Focusing on the diagram Fig. 3c, each of the 1 ≤ i ≤ 41 red dot markers ( ) indicates the 
corresponding average ⟨Ai⟩m over the 1 ≤ m ≤ 7 viscosity ratios, calculated from Eq. (23). 
The red dot markers ( ) align along the inclined continuous line in black; the latter meets 
the horizontal axis at an obtuse angle at point C, at abscissa logCa0.

We may then fit these markers by a bilinear function of the form

where C0 is a measure of the approach to the two asymptotes (the higher this value, the 
greater the distance from the asymptotes); 

(
−1∕C3

)
 is the gradient of the inclined asymp-

tote; logCa0 is the abscissa of the intersection of the two asymptotes (at point C).
Best fitting of the ensemble of logA values, for the entire set of viscosity ratios exam-

ined in the simulations, with Eq. (24), gives the values of the coefficients presented in 
Table 1. The curve fitting is plotted by the black dash-dot line in Fig. 3c.

The red dashed line, pivoted at logCapm = −4.75 , ( ) with negative gradient 1:1, see 
Eq. (17), is the asymptote delineated in the right column diagrams in Fig. 2. That is an 
indication of the self-similarity properties of the kernel function A(logCa).

Returning to Eq.  (24), logA is an implicit function of logCa . We need to solve the 
corresponding cubic equation in terms of logA,

The solution to the previous cubic equation is derived in “Appendix II” and is given 
by the following expression,

where

One may select to choose between the implicit or explicit expressions for 
logA(logCa) , Eqs. (24) and (26), respectively. Note, the expression provided in Eq. (26) 
pertains to the particular fluid model system examined in the simulations and has no 
universal application. Evidently, each flow system, comprising the two fluids and the 

(24)logCa = logCa0 +
C0

(logA)2
− C3 logA

(25)(logA)3C3 + (logA)2 log
Ca

Ca0
− C0 = 0

(26)logA(logCa) =

⎧⎪⎪⎨⎪⎪⎩
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and D = log
Ca
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Table 1   Estimated values of the 
A(logCa) function coefficients, 
Eq. (24)

logCa0 C0 C3

− 4.2602 0.0020 1.14741
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porous medium, has its own “finger-print” expression for logA(logCa) . Similar para-
digms in extracting A(logCa) from laboratory measurements of different flow systems 
can be found in the literature (Valavanides et al. 2020; Karadimitriou et al. 2023). In the 
next section, we will interpret the physics underlying the A(logCa) curve.

4.4 � Physical Interpretation of the Kernel, A
(
log Ca

)
 : The Intrinsic Dynamic Capillary 

Pressure Function

As described in the previous paragraph, by fitting the data obtained from the simulations, 
Fig. 3, we get the functional form of A(logCa) . Obviously the values of the constants, Ca0, 
C0 and C3, do not change with the viscosity ratio, at least not substantially and to the extent 
that algorithmic deficiencies of the DeProF model are unavoidable. Therefore, simulations 
indicate that A(logCa) is invariant to changes in viscosity ratio.

Now, rearranging Eq. (18), we get

In that format, the function A(logCa) is describing the effect of the n/w menisci on 
the transport configuration of the flow system at different flow conditions, i.e., at differ-
ent flow intensities, or different Ca and r values. In Eq. (28), by subtracting the effects of 
flow resistances due to bulk viscosities, �r , from the reduced pressure gradient, x, we get 
the relative contribution of the dynamic capillary resistances to the flow. Therefore, the 
values of the constants, Ca0, C0, and C3, in Eq. (18) are expected to change with wettability 
(dynamic advancing and receding contact angles) and/or pore network geometry.

The dimensionless function, A(logCa) , may be given the name Intrinsic Dynamic Cap-
illary Pressure—IDCP function. As such, the IDCP function is a characteristic property 
of the flow system, comprising the two fluids and the porous medium. It depends on capil-
larity related characteristics, i.e., the tripartite interaction between interfacial tension, wet-
tability (dynamic advancing and receding contact angles) and the pore network geometry. 
The term dynamic in IDCP is used to indicate that capillary pressure is evaluated at differ-
ent flow conditions, not in static equilibrium.

The IDCP curve plotted in the diagram in Fig. 3c (black dash-dot curve) represents the 
particular fluid system examined in the simulations (Eqs. (26), (27) and Table 1). Should 
we have had the simulations rerun—with either different wettability properties or different 
pore network geometry—its functional form, Eq. (28), would have changed. Any changes 
would be due to changes in the constituent physical variables of Eq. (28) and, most criti-
cally, to changes in the structure of the response of the system, x(Ca, r) . That would be the 
case if, the absolute permeability of the network in saturated flow conditions remains fixed, 
and changes would only pertain to wettability aspects. Albeit the IDCP curve is revealed 
from REV—virtually ex-core—measurements, it contains the essential information on 
the interaction between the structure of the network (associated with capillarity) and the 
motion of the n/w menisci. In that context, the IDCP curve surfaces-up, to a superficial, ex-
core observer, the latent information associated with the ensemble of flow mechanisms at 
the pore scale, and the corresponding interstitial flow structures.

In the current paradigm of the IDCP curve in diagram Fig. 3c, we may identify 3 distinct 
regions. Starting from the capillary flow domain at relatively low-Ca values (logCa < −5) , 
the IDCP curve is decreasing in an almost linear fashion, indicating a progressive mobiliza-
tion of stranded fluidic elements, mainly the larger size ganglia. Then, there is a transition 
region of mixed capillary-viscous flow at moderate-Ca values (−5 < logCa < −4) , where 

(28)A(logCa) = x(Ca, r) − �r
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the IDCP curve gradient progressively decreases. This is because the remaining stranded 
ganglia of smaller size has a smaller probability of mobilization. Then, moving to the vis-
cous dominated flow regime of high-Ca values (−4 < logCa) , the transitory behavior of 
the flow system turns into a smooth asymptotic behavior toward saturated flow (A → 1) , as 
explained in the paragraph following Eq. (19).

Fig. 4   Reduced pressure gradient values, x, for different values of capillary number, Ca, and flow rate ratio, 
r, and for various n/w viscosity ratio values, � ∈ {0.33, 1.0, 1.5, 20} . Diagrams in columns (a) and (c) plot 
the simulation results, Fig. 2. Diagrams in columns (b) and (d) show plots of x(Ca, r) calculated analytically 
from the scaling function, Eqs. (18) and (26) with parameter values from Table 1. The fitting is quite con-
sistent and accurate, both qualitatively and quantitatively
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4.5 � Maps of Reduced Pressure Gradient and Relative Permeabilities

Using the scaling function Eqs. (18) and (26) with coefficient values from Table 1, we may 
reconstruct 2D, iso-Ca and iso-r diagrams, similar to those presented in Fig. 2. The diagrams 
in Fig.  4 provide an indicative direct comparison between plots of the source data (from 
DeProF model simulations) with plots of the scaling function derived in the previous sec-
tion. The diagrams are paired. Diagrams of values predicted from DeProF model simulations 
are aligned on columns (a) and (c), Fig. 4. Plots of the analytical expression that fits the cor-
responding source data are aligned on columns (b) and (d). The fitting is quite consistent and 
accurate.

Diagrams of x(Ca, r) and combined diagrams of krn(Ca, r) and krw(Ca, r) for different flu-
ids with viscosity ratio values, � ∈ {0.33, 0.67, 1.0, 1.5, 3.0, 9.0, 20} , are presented in Figs. 5 
and 6, respectively. The diagrams in Fig. 4, columns (b) and (d), are formed by intersections of 
the x(Ca, r) 3D surface with iso-Ca and iso-r planes, perpendicular to the logCa and the log r 
axes, respectively. These are merged to draw the 3D diagrams in Fig. 5. The combined relative 
permeability diagrams of krn and krw in Fig. 6 are drawn using Eq. (11).

We may focus on the intersection of the relative permeability surfaces, forming an S-type 
plane curve, the locus of cross-over relative permeability values, krx = krn = krw . We may 
observe its projections on the 3 mutually orthogonal planes of reference, krn = krw = 0 , 
logCa = −8 and log r = −2 . The two projections on the planes krn = krw = 0 and 
logCa = −8 are aligned on the two straight lines, r = rx = �−1 , perpendicular to each other. 
That is a consequence of the equivalence between the flow rate ratio and the mobility ratio, 
Eq. (8), in fully developed flow: At the cross-over relative permeability flow conditions, the 
flow rate ratio and the mobility ratio become reciprocal to the viscosity ratio,

The projection of the cross-over relative permeability curve on any fixed-Ca plane is invar-
iant to viscosity ratio changes, so long as both wettability and pore network geometry remain 
fixed. Therefore, cross-over relative permeability conditions, krn = krw = krx at rx = 1∕� , will 
remain unaffected when flow systems with different viscosity ratio but with the same wettabil-
ity and pore network geometry are examined.

This latent (or less-expected) characteristic property, comes as a direct consequence of the 
invariance of the IDCP curve, A(Ca) , to viscosity ratio changes (see Fig. 3a), and altogether 
may lead to the conjecture that the functional dependence of the cross-over relative perme-
ability on Ca is a pure capillarity dominated system characteristic. As such, it could be used as 
an effective, pore network structure identity. Because of its potential implications in improving 
SCAL technology, this conjecture, merits systematic laboratory verification.

5 � Energy Efficiency and Critical Flow Conditions

The energy efficiency or energy utilization index, fEU, provides a reduced measure of the 
energy efficiency of the process. It is defined as the flow rate of the non-wetting phase per 
unit of the total hydraulic power spent, or equivalently, provided externally to the flow system 
by the driving/injection pumps to maintain two-phase flow at set flow conditions, Ca and r 
(Valavanides et al. 2016). It is used as a flow analysis and system characterization variable. 
The energy efficiency index may be evaluated in terms of macroscopic (REV) measurements,

(29)∀r = rx ∶ krn
(
Ca, rx

)
= krw

(
Ca, rx

) Eq. (8)

⇒ rx = 1∕�
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Fig. 5   3D plots of the reduced pressure gradient, x, as a function of the capillary number, Ca, and of the 
flow rate ratio, r, based on Eqs. (18) and (26) with parameter values from Table 1, and for and for various 
n/w viscosity ratio values, � ∈ {0.33, 1.0, 1.5, 20}
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Fig. 6   3D plots of the relative permeability for the wetting and non-wetting phase, krw (blue) and krn (light 
red), as a function of the flow  rate ratio, r, and the capillary number, Ca, based on Eqs.  (11), (18) and 
(26), with parameter values from Table 1, and for pairs of fluids with different n/w viscosity ratio values, 
� ∈ {0.33, 1.0, 1.5, 20} . The plane, S-shaped curve, formed by the intersection of the two relative perme-
ability surfaces, the locus of cross-over relative permeabilities is invariant to viscosity ratio changes
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The energy efficiency index has an important characteristic. For every fixed value of 
the capillary number, Ca, there exists a single value of the flow rate ratio, r*, for which 
the energy efficiency index, f ∗

EU
 , attains a maximum value. This maximum is local; 

changing Ca to Ca′, the new maximum is met at another unique value r∗� . Therefore, for 
every flow system, comprising the two fluids and the porous medium, a unique locus of 
energy efficiency maxima is formed, r∗(Ca) . Flow conditions matching the r∗(Ca) locus 
are called critical flow conditions (CFC) (Valavanides 2018b). Critical flow conditions 
can be revealed by special core analysis (Valavanides et al. 2016; 2020; Karadimitriou 
et al. 2023) provided that measurements are taken over an extended range of fully devel-
oped flow conditions.

Given the scaling function for the reduced pressure gradient, x(Ca, r) , Eq.  (18), we 
may obtain, through Eq.  (30), the analytic expression for the energy efficiency index, 
fEU(Ca, r) . We may also derive the analytic expression for the locus of CFC by its con-
ceptual definition,

whereby importing the expression for the x(Ca, r) scaling, Eq. (18), we get the CFC locus.

The locus of critical flow conditions is configured by two separate factors, the vis-
cosity ratio, � , incorporating the bulk viscosity effects, and the IDCP function, A(Ca) , 
incorporating the capillarity effects. That is something expected as f ∗

EU
(Ca, r) is essen-

tially the minimum energy partitioning between viscosity- and capillarity-induced 
dissipation.

Plots of the energy efficiency index and critical flow conditions as a function of Ca and 
r, Eqs. (30), (18) and (26), for various viscosity ratio systems, are presented in Fig. 7. In 
every diagram, the 3D surface with the iso- fEU contour lines indicates the dependence 
of the energy efficiency index on logCa and log r . The thick red line indicates the trajec-
tory of maximum energy efficiency values, f ∗

EU
(Ca, r) = fEU(r

∗(Ca)) , based on Eq. (32). 
On that trajectory, magenta colored ball markers are used to pinpoint the trajectory of 
f ∗
EU
(Ca, r) over order of magnitude shifts in Ca, [ logCa ∈ {−4,−5,−6,−7,−8}].
The projection of the trajectory of maximum energy efficiency, f ∗

EU
(Ca, r) , showing 

the locus of critical flow conditions, r∗(Ca) , on the logCa × log r plain, lays—barely 
visible—under the fEU(Ca, r) surface. To show the locus clearly, the f ∗

EU
(Ca, r) curve is 

re-projected, on a horizontal plane (Ca × r) located just above the 3D surface. Very thin 
red lines connecting the fEU(Ca, r) surface ridge to its new projection appear as a cylin-
drical curtain. The new projection depicted by a red dash–dotted curve lays at a height 
equal to the nominal value of the maximum attainable energy efficiency—the “ceiling 
of efficiency”—for the particular fluid system—better, for the particular value of the 
viscosity ratio (Valavanides 2018b). That value corresponds to the critical flow  rate 
ratio, specifically, r∗

∞
= 1∕

√
�  , and is theoretically estimated as

(30)fEU =
krn

�(r + 1)
=

rkrw

r + 1
=

r

x(r + 1)
=

fn

x

(31)
�fEU

�r

||||r=r∗ = 0 ⇔
�

�r

(
rkrw

r + 1

)
=

�

�r

(
r

r + 1

1

x(Ca, r)

)
= 0

(32)d

dr

r

(r + 1)(A + �r)
= 0 ⇒ A − r∗2� = 0 ⇒ r∗(Ca) =

√
A(Ca)

�
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Fig. 7   Energy efficiency maps, fEU(Ca, r) , based on Eqs.  (30), for fluids with various n/w viscosity ratio 
values, � . The maximum energy efficiency, f ∗

EU
(Ca, r∗) , as well as its horizontal projection, r∗(Ca) , are 

depicted by the red, thick curves. The curtain of drop lines maps the locus of critical flow conditions, 
r∗(Ca) ; it is suspended from a horizontal plane at a height equal to the nominal value of the maximum 
attainable energy efficiency for each two-fluid system (ceiling of efficiency), f ∗

EU∞
 . Thinner red curves 

are projections of f ∗
EU
(Ca, r∗) on the vertical planes. Ball markers are used to pinpoint order of magnitude 

changes in Ca 
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The straight line asymptote, r = r∗
∞
= 1∕

√
� , is depicted with dashed red line and 

lays, barely visible, under the fEU(Ca, r) surface. Both of the aforementioned nominal 
values, r∗ and f ∗

EU∞
 , are estimated by considering the asymptotic limit at the high-end of 

the capillary number domain, whereby the flow resistance due to the effects of the n/w 
menisci and phenomena associated with capillarity, become negligible when compared 
to bulk viscosity flow resistances (Valavanides 2018b, Appendix).

Please note that Eq.  (33) is recovered directly from Eq.  (32) as Ca → ∞ and 
logCa → 0 ⇒ A(Ca) → 1 . In particular, Eq.  (32) was derived from the DeProF simula-
tions, whereas Eq. (33) from energy analysis at viscosity-dominated flow conditions (Vala-
vanides 2018b, Appendix).

The shapes of the energy efficiency surface ridge, fEU(r∗(Ca)) and of the locus of criti-
cal flow conditions, r∗(Ca) , become more clear if we observe their projections on the three 
reference planes, Fig. 7. In particular, the projection of the maximum energy efficiency on 
the log r = −2 plane attains an S-shaped curve, confined asymptotically between the two 
horizontal lines, fEU = 0 and fEU = f ∗

EU∞
= 1∕

�
1 +

√
�

�2

 . Similarly, the projection on the 
logCa = −8 plane attains a smooth, half-U shaped, bilinear curve, delimited by two mutu-
ally perpendicular asymptotes, fEU = 0 and log r = log r∗

∞
= −0.5 log � . Α set of three or 

four parameters may be used to describe, at an adequate level of approximation the particu-
lar S-shape projection. Furthermore, we may normalize the S-shape expression—associ-
ated with any particular two-fluid system—with the corresponding value of the maximum 
attainable efficiency (a n/w fluid system property) and, in doing so, we may also scale the 
Ca values, conventionally defined by Eq. (2), to a universal, system-reduced capillary num-
ber, defined as CaR =

(
Ca

C

)1∕z

 , with parameters C and z infusing the combined effects of 
wettability and viscosity ratio of the two fluid/porous medium system (see Valavanides 
2018b, Eq. (54)).

In such case, all the S-shape curves, pertaining to the same porous medium but with 
different viscosity ratios, are expected to collapse into a single, normalized S-shape, identi-
cal to the S-shape pertaining to the system with equal viscosities, � = 1 , as described in 
the same paper. This way the combined effect of the two bulk viscosities (normalized by 
the effect of the viscosity ratio) is decoupled from the combined effects of wettability and 
pore network geometry. The resulting normalized expression of the S-shape function could 
serve as the “phenotype” of the pore network for a particular wettability.

Τhe previous diagrams may be integrated into a universal relative permeability and 
energy efficiency diagram for fully developed flow in pore networks. Two diagrams, per-
taining to indicative cases, with viscosity ratio values, � = 0.67 and � = 1.5 , are presented 
in Fig.  8. The diagrams cover a domain of flow conditions for −8 ≤ logCa ≤ −3.6 and 
−2 ≤ log r ≤ 2 . Note, the diagrams are drawn from analytical expressions derived in the 
previous sections.

Plots of the relative permeability values as a function of log r are presented as tra-
jectory curves for 5 fixed-Ca values, log ai ∈ {−8,−7,−6,−5,−4} . These trajecto-
ries are the intersections of the 5 fixed-Ca planes with the relative permeability sur-
faces, krn(Ca, r) and krw(Ca, r) , plotted in Fig.  6. The relative permeability plots for 
the non-wetting phase are drawn in red color and those drawn for the wetting phase 
in blue color, in consistency with the coloring of the parent surfaces. Markers of dif-
ferent shape/size have been assigned to each fixed-Ca pair of relative permeability 

(33)fEU(r
∗(Ca))

Ca→∞
⟶ f ∗

EU∞
= 1∕

�
1 +

√
�

�2
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curves. The five cross-over relative permeability values at the crossings of the cor-
responding five pairs of relative permeability curves, are indicated with larger balls 
(in gray color), while the entire set of cross-over relative permeability values, is 
depicted by the black dashed, S-shape plane curve. All cross-over points corre-
spond to the same flow rate ratio value, rx; this is why the S-shape curve lays on the 
r = rx = 1∕� plane. For the indicative n/w viscosity ratio values, the fixed-r planes 
correspond to log rx = − log 0.67 = 0.1739 on the top diagram (� = 0.67) and to 
log rx = − log 1.5 = −0.1760 on the bottom diagram (� = 1.5) . The projections of the 
cross-over relative permeability surfaces on the two reference planes are depicted with 
gray, dashed lines; in particular, with a straight, thin gray line on the logCa = −8 plane 
and an S-shape, dash gray line on the log r = 2 plane.

Plot of the energy efficiency as a function of the flow conditions, fEU(Ca, r) , 
Eq.  (30), is shown by the gray color scale 3D surface. Contour lines and mesh lines 
correspond to the scaling and grid lines on the reference planes. The ridge of the 
energy efficiency surface, indicating the local maxima attained at critical flow con-
ditions, is delineated by the continuous, thick red curve. The intersections with the 
fixed-Ca planes, logCai ∈ {−8,−7,−6,−5,−4} , are marked with violet ball markers. 
The projection on the z = 0 reference plane delineates with the red curve the critical 
flow conditions, r∗(Ca) ; it is partly visible as it is obscured by the fEU surface.

Projections on the logCa = −8 and log r = 2 reference planes are also plotted to 
depict the inherent configuration characteristics of the maximum energy efficiency 
curve. The projection on the z = f ∗

EU∞
= 1∕

�
1 +

√
�

�2

 plane, depicted by the red, 
dash–dotted plane curve provides a clearer layout of the locus of critical flow condi-
tions. Again, as in the diagrams in Fig.  7, the drop lines form a cylindrical curtain, 
starting from the ridge of the fEU = (Ca, r) surface up to the ‘ceiling of efficiency’ (at 
the maximum level of attainable efficiency). The corresponding nominal values are: 
f ∗
EU∞

= 1∕
�
1 +

√
0.67

�2

= 0.3024 on the top diagram, and f ∗
EU∞

= 1∕(1 + 1.5)2 = 0.160 
on the bottom diagram. These limits are asymptotically reached at the corresponding 
nominal asymptotic values, r∗

∞
 , of the critical flow  rate ratio at very high-capillary 

number (fully viscous flow, Ca → ∞ ), given by log r∗
∞
= log

�
1∕

√
�

�
 , i.e., 

log r∗
∞
= −0.5 × log 0.67 = 0.0870 and log r∗

∞
= −0.5 × log 1.5 = −0.0880 , for the top 

and bottom diagram, respectively.
The energy efficiency map of any two-fluids /porous medium flow system in Fig. 7 

or Fig. 8, provides a normative framework for assessing /evaluating the viscous/capil-
lary character of any flow within that system, based on the imposed values of capillary 
number and flow rate ratio.

This type of diagram is an improved version of the classical phase diagram, pro-
posed by Lenormand et al. (1988) and Lenormand (1990), coarsely depicting the flow 
structure map in terms of the capillary number and the viscosity ratio, as well as its 3D 
extension proposed by Ewing and Berkowitz (2001) to account for gravity effects.
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6 � Conclusions and Discussion

A generic form of flow rate dependency of the relative permeabilities for steady-state, fully 
developed two-phase flow in porous media is proposed. The functional form is the result of 
a two-stage derivation, i.e., systematic simulations and data fitting, extending over a broad 
range of flow conditions. The latter is expressed in terms of the capillary number, Ca, and 
the flow rate ratio, r. A variety of two-fluid viscosity ratio systems, � , are examined.

In the first stage, virtual experiments of steady-state, fully developed, concurrent flow of 
two immiscible fluids within a homogeneous model pore network were performed imple-
menting the DeProF model algorithm. The model pore network corresponded to a virtual 

Fig. 8   Universal, energy efficiency maps describing steady-state fully developed two-phase flow in pore 
networks for two values of n/w viscosity ratio, � = 0.67 (top) and � = 1.5 (bottom). The insert is the first 
impression of a universal diagram (adapted from Valavanides 2018b)
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core of infinite length in the absence of any end-effects. The systematic simulations exam-
ined an extended range of flow conditions, spanning 5 orders of magnitude over the capil-
lary number, Ca, and the flow  rate ratio, r, and for a variety of viscosity ratio systems, 
� . The main product of the simulations was a dense matrix of reduced pressure gradient 
values for different values Cai and rj , xij

(
Cai, rj

)
 . The reduced pressure gradient measures 

the relative increase in the pressure gradient of the mixed flow against that of a saturated 
flow of the non-wetting phase at the same flow rate (superficial velocity). By definition, 
in fully developed flow conditions, the reduced pressure gradient is equal to the inverse of 
the relative permeability of the non-wetting phase. The system properties associated with 
interface/capillary phenomena, i.e., interfacial tension, wettability (dynamic advancing and 
receding contact angles) and pore network structure, were kept fixed. In that context, it was 
possible to observe the effects of viscosity, independently from the effects of capillarity. 
Apart from reduced pressure gradient charts, the systematic simulations produced a com-
plete description of the interstitial flow structure.

In the second stage, combining the essential physics underlying the process with data 
fitting on the charts produced by the simulations, we derived a universal functional form 
to describe the dependence of the reduced pressure gradient, x, in terms of the capillary 
number, Ca, and the flowrate ratio, r. The proposed functional form extends over orders of 
magnitude in Ca and r, and it is expressed as

whereby the effects of capillarity and viscosity are partitioned in two decoupled terms. The 
linear term describes the fractional contribution of the bulk viscosities through the N/W 
viscosity ratio, � . The nonlinear term, A(logCa) , accounts the contribution of capillarity at 
different flow conditions. That nonlinear term is described as the Intrinsic Dynamic Capil-
lary Pressure function. The relative contributions of those two terms depend on the flow 
conditions. The flow conditions that minimize the total energy dissipation per unit of non-
wetting phase flow rate are called critical flow conditions.

The functional form of the flow dependency of relative permeabilities is recovered 
analytically from the reduced pressure gradient function, by implementing the conven-
tional formulation of the phenomenological fractional Darcy law for fully developed flow, 
Eqs. (11). The functional form of the energy efficiency and the locus of critical flow condi-
tions can also be derived analytically.

The Intrinsic Dynamic Capillary Pressure curve, formed by the ensemble of reduced, 
dynamic capillary pressure values at different flow conditions, accounted by A(logCa) in 
Eq. (34), describes the transition of the capillarity effects on the average flow, between the 
extremities of the domain of flow conditions, i.e. from capillarity-dominated flows to vis-
cous flows. The IDCP curve is unique for every flow system, and, in that context, it can be 
used as the identity of the system. Moreover, the IDCP curve is directly related to the phys-
icochemical properties of the two-fluid system and its affinity to the pore network charac-
teristics associated with dynamic capillary phenomena (geometry, topology, wettability).

One of the potential applications of the proposed scaling is in SCAL. That needs 
to be considered on the basis of established fully developed flow conditions and end-
effects. The DeProF model is built around the equality of pressure gradients in both 
phases. That condition is attained when fully developed flow is in place. That is not 
a condition always attained in SCAL measurements, as evolution of the interstitial 
flow depends on the structure of the pore network, the wettability of the fluid system 
and the flow conditions (the intensity of the co-injection). In general, end-effects are 

(34)x(Ca, r) = A(logCa) + �r
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pronounced when the role and effects of capillarity-associated phenomena are not sup-
pressed by viscous resistances. The proposed methodology can be applied in SCAL but 
the results will be conditionally biased by end-effects. Yet, implementing a few checks, 
some of these simple, e.g., on the equality between imposed flow rate ratio and meas-
ured mobility ratio, and some a bit more complicated, e.g., energy efficiency vs flow 
conditions, we may detect the presence of end-effects. We have seen that capability in 
on-going research (Valavanides et  al. 2020; Karadimitriou et  al. 2023), whereby the 
effective IDCP functional form has been recovered implementing a similar methodology 
in fitting the ex-core measurements. Yet, the missing part(s) of the puzzle is on evaluat-
ing the extent/severity of end-effects and/or being able to cope with end-effects in un-
biasing the ex-core measurements to get a concise and accurate (trustworthy) relative 
permeability map.

Another interesting application of the proposed approach is in revealing the structure 
of the interstitial flow. A convincing paradigm on how the IDCP curve may be used as a 
forensic tool in revealing the structure of the interstitial flow is the systematic SCAL study 
performed on a core of natural Clasach sandstone (Valavanides et al. 2020). An analysis 
of the measured relative permeabilities, similar to that described in Sect.  4.3 revealed a 
sharply decreasing intrinsic dynamic capillary pressure function, A(logCa) , over moder-
ate- to/high-Ca flow conditions. That seemed to be contradicting the smooth, asymptotic 
transition to zero (logA → 0) depicted in Fig.  3a. The sharp decrease in A at moderate/
high-Ca flow conditions can be associated with a sharp reduction in capillary resistances. 
This could be attributed on progressive eradication of n/w menisci contacting the pore 
walls. And this could only happen if the small disconnected fluidic elements of the non-
wetting phase (ganglia and large drops) break-up into tiny droplets and the immiscible flow 
of larger drops mutates into some kind of emulsion flow. Reviewing the conditions of the 
experiments, it turned out that the suspected emulsification was in fact the result of add-
ing surfactant to suppress the interfacial tension in order to impose flow conditions at very 
high-Ca values. The particular structure of the intrinsic dynamic capillary pressure curve, 
revealed the onset of emulsification at high-Ca flowrates, an intrinsic flow characteristic, 
from ex-core measurements. The paradigm indicates the forensic capabilities of the IDCP 
curve.

Overall, the presented flow analysis is based on a set of appropriately reduced variables, 
eliminating redundancies, yet without compromising the specificity associated with the 
description of the process and/or the flow system. The derived analytical expressions of 
flow rate dependency fit surprising well the predicted values from systematic simulations 
with the DeProF model. They also provide an additional proof of consistency with respect 
to the existence of the universal relative permeability and energy efficiency map proposed 
by Valavanides (2018b), based on an energy analysis of the flow process, from first princi-
ples, phenomenological observations and independently of modeling assumptions.

In addition, generalized specific characteristic invariants, pertaining to the two-fluid 
and porous medium flow system, were revealed: the locus of Critical Flow Conditions, 
the locus of cross-over relative permeability conditions, as well as the Intrinsic Dynamic 
Capillary Pressure curve. All of these can be used as flow system identities at different 
degrees of specificity, i.e., as “genotype” of the two-fluid/porous medium flow system or 
“phenotype” of the porous medium. This could be a strong tool in developing flow system- 
or rock-typing methodologies and techniques.

Moreover, the ability to handle a functional form of the relative permeabilities, account-
ing for a mechanistic, flow rate dependency, may improve the specificity of field-scale sim-
ulators, or increase the efficiency in machine learning interventions.
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Future research should address how capillarity-related system characteristics, in particu-
lar dynamic wettability or network geometry, may affect the loci of Critical Flow Con-
ditions and cross-over relative permeabilities or the Intrinsic Dynamic Capillary Pressure 
curve. In that context, sensitivity analysis needs to be run on virtual systems, model pore 
networks or natural cores. Another potential application is in assessing the extent of end-
effects in core analysis from ex-core measurements.

Appendix

I. Non‑fully Developed Versus Fully Developed Flow Conditions

Returning to the conventional Darcy formulation for fractional flows, Eq. (1), apart from 
the flowrates and relative permeabilities, the pressure gradients are also indexed to account 
for different values along the wetting and non-wetting phases. In general, pressure differ-
ences build-up across interfaces separating disconnected fluidic elements of the non-wet-
ting phase from the surrounding, connected wetting phase. The sum of the pressure dis-
continuities across an ensemble of menisci is expressed as the effective (measured) local 
capillary pressure between the two phases.

When pressure averages are considered over representative elementary volumes (REVs) 
for the wetting phase, p̃w , and the non-wetting phase, p̃n , at any cross-section perpendicu-
lar to the flow, we may write the definition of the average capillary pressure, p̃c,

If the values of the REV flow variables do not change along the stream tube, then fully 
developed flow has been established. REV flow variables comprise integral or locally aver-
aged values, e.g., superficial velocities, saturation, as well as constituent variables describ-
ing the flow structure, e.g., volumetric fractions of the so-called constituent flows; these 
comprise connected pathway flow, ganglion dynamics flow and emulsion-type flows, or, 
size distributions (moments) of fluidic elements (ganglia and droplets). An indicative 
example of the mixing of constituent flows is depicted by the inset snapshot in Fig. 1, taken 
from the Avraam and Payatakes experiments (1995) in 2D model pore networks. In gen-
eral, fully developed flow conditions are established when steady-state two-phase flow is 
maintained along a REV stream tube within a homogeneous pore network. Τhe stream tube 
should be long enough to allow for an “entry length” for the flow structure to develop under 
dynamic equilibrium to a fully developed structure. Exhibits of flow transition from non-
fully developed to fully developed structures can be found in Aursjo et al. (2014) (Fig. 7), 
whereby two-phase flows within long Hele-Shaw bead packs have been studied. A simi-
lar trend is observed in ganglion dynamics simulations, whereby the evolution of different 
ganglion size distributions downstream entry ports resulted in the same fully developed 
distribution (Fig. 14 in Valavanides et al. 1998).

When the flow is fully developed, the disparity between the pressure values in the two 
phases, the capillary pressure, Eq. (35), remains constant along the flow direction,

and both phases share the same macroscopic pressure gradient, i.e.,

(35)p̃c(z̃) ≡ p̃n(z̃) − p̃w(z̃)

(36)
Δp̃c

Δz̃
= 0
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and consequently a common macroscopic pressure gradient, (Δp̃∕Δz̃) , is established.
Establishment of fully developed flow is a critical problem in special core analysis 

(SCAL) as the measured values of the physical quantities (pressure gradients, saturation 
and flowrates), that are necessary to evaluate the true phenomenological relation at the 
REV scale, should not be biased by the, so called, “end-effects”. The latter may be sub-
stantial or not, depending on the extent of the non-fully developed entry-flow zone, that, 
on its turn, depends on the physicochemical properties of the two-fluid and porous medium 
flow system and the imposed flow conditions. In a nutshell, end-effects—if substantial—
distort the equivalence between the laboratory examined core flow and the flow within a 
REV in-situ the formation. In that context, end-effects distort—to a degree—the trueness 
of the REV constitutive relations, and the specificity of any associated simulations. The 
effect tends to be significantly reduced, or even negligible, when relatively higher flowrates 
are imposed, as the non-fully developed length is significantly reduced. In that sense, at 
higher flow rates, saturation gradients along the core are significantly reduced and satura-
tion attains some uniform value along the core.

II Determination of the Roots of the Cubic Eq. (25)

We will derive the roots of the cubic Eq. (25). Without any loss of generality we transform 
logCa = x and log r = y , to get a simpler form as

where C3,C0 > 0, x0 < 0,
The discriminant of the cubic equation,

is positive when

and there are 3 distinct real roots (irreducible case). Therefore, we must avoid Cardano’s 
formulae since, in this case, we cannot express the roots in terms of real radicals.

For = x0 , we get

For x ≠ x0 , we implement the transformation,

to obtain the cubic equation in reduced form,

(37)
(
Δp̃

Δz̃

)

n

=

(
Δp̃

Δz̃

)

w

=
Δp̃

Δz̃

(38)C3y
3 +

(
x − x0

)
y2 − C0 = 0

(39)D = 4C0

(
x − x0

)3
− 27C2

0
C2
3

(40)D > 0 ⇒ x > x0 +
3
3
√
4

3

�
C0C

2
3

(41)y
�
x0
�
= 3
√
C0∕C3

(42)y = t −
x − x0

3C3
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where

and

Since < 0 , we can follow Vieta’s method (1591) to solve Eq. (12) for x ≠ x0.
In general, if we set

we obtain three real roots,

provided that

On the other hand, if

and

then, the reduced cubic equation has a single root, given by

Straightforward calculations lead to the following general expression,

or

(43)t3 + pt + q = 0

(44)p = −
1

3

(
x − x0

C3

)2

< 0

(45)q = −
C0

C3

+
2

27

(
x − x0

C3

)3

(46)t = 2 cos �
√
−p∕3

(47)tk = 2

√
−p

3
cos

[
1

3
arccos

(
3q

2p

√
3

−p

)
−

2k�

3

]
, k = 0, 1, 2

(48)4p3 + 27q2 ≤ 0

(49)4p3 + 27q2 > 0

(50)p < 0

(51)t0 = −2
|q|
q

√
−p

3
cosh

[
1

3
arccos h

(
3|q|
−2p

√
3

−p

)]

(52)y(x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

x0−x

3C3

�
1 + 2 cosh

�
1

3
arccos h(A)

��
, x − x0 < 0

3

�
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1 − 2 cos
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1

3
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where

and

Now we may recover the solution to the original Eq. (25) by reverting x = logCa and 
y = log r , to get the expression of Eq. (26)
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