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Abstract
The accuracy and robustness of numerical models of geologic CO2 sequestration are almost 
never quantified with respect to direct observations that provide a ground truth. Here, we 
conduct CO2 injection experiments in meter-scale, quasi-2D tanks with porous media repre-
senting stratigraphic sections of the subsurface, and compare them to numerical simulations 
of those experiments. We evaluate (1) the value of prior knowledge of the system, expressed 
in terms of ex situ measurements of the tank sands’ multiphase flow properties (local data), 
with respect to simulation accuracy; and (2) the forecasting capability of history-matched 
numerical models, when applied to different settings. We match three versions of a numeri-
cal simulation model—each with access to an increasing level of local data—to a CO2 injec-
tion experiment in Tank 1 ( 89.7 × 47 × 1.05 cm). Matching is based on a quantitative com-
parison of CO2 migration at different times from timelapse image analysis. Next, use the 
matched models to make a forecast of a different injection scenario in Tank 1 and, finally, a 
different injection scenario in Tank 2 ( 2.86 × 1.3 × 0.019 m), which represents an altogether 
different stratigraphic section. The simulation model can qualitatively match the observed 
free-phase and dissolved CO2 plume migration and convective mixing. Quantitatively, simu-
lations are accurate during the injection phase, but their concordance decreases with time. 
Using local data reduces the time required to history match, although the forecasting capa-
bility of matched models is similar. The sand–water–CO2(g) system is very sensitive to effec-
tive permeability and capillary pressure changes; where heterogeneous structures are pre-
sent, accurate deterministic estimates of CO2 migration are difficult to obtain.

Keywords CO2 storage · Geologic carbon sequestration · Two-phase flow · Numerical 
simulations · History matching · FluidFlower

1 Introduction

CO2 capture and subsequent geologic carbon sequestration (GCS) is a climate-change miti-
gation technology that can be deployed at scale to offset anthropogenic CO2 emissions dur-
ing the energy transition  (Marcucci et  al. 2017; European Academies Science Advisory 
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Council (EASAC) 2018; Celia 2021; Intergovernmental Panel on Climate Change (IPCC) 
2022). In GCS, reservoir simulation, including coupled flow and geomechanics, is the pri-
mary tool used to assess and manage geologic hazards such as fault leakage (e.g., Caine 
et al. 1996; Ingram and Urai 1999; Nordbotten and Celia 2012; Zoback and Gorelick 2012; 
Juanes et al. 2012; Jung et al. 2014; Vilarrasa and Carrera 2015; Saló-Salgado et al. 2023) 
and induced seismicity (e.g., Cappa and Rutqvist 2011; Zoback and Gorelick 2012; Juanes 
et al. 2012; Ellsworth 2013; Verdon et al. 2013; Alghannam and Juanes 2020; Hager et al. 
2021). In response to the inherent uncertainties associated with modeling and simulation of 
CO2 storage (Nordbotten et al. 2012), building confidence in the forecasting capabilities of 
simulation models requires calibration (or, synonymously, history matching), a process that 
involves updating the reservoir model to match field observations as they become avail-
able (Oliver and Chen 2011; Doughty and Oldenburg 2020).

History matching is an ill-posed inverse problem (Oliver and Chen 2011). This means 
that multiple solutions (i.e., parameter combinations) exist that approximate the data 
equally well. Automated techniques such as Markov chain Monte Carlo, randomized maxi-
mum likelihood or ensemble-based methods can be used to quantify uncertainty in history-
matched models, especially in combination with surrogate models to reduce forward model 
computational time  (see Aanonsen et  al. 2009; Oliver and Chen 2011; Jagalur-Mohan 
et al. 2018; Jin et al. 2019; Liu and Durlofsky 2020; Santoso et al. 2021; Landa-Marbán 
et al. 2023, forthcoming, and references therein). In practice, however, it may be difficult 
to ensure that the chosen simulation model provides the best possible forecast. This is due 
to different subsurface conditions, the inability to include all sources of uncertainty in the 
models, incomplete field data and limited time for history matching.

In the laboratory, intermediate-scale ( ∼meter) experiments have been used to study the 
physics of petroleum displacement (e.g., Gaucher and Lindley 1960; Brock and Orr 1991; 
Cinar et al. 2006) and contaminant transport (e.g., Silliman and Simpson 1987; Wood et al. 
1994; Lenhard et  al. 1995; Fernández-García et  al. 2004). Similar 2D and 3D flow rigs 
have recently been applied to CO2 storage, providing a link between core-scale measure-
ments and field observations:

Kneafsey and Pruess (2010) found the impact of convective dissolution to be signifi-
cant, using a page-size Hele–Shaw cell and numerical simulations. Neufeld et al. (2010) 
studied the scaling of convective dissolution and found it to be an important mechanism 
in the long-term trapping of injected CO2 in an idealized site. Wang et al. (2010) used a 
3D setup to investigate the ability of electrical resistivity tomography to identify localized 
leaks. Trevisan et al. (2014, 2017) focused on the impact of structural and residual trap-
ping. In homogeneous sands, they found that previous trapping models, such as the Land 
(1968) model, can approximate the residually trapped gas saturation ( R2 > 0.6 ). Studying 
an heterogeneous aquifer characterized by a log-normal distribution of six different sand 
facies, they report that trapping efficiency increased significantly due to structural trapping. 
A strong control of sand heterogeneity on upward migration of CO2 was also found by Las-
sen et al. (2015). Krishnamurthy et al. (2019, 2022) devised a novel technique to automate 
the process of beadpack/sandpack deposition and generate realistic depositional fabrics; 
they concluded that grain-size contrast and bedform architecture significantly impact CO2 
trapping. Subsequently, Ni et  al. (2023) presented modified invasion-percolation simula-
tions and reported that bedform architecture can impact CO2 saturation if enough grain-
size contrast is present. Askar et  al. (2021) used a ∼8-m-long tank to test a framework 
for GCS monitoring of CO2 leakage. These studies employed homogeneous glass beads or 
sands, or focused on heterogeneities and bedform architectures in the aquifer layer; struc-
tural complexity was minimal.
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In this paper, we use quasi-2D, intermediate-scale experiments of CO2 storage to evalu-
ate, quantitatively, the forecasting capability of history-matched simulation models against 
well-defined spatial data. An attempt was made to recreate realistic basin geometries, 
including stacking of storage reservoirs, faults, caprock and overburden. We simulate 
each of the three presented experiments with three versions of a numerical model, each 
with increasing access to local petrophysical measurements. These different versions are 
denoted Model 1 ( M1 ), Model 2 ( M2 ) and Model 3 ( M3 ). This allows us to assess (1) the 
value of local information of the system, expressed in terms of sand petrophysical meas-
urements, during history matching, and (2) transferability or forecasting capability of our 
matched simulation models, when tested against a different experiment. The term con-
cordance is used to evaluate agreement between experiments and simulations (Oldenburg 
2018).

2  Physical Experiments

The physical experiments of CO2 injection are conducted using the FluidFlower rigs. These 
rigs are meter-scale, quasi-2D tanks with transparent Plexiglass panels designed and built 
in-house at the University of Bergen (Fig.  1). Here, we used two tanks, with dimensions 
89.9 × 47 × 1.05 cm and 2.86 × 1.3 × 0.019 m (referred herein to as Tank 1 and Tank 2, 
respectively). Different geologic settings are constructed by pouring unconsolidated sands 
with desired grain sizes into the water-saturated rigs. The rigs have multiple ports which allow 

Fig. 1  Overview of the FluidFlower rigs and porous media used in the physical experiments. a Medium 
FluidFlower rig (Tank 1). b Snapshot during sand pouring to build the porous medium used in Experiments 
A1 and A2 in Tank 1 (Haugen et al. 2023, this issue). c Front view of porous medium in Tank 1, with lith-
ologies in white and injector location shown with a red star. The length and height correspond to the porous 
medium. Note the fixed water table at the top. d Overview of the main FluidFlower rig (Tank 2), showing 
the back panel with sensor network. e Porous medium in Tank 2, used for Experiment B1, with lithologies 
in white. Location of injectors and Boxes A, B and C for analysis are shown with a red star and gray boxes, 
respectively. Length and variable height correspond to the porous medium
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flushing out fluids after a given CO2 injection, such that multiple injections can be conducted 
in the same setting. The location of the ports can be adjusted to accommodate different injec-
tion scenarios. A variety of techniques have been developed by UiB engineers in order to build 
complex structures such as folds and faults.

Below, we summarize the petrophysical measurements, experimental setup, geologic 
model/porous media construction and experimental schedule. Details on the conceptualization 
of the FluidFlower rigs and technical information are given in  Fernø et al. (2023, this issue) 
and Eikehaug et al. (2023, this issue), while the full description of the physical experiment 
in Tank 1 and ex situ measurements are provided by Nordbotten et al. (2022); Haugen et al. 
(2023, this issue). Further details on the experiment in Tank 2, as well as results of the interna-
tional benchmark study (IBS), are provided by Flemisch et al. (2023, this issue).

2.1  Sand Petrophysical Properties

Measurements on the employed Danish quartz sands were conducted using specialized equip-
ment to determine average grain size (d), porosity ( � ), permeability (k), capillary entry pres-
sure ( pe ) and drainage and imbibition saturation endpoints (denoted as connate water satu-
ration, Swc , and trapped gas saturation, Sgt ). The methodology is described by Haugen et al. 
(2023, this issue), and obtained values are provided in Table 1. Sands C, D, E and F are very 
well sorted, sand G is well sorted, and sand ESF is moderately sorted (Haugen et al. 2023, this 
issue). We verified that Darcy’s law is applicable in our system using the Reynolds number 
( Re):

where u is the fluid discharge per unit area, d the mean grain diameter, and � the kinematic 
viscosity of the fluid. From our simulation results, matched to experimental observations, 
max(Re) ≤ 1 , which ensures the applicability of Darcy’s law (e.g., Bear 1972).

(1)Re =
ud

�

Table 1  Petrophysical properties 
for used quartz sands, as obtained 
from local, ex situ measurements

Porosity and permeability are the average from two measurements for 
each sand, with a maximum difference between measurements of 0.02 
( � ) and estimated 20% uncertainty (k). Measured gas column heights 
for sands E-G were 0, so pe could not be directly measured. Experi-
mental error in pe , Swc and Sgt was not quantified. A detailed descrip-
tion of the methodology and petrophysical values is provided by Nord-
botten et al. (2022); Haugen et al. (2023, this issue)

Sand type d (std) (mm) � (−) k (D) pe (mbar) Swc Sgt

ESF 0.2 (0.11) 0.435 44 15 0.32 0.14
C 0.66 (0.09) 0.435 473 3 0.14 0.1
D 1.05 (0.14) 0.44 1110 1 0.12 0.08
E 1.45 (0.19) 0.45 2005 – 0.12 0.06
F 1.77 (0.31) 0.44 4259 – 0.12 0.13
G 2.51 (0.63) 0.45 9580 – 0.1 0.06
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2.2  Experimental Setup

The front and back panels of the FluidFlower are mounted on a portable aluminum frame, 
such that boundaries are closed on the sides and bottom (no flow). The top surface is open 
and in contact with fluctuating atmospheric pressure (Fig.  1). A fixed water table above 
the top of the porous medium was kept throughout the experiments conducted here. The 
experimental setup incorporates mass flow controllers to inject gaseous CO2 at the desired 
rate, and a high-resolution digital camera with time-lapse function (Haugen et al. 2023, this 
issue).

Experiments were conducted in 2021 and 2022 in Bergen (Norway) at room tempera-
ture ( ≈ 23 ◦ C) and ambient atmospheric pressure. Temperature changes were minimized as 
much as possible, but maintaining a constant temperature was not possible in the available 
laboratory space. The fluids and sands were set in the FluidFlowers using the following 
procedure: 

1. The silica sands are cleaned using an acid solution of water and HCl to remove carbonate 
impurities.

2. The FluidFlower rig is filled with deionized water.
3. Sands are manually poured into the rig using the open top boundary, in order to construct 

the desired porous medium.
4. A pH-sensitive, deionized-water solution containing bromothymol blue, methyl red, 

hydroxide and sodium ions is injected through multiple ports until the rig is fully satu-
rated. This enables direct visualization of CO2 gas (white), dissolved CO2 (yellowish 
orange to red), and pure water (dark teal).

5. 5.0 purity (99.999%) CO2 is injected as gaseous phase at the desired rate. CO2 is injected 
through dedicated ports directly into the rig (Fig. 1).

6. After the injection phase, injection ports are closed and CO2 migration continues.
7. Once the experiment is finished, the rig can be flushed with deionized water and the 

process can start again from step 4.

Full details on the fluids are given in Fernø et  al. (2023, this issue) and Eikehaug et  al. 
(2023, this issue). Below, we refer to the pH-sensitive solution in the rigs as “dyed water".

2.3  Porous Media Geometries

The geometries of the porous media used in this paper aim to recreate the trap systems 
observed in faulted, siliciclastic, petroleum-bearing basins around the world, given the geo-
metrical constraints of the FluidFlowers and manual sand pouring (Fernø et al. 2023; Eike-
haug et al. 2023, this issue). Features such as folds, faults and unconformities were built in 
both Tanks 1 and 2. The construction of faults, shown in Fig. 1b and detailed in  Haugen 
et al. (2023, this issue), requires a minimum effective “fault-plane” thickness; hence, our 
fault structures are thicker than natural faults with the same displacement  (Childs et  al. 
2009). Fine sands ( d ≈ 0.2 mm) are used to represent sealing or caprock formations.

The geometry in Tank 1 (Fig. 1c) contains three main high-permeability reservoirs (F 
sand). The bottom and middle F sand are separated by a seal (ESF sand), while the mid-
dle and top are separated by the C sand and connected through a higher permeability fault 
(refer to Sect. 2.1 for petrophysical properties). The fault separates the bottom section into 
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two compartments. The bottom and top F sand provide anticlinal traps for the CO2 to accu-
mulate in.

The geometry in Tank 2 (Fig. 1e) was specifically motivated by the structure of North 
Sea reservoirs and petroleum basins. From bottom to top, it contains two sections of 
decreasing-permeability reservoirs capped by two main sealing layers. A fault separates 
the bottom section into two compartments, while two faults separate the top section into 
three compartments. Each fault has different petrophysical properties: The bottom fault is a 
heterogeneous structure containing ESF, C, D, F and G sands, the top-left fault is an imper-
meable structure made of silicone and the top-right fault is a conduit structure containing 
G sand.

2.4  Experimental Injection Schedule

The injection schedules for experiments in Tanks 1 and 2 are provided in Table 2. Injection 
ports have an inner diameter of 1.8 mm.

3  Numerical Simulations

3.1  Model Setup

The isothermal simulations presented in this work were performed with the MATLAB 
Reservoir Simulation Toolbox, MRST (Krogstad et  al. 2015; Lie 2019; Lie and Møyner 
2021). Specifically, we used the black-oil module, which is based on fully implicit solvers 
with automatic differentiation, and assigned properties of water to the oleic phase, such 
that the gaseous phase ( CO2 only) can dissolve in it. Vaporization of water into the gas 
phase and chemical reactions are not considered, because they are not primary controls on 
fluid migration for our operational setup and analysis time.

Table 2  Schedules for the three 
CO

2
 injection experiments 

simulated in this work

IR is injection rate, while Ii denotes injector (port) number. A five-min-
ute ramp-up and ramp-down was applied in Experiments A1 and A2 
in Tank 1. Total duration of conducted experiments and simulations 
is 48 h (A1), 5 h (A2) and 120 h (B1). Location of injection wells is 
provided in Fig. 1

Experiment A1 A2 B1

IR (ml/min) t (hh:mm:ss) IR t IR t

0.1 ( I1) 00:00:00 0.1 ( I1) 00:00:00 10.0 ( I1) 00:00:00
2.0 00:05:00 2.0 00:05:00 10.0 05:00:00
2.0 00:50:00 2.0 04:43:44 0.0 05:00:01
0.0 00:55:00 0.0 04:48:33 10.0 ( I2) 02:15:00
0.1 ( I2) 01:09:11 0.0 05:00:00 10.0 05:00:00
2.0 01:14:11 0.0 05:00:01
2.0 02:29:11 0.0 120:00:00
0.0 02:34:00
0.0 48:00:00
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In addition to structural and dissolution trapping, we also considered residual trap-
ping  (Juanes et  al. 2006) to be consistent with local measurements showing nonzero 
trapped gas saturation (Sect. 2.1). This is achieved through hysteretic relative permeability 
curves for the nonwetting (gas) phase (see Sect. 3.2). Our implementation in MRST fol-
lows ECLIPSE’s technical description (Schlumberger 2014), and Killough’s (1976) model 
is used to compute the scanning curves (Saló-Salgado et al. 2023, forthcoming). Physical 
diffusion was also included through the addition of a diffusive flux term with a scalar, con-
stant coefficient in the computation of the total CO2 flux (Bear 1972).

The simulator requires very small time-steps (seconds to minutes) due to the buoyancy 
of CO2 at atmospheric conditions and high sand permeabilities (Table  1). Linear solver 
time was reduced by means of AMGCL (Demidov and Rossi 2018; Lie 2019), an exter-
nal, pre-compiled linear solver. The greatest challenge was the convergence of the nonlin-
ear solver, which required many iterations and time-step cuts. This is consistent with the 
groups working in the FluidFlower international benchmark study (Flemisch et al. 2023, 
this issue).

Next, we describe the computational grids for experiments in Tanks 1 and 2, PVT prop-
erties and boundary conditions. Petrophysical properties are specific of each model version 
and are detailed in Sect. 3.2.

3.1.1  Computational Grids

A front panel image of the porous medium was used to obtain layer contact coordinates 
through a vector graphics software (Fig.  2a). These contacts were then imported into 
MATLAB to generate the computational grids using the UPR module (Berge et al. 2019, 
2021) (Fig. 2b, d). The grids were generated in 2D and then extruded to 3D (using a single 
cell layer) to account for thickness and volume. Note that, in Tank 1, where the porous 

Fig. 2  Simulation grids overview. a Front-panel view of Tank 1, where the layer contacts have been high-
lighted in white. b Front view of simulation grid for experiments in Tank 1, with lithologies indicated and 
colored based on petrophysical properties (see Sect.  3.2). Location of injection wells is shown in red. c 
Thickness map of simulation grid for experiments in Tank 2. d Front view of simulation grid for experi-
ments in Tank 2, with lithologies indicated and colored based on petrophysical properties. Location of 
injection wells is shown in red
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medium has dimensions of 89.7 × 47 × 1.05 cm, the thickness (space between the front and 
back panels) is constant (10.5 mm). Tank 2, which is significantly larger (porous medium 
dimensions 2.86 × 1.3 × 0.019 m), has a thickness of 19 mm at the sides; however, it varies 
towards the middle due to forces exerted by the sand and water, to a maximum of 28 mm. 
A thickness map obtained after initial sand filling was used to generate our variable-thick-
ness mesh via 2D interpolation (Fig. 2c). Also, the top surface of the porous medium is not 
flat (height = 130 ± 3 cm).

Our composite Pebi grids  (Heinemann et  al. 1991) have a Cartesian background and 
are refined around face constraints (contacts and faults) as well as cell constraints (injec-
tion wells) (Berge et al. 2019, 2021). We generated multiple grids to test the finest grid we 
could afford to simulate Experiment B1 in Tank 2 with. Our grid has a cell size h ≈ 5 mm 
and 151,402 cells (Fig. 2d). The grid used for Tank 1 has a similar cell size ( h ≈ 4 mm 
and 27,200 cells), which was chosen to reduce grid-size dependencies when applying our 
matched models to Experiment B1.

3.1.2  PVT Properties

Consistent with experimental conditions, our simulations are conducted at atmospheric 
conditions ( T = 25 C), where the CO2 is in gaseous state. We employed a thermodynamic 
model based on the formulations by Duan and Sun (2003) and Spycher et al. (2003); Spy-
cher and Pruess (2005) to calculate the composition of each phase as a function of p, T. 
The implementation for a black-oil setup is described in Hassanzadeh et al. (2008) and ref-
erences therein. Given the boundary conditions (Sect. 3.1.3) and dimensions of our experi-
mental porous media, pore pressure changes ( Δp ) are very small in our simulations (max 
Δp ≪ 1 bar). Hence, the fluid properties remain similar to surface conditions, where the 
water and CO2 have, respectively, a density of 997 and 1.78 kg/m3 , and a viscosity of 0.9 
and 0.015 cP. The maximum concentration of CO2 in water is ≈ 1.5 kg/m3.

3.1.3  Initial, Boundary and Operational Conditions

Our porous media are fully saturated in water at the beginning of CO2 injection. No-flow 
boundary conditions were applied everywhere except at the top boundary, which is at 
constant pressure and includes a fixed water table a few cm above the top of the porous 
medium. Injection is carried out via wells completed in a single cell at the correspond-
ing coordinates. The diameter of injection wells is 1.8  mm in both Tank 1 and Tank 2, 
which operate at a constant flow rate (see Sect. 2). The simulation injection schedule fol-
lows the experimental protocol, provided in Table 2. Note that injection rates in our simu-
lations of Experiment A1 and A2 were slightly adjusted during the calibration procedure, 
as explained in Sects. 3.3 and 4.

3.2  Simulation Model

Three different model versions, denoted Model 1 ( M1 ), Model 2 ( M2 ) and Model 3 ( M3 ), 
are used throughout this study to evaluate the value of local data in forecasting subsurface 
CO2 migration. Each successive model was constructed based on access to an increasing 
level of local data, with M1 having access to the least data and M3 having access to the most 
data. The model-specific parameters are limited to the following:
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• Petrophysical properties (porosity, permeability, capillary pressure and relative perme-
ability), which depend on available local data and are described in this section.

• The molecular diffusion coefficient (D). Models 1–3 were calibrated using the same 
value, D = 10−9 m2/s. Additionally, Model 3 was also calibrated with D = 3 × 10−9 m2

/s. Accordingly, where required we denote Model 3 as M3,1 and M3,3.
• Injection rate. Experiments in Tank 1 were conducted at a very low injection rate 

( IR = 2 ml/min, see Table 2). Given that the mass flow controllers used in Tank 1 may 
be inaccurate for this rate, the injection rate was also modeled as an uncertain param-
eter. Model calibration was achieved with IR ∈ [1.6, 1.8] ml/min for all three models.

All other model characteristics, including the grid and numerical discretization, remain 
unchanged. Below, we describe the starting petrophysical values for each of our three sim-
ulation models. Note that the experimental geometry in Tank 1, used for matching, only 
contained sands ESF, C, E and F. Properties for sands D and G are also provided because 
they were required to simulate the experiment in Tank 2 (Fig. 1).

3.2.1  Model 1 ( M
1
)

For this model, local petrophysical data were limited to a measure of the average grain size 
(d; see Sect. 2.1 and Table 1). Hence, petrophysical properties were estimated from pub-
lished data in similar silica sands. Porosity was selected from data in Beard and Weyl (1973) 
and Smits et  al. (2010) for moderately to well-sorted sands. Permeability was obtained 
from fitting a Kozeny–Carman model to data in Beard and Weyl (1973) and Trevisan et al. 
(2014). The resulting equation has the form k = �d2�3 , where � equals 12,250 in our fit 
with d in mm and k in D. Obtained porosity and permeability values are provided in Table 3.

Capillary pressure curves were computed as described below: 

1. Capillary pressure measurements in a similar system were obtained from the litera-
ture. In this case, Plug and Bruining (2007) measured capillary pressure curves on the 
unconsolidated quartz sand-CO2-distilled water system at atmospheric conditions. We 
used their measurements on sand packs with an average particle size between 0.36 and 
0.41 mm, which are closest to the C sand in our experiments (Fig. 3a).

2. A Brooks and Corey (1964) model of the form pc = pe(S
∗
w
)
−

1

� was fitted to these data, 

where pe is the nonwetting phase entry pressure at Sw = 1 , � = 2.6 and S∗
w
=

Sw−Swc

1−Swc
 is 

Table 3  Initial porosity and 
permeability for Model 1

See main text for estimation details

Sand type d (mm) � (−) k (D)

ESF 0.2 0.37 25
C 0.66 0.38 290
D 1.05 0.40 930
E 1.45 0.39 1530
F 1.77 0.39 2280
G 2.51 0.42 5720
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the normalized water saturation with irreducible or connate water saturation Swc . This 
fit led to our reference curve, pcr (Fig. 3a).

3. The capillary pressure depends on the pore structure of each material, such that sands 
with different grain sizes require different pc curves. The capillary pressure variation 
can be modeled by means of the dimensionless J-function proposed by Leverett (Lev-
erett 1941; Saadatpoor et al. 2010): J(Sw) =

pc

� cos �

√
k

�
 , where � is the surface tension 

and � the contact angle. Assuming the same wettability and surface tension for different 
sand regions, and the same shape of the pc curve, the capillary pressure for any given 
sand ( pcs ) can be obtained from the reference curve as pcs(Sw) = pcr(Sw)

√
kr�s

ks�r

 (Fig. 3b).

Drainage relative permeabilities were obtained from CO2-water measurements by 
DiCarlo et al. (2000), who used water-wet sandpacks with 0.25 mm grain size. Specifically, 
we used the data reported in their Figs.  4 and 5 and fitted Corey-type functions  (Corey 
1954; Brooks and Corey 1964) of the form krw = (S∗

w
)a and krg = c(1 − S∗

w
)b (Fig. 3c). The 

fitted exponents a and b are 4.2 and 1.4, respectively, while c is 0.97. We assumed that the 

(a)

(c) (d) (e)

(b)

Fig. 3  Multiphase flow properties for Model 1. a Capillary pressure measurements and reference curve 
using a Brooks and Corey (1964) function. b Initial capillary pressure curves, computed from the reference 
curve using Leverett scaling (see main text). c Relative permeability data (squares and S5

w
 model) and our 

fitted Corey model. d, e Relative permeability of gas and water, respectively. The drainage curve is shown 
as a solid line, while the bounding imbibition curve is shown for sands ESF and G as a discontinuous line. 
No relative permeability hysteresis was considered for the water phase
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difference in relative permeability of different sands is the result of different irreducible 
water saturation only (see Fig. 3d,e). For each of our sands, Swc was obtained from Timur 
(1968) as Swc = 0.01 × 3.5

�1.26

k0.35
− 1 , where � is in percent and k in mD. This model was 

used to compute Swc for both the pc and kr curves.
In CO2 storage, secondary imbibition occurs where the water displaces buoyant gas at 

the trailing edge of the CO2 plume, disconnecting part of the CO2 body into blobs and gan-
glia and rendering them immobile (Juanes et al. 2006, and references therein). This means 
that the maximum water saturation that can be achieved during imbibition equals 1 − Sgt 
(the trapped gas saturation). Here, we used measurements in sandpacks from Pentland et al. 
(2010) to determine Sgt . In particular, we fitted Land (1968)’s model with the form 

S∗
gt
=

S∗
gi

1+CS∗
gi

 , where S∗
g
=

Sg

1−Swc
= 1 − S∗

w
 , Sgi is the gas saturation at flow reversal, and C is 

Land’s trapping coefficient with a value of 5.2 in our fit. Although Pentland et al. (2010) 
report that the best fit is achieved with the Aissaoui (1983) and Spiteri et al. (2008) models 
(cf. their Fig. 5), Land’s model was chosen here, given that most relative permeability hys-
teresis models build on this one (see next paragraph).

Nonwetting phase trapping contributes to irreversibility of the relative permeability 
and capillary pressure curves (hysteresis). Here, we accounted for this mechanism in the 
gas relative permeability due to its importance in subsurface CO2 migration (Juanes et al. 
2006, and references therein). In particular, we used Land’s (1968) model to compute the 
bounding imbibition curve (see Fig. 3d), where Sgt is obtained as described above, and Kil-
lough’s (1976) model to characterize the scanning curves. In Killough’s model, the scan-
ning curves are reversible, such that the relative permeability at Sg < Sgi no longer depends 
on the displacement type.

3.2.2  Model 2 ( M
2
)

This model had access to local, ex situ measurements of single-phase petrophysical 
properties, i.e., porosity and intrinsic permeability (see Sect.  2.1 and Table 1). Compar-
ing with Table 3, it can be seen that our estimation for Model 1 above was correct to the 
order of magnitude, but resulted in smaller values: porosity ∈ [85, 93]% and permeability 
∈ [53, 84]% of the local measurements.

Capillary pressures and relative permeabilities were obtained using the same procedure 
described above for Mdel 1. The slight differences with respect to the curves shown in 
Fig.  3b, d, e come from the porosity and permeability values used in the Leverett scal-
ing and to determine Swc , which were taken from Table 1 instead. The obtained curves for 
Model 2 are provided in Fig 4.

3.2.3  Model 3 ( M
3
)

This model was allowed access to all local, ex situ measurements (see Table  1). Initial 
porosity and permeability remain unchanged with respect to Model 2. Capillary pressure 
curves were obtained by scaling the reference curve described in Sect. 3.2.1 and shown in 
Fig.  3a using the measured entry pressure (Sect.  2.1). The scaling followed the model 
pcs(Sw) = pcr(Sw)

pe

per
 , where pe is the measured entry pressure for each sand, and per is the 

reference curve entry pressure. The obtained curves are shown in Fig. 5a.
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Relative permeabilities were computed following the same procedure described for 
Model 1 above. In this case, however, each sand type was assigned the measured Swc and 
Sgt values (see Table 1). This led to differences in both the drainage and imbibition curves, 
as shown in Fig. 5.

3.3  Model Calibration

Concordance between results obtained with each simulation model (M1 to M3) and the vali-
dation experiment in Tank 1 (A1, see Sect. 2.4) is quantitatively assessed by comparing the 
following quantities (see Fig. 6): 

Fig. 4  Multiphase flow properties for Model 2. b Initial capillary pressure curves, computed from the refer-
ence curve using Leverett scaling (see main text). b, c Relative permeability of gas and water, respectively. 
The drainage curve is solid, while the bounding imbibition curve is shown for sands ESF and G as a discon-
tinuous line. No relative permeability hysteresis was considered for the water phase

Fig. 5  Multiphase flow properties for Model 3. b Initial capillary pressure curves, computed according to 
the entry pressure determined experimentally (see Sect. 2.1). b, c Relative permeability of gas and water, 
respectively, according to the endpoints determined experimentally (Sect.  2.1). The drainage curves are 
solid, while the bounding imbibition curves are shown as a discontinuous line. The inset in b is a zoom 
view around the trapped gas saturation. No relative permeability hysteresis was considered for the water 
phase
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1. At t = 55 min (end of injection in port I1 ): Areas occupied by free-phase CO2 , and dyed 
water with dissolved CO2 in the bottom F reservoir.

2. At t = 154 min (end of injection in port I2 ): Areas occupied by free-phase CO2 , and dyed 
water with dissolved CO2 , in the middle and top F reservoirs.

3. Time at which the first finger touches the tank bottom.
4. Time at which the first finger (sinking from the top F reservoir) touches the middle C 

sand.

Experimental values for points 1–2 were obtained by computing areas from time-lapse images 
using a vector-graphics software. Careful visual inspection of color-enhanced images was 
used to distinguish between free-phase CO2 (white) and dyed water with dissolved CO2 (yel-
lowish orange to red), and to identify the times for points 3–4 above. Error in experimental 
values was estimated to be ≤ 5% , based on repeated measurements (points 1–2), and ∼ 5 min, 
based on timelapse image comparison (points 3–4). In the simulation models, the threshold 
gas saturation and CO2 concentration in water used to compute areas were Sg > 10−3 and 
CCO2

> 15%(Cmax
CO2

) ≈ 0.2 [kg/m3 ], respectively. The C value was chosen after a shape com-
parison of the region with dissolved CO2 . A smaller value of CCO2

> 0.05  [kg/m3 ] was 
selected to determine finger times for points 3 and 4 above. Figure 6 shows an overview of the 
experimental values for points 2 and 3, while Fig. 12 in Sect. 4.2 shows the full comparison 
with the history-matched/calibrated simulation models.

The experiment was conducted first. Afterwards, the process consisted of running Simula-
tion models 1 to 3, in parallel, starting with the petrophysical properties described in Sect. 3.2. 
Given the number of uncertain variables (four petrophysical properties for each lithological 
unit, the diffusion coefficient and the injection rate) and the time required to complete a single 
simulation, a manual history matching method was employed. At the end of each run, quanti-
ties 1–4 above were compared and one or more properties were manually changed based on 
observed concordance and domain knowledge. During the first few runs, only quantities 1 and 
2 above were compared. After obtaining a satisfactory areal match, petrophysical properties 
were further adjusted to match quantities 3 and 4.

Fig. 6  Front panel view of Tank 1, showing quantities and times for history matching of numerical mod-
els to Experiment A1. a shows areas with gaseous CO2 (free-phase, black contours) and dyed water with 
dissolved CO2 (green contours) at the end of injection. Location of injection ports is shown with a star. b 
shows the time and location where the first finger touches the bottom of the tank (white arrow), as well as 
the different lithological units. Note the three F reservoirs labeled ‘inf’, ‘mid’ and ‘sup’, mentioned in the 
text and other figures
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4  Results

In Sect.  4.1, we present the results of the first simulation of Experiment A1 with each 
model and property values detailed in Sect. 3.2. Then, we detail the calibration of simula-
tion models using Experiment A1 and assess the value of local data to history-match CO2 
storage simulation models (Sect. 4.2). Finally, we apply these matched models to Experi-
ment A2, analog for a longer injection in the same geology (Sect. 4.3.1), and to Experiment 
B1, analog for a larger-scale injection in a different geologic setting (Sect. 4.3.2). We use 
simulations of Experiments A2 and B1 to assess the forecasting ability of simulation mod-
els in different conditions.

4.1  Initial Model Results

Figure 7 shows the comparison between Experiment A1 and the first run with each model, 
at times indicated in Sect. 3.3. Numerous differences are evident between the experiment 
and Models 1 and 2, while Model 3 is much closer to the experiment. In particular, models 
1 and 2 overestimate the extent of CO2-rich brine and underestimate the amount of gaseous 
CO2 in all F reservoirs (refer to Fig. 6 for location). Model 3 approximates much better the 
areal extent of gaseous CO2 in all regions, as well as the CO2-rich brine in the middle and 
upper F reservoirs. Model 2 provides the closest finger migration times (points 3 and 4 in 
Sect. 3.3), although this was not evaluated in the first run, as discussed below.

Petrophysical properties for Models 1 and 2 were obtained from references in Sect. 3.2, 
which also used silica sands with similar grain sizes. However, despite the relatively homo-
geneous nature of our quartz sands, Model 3 is significantly more concordant. This result 
stems from natural sand variability and highlights the difficulty in establishing general, 

Fig. 7  Comparison between Experiment A1 in Tank 1 (left column) and first-run simulation results with 
Models 1–3. Color map in simulation plots refers to CO2 concentration in water, according to color bar. 
The white contours in simulation plots indicate Sg = 10−3 . a–d End of injection in port 1. e–h End of injec-
tion in port 2. i–l Time at which the first finger touches the tank bottom. m–p Time at which the first finger 
touches the middle C sand
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representative elementary volume-scale properties for porous media  (see, for instance, 
Hommel et al. 2018; Schulz et al. 2019, for a discussion on intrinsic permeability). Addi-
tionally, results in Fig.  7 highlight the need for conducting sand/rock-specific measure-
ments, even in the case of well-sorted, homogeneous sediments.

4.2  Manual History Matching and Value of Local Data

Figure 8 shows convergence of areas occupied by free gas ( Ag ) and water with dissolved 
CO2 ( Ad ), according to Sect. 3.3. Each iteration corresponds to a successive model with 
manually updated parameters, and the different F sand regions evaluated in each panel 
(a) to (f) are provided in Fig. 6. With the exception of Ad in the lower F sand, Model 3 is 
accurate since the beginning, and all areas were satisfactorily matched after four itera-
tions. Conversely, Models 1 and 2 were significantly off the experimental reference dur-
ing the first few iterations. Model 2, however, was accurate after five iterations, while 

Fig. 8  Convergence of areas occupied by free gas ( Ag , left column) and water with dissolved CO2 ( Ad , right 
column), during the calibration of Models 1–3 with Experiment A1. Ad includes area with gaseous CO2 
(see Fig. 6). Each iteration represents a new simulation run, and the experimental reference (E) is shown 
as a black line. Refer to Fig. 6 for region location, and to Sect. 3.3 for calibration procedure. a, b: Upper F 
sand. c, d: Middle F sand. e, f: Lower F sand
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Model 1 required seven iterations to give satisfactory areal estimates. The mean abso-
lute error (MAE) over the six areal quantities presented in Fig. 8 is evaluated in Fig. 9, 
where it can be seen that, while all models are accurate towards the end (MAE 
∈ [5 − 10] cm2 ), that required a sixfold improvement in Models 1 and 2, but only two-
fold in Model 3. As mentioned in Sect. 3.3, CCO2

> 15%(Cmax
CO2

) ≈ 0.2 [kg/m3 ] was used 
as threshold to determine areas. While the absolute values and error would change with 
a different CCO2

 threshold, we checked that the relative accuracy of our calibrated mod-
els does not with both CCO2

> 0.01 and 0.1 [kg/m3].
Agreement between simulations and experimental observations is readily seen in 

Fig. 10, where the 1:1 line indicates perfect concordance. The degree of concordance 
can be quantified by means of Lin’s concordance correlation coefficient (CCC)  (Lin 
1989; Oldenburg 2018), which, for N-valued observation (x) and model (y) vectors (the 
six areal quantities), is computed as:

Fig. 9  Convergence of mean 
absolute error over the six areal 
quantities measured during 
the calibration process. The 
error is computed with respect 
to experimental values. See 
Fig. 8 for areas measured, and 
refer to Sect. 3.3 for calibration 
procedure

Fig. 10  Concordance between successive model iterations and the experiment, based on six areal meas-
ures evaluated during the calibration. Lin’s CCC (Lin 1989) is shown in the key of each subplot, computed 
according to Eq. 2. a Model 1. b Model 2. c Model 3
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where x and y are the means, �2
x
 and �2

y
 the variances, and �xy the covariance, all calculated 

using 1/N normalization. Results in Fig.  10 show that model calibration results in very 
good concordance for all models (CCC ≥ 0.99).

Convergence of quantities 3 and 4 in Sect. 3.3, the times at which the first finger touches 
the rig bottom and the middle C sand, respectively, is provided in Fig. 11. These times were 
only evaluated after a satisfactory areal match for quantities in Fig. 8 was achieved. There-
fore, areas no longer change much in the last few iterations in Fig. 8. In Fig. 11, it can be 
seen that Models 2 and 3, which incorporated local intrinsic permeability measurements, 
were significantly closer to our experimental reference than Model 1. Initially, however, we 
observed that sinking of gravity fingers in the experiment was faster than our model values 
by a factor of ≈ 2 . A satisfactory match of all quantities evaluated was achieved after 11, 8, 
and 7 iterations for Models 1–3, respectively.

Overall, we find that Model 3, with access to local single-phase and multiphase flow 
properties, is closer to the experimental reference (i.e., more concordant) from the start. 
Model 1 started farthest and required significantly more effort for calibration. After the cal-
ibration process, all models achieve very good concordance (CCC ≥ 0.99 ), based on evalu-
ated quantities (Fig. 10). The calibration shown in Figs. 8, 9, 10, 11 employs D = 10−9 m2 /s 
in all model versions ( M1 to M3 ). Injection rates ( IR ) started at 2.0  ml/min for all three 
models and were 1.6 ml/min, 1.8 ml/min and 1.75 ml/min, respectively, at the end of the 
calibration. IR is slightly different because the goal was to obtain the best match with each 
model, considering IR to be an uncertain variable. In Sect. 4.3, the same IR is used to make 
forecasts with all three models.

Table  4 compares the starting and final (matched) key petrophysical variables for 
each model. The models were successfully calibrated by adjusting intrinsic permeability 
and the capillary pressure curves (same shape, but scaled to higher or lower pe ) only. It 
was found that CO2 migration was most sensitive to the properties of the F sand were 
most of the CO2 migration occurs, as well as the ESF seal, which structurally traps the 
CO2 plume. In our matched models, pe of ESF is about twice the measured value; this 
was required because the minimum saturation at which we can define pe and ensure 

(2)CCC =
2�xy

�2
x
+ �2

y
+ (x − y)2

Fig. 11  Convergence of times at which the first finger touches the bottom of the rig (a) and the middle C 
sand (b), during the calibration of Models 1–3 with Experiment A1. Refer to Sect. 3.3 for calibration pro-
cedure
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numerical convergence is Sg ≈ 10−4 . Reality, however, is closer to a jump in pc from 0 
to pe at an infinitesimally small Sg . Additionally, we found that concordance improved 
when using different values for the C and F sands in different model regions. In the 
case of the C sand, the explanation lies in the fault construction process, which may 

Table 4  Petrophysical properties 
for used quartz sands in 
Experiment A1

Methodology for local measurements is provided by Haugen et  al. 
(2023), while starting property modeling is described in Sect. 3.2. For 
each sand, measured (first row), initial (superscript i) and final (super-
script f) values for each of our models are shown. For sand C, the sec-
ond permeability value refers to the fault, if different from the rest. For 
sand F, the second permeability value refers to the middle F layer, if 
different from the rest. For Model 3, where property values are differ-
ent, M3,1 refers to the calibration with D = 10−9 m2 /s and M3,3 refers to 
D = 3 × 10−9 m2/s

Sand type / 
model

� (−) k (D) pe (mbar) Swc (−) Sgt (−)

ESF 0.435 44 15 0.32 0.14
M

i
1

0.37 25 31.4 0.09 0.1468
M

f
1

0.37 6 31.4 0.09 0.1468
M

i
2

0.435 44 25.6 0.09 0.1468
M

f
2

0.435 44 25.6 0.09 0.1468
M

i
3

0.435 44 15 0.32 0.14
M

f
3

0.435 15 30 0.32 0.14
C 0.435 473 3 0.14 0.1
M

i
1

0.38 293 9.3 0.03 0.1565
M

f
1

0.38 293, 27 4.6 0.03 0.1565
M

i
2

0.435 473 7.8 0.03 0.1565
M

f
2

0.435 473, 158 2.6 0.03 0.1565
M

i
3

0.435 473 3 0.14 0.1
M

f
3

0.435 473, 118 4.5 0.14 0.1
E 0.45 2005 – 0.12 0.06
M

i
1

0.39 1528 4.1 0.01 0.16
M

f
1

0.39 1528 0.5 0.01 0.16
M

i
2

0.45 2005 3.86 0.01 0.16
M

f
2

0.45 3008 0.58 0.01 0.16
M

i
3

0.45 2005 0.33 0.12 0.06
M

f
3,1

0.45 2406 0.33 0.12 0.06
M

f
3,3

0.45 3208 0.33 0.12 0.06
F 0.44 4259 – 0.12 0.13
M

i
1

0.39 2277 3.3 0.01 0.16
M

f
1

0.39 6540, 2907 0 0.01 0.16
M

i
2

0.44 4259 2.62 0.01 0.16
M

f
2

0.44 6814, 4259 0 0.01 0.16
M

i
3

0.44 4259 0 0.12 0.13
M

f
3,1

0.44 7240, 4685 0 0.12 0.13
M

f
3,3

0.44 9796, 4259 0 0.12 0.13
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reduce porosity with respect to “natural" sedimentation of stratigraphic layers (Haugen 
et al. 2023, this issue). The increase in F sand permeability was required to match finger 
migration times and is possibly compensating the absence of mechanical dispersion in 
the simulations. This is discussed in Sect. 5. Our calibrated values are within the same 
order of magnitude of the ex situ measurements (Table 4) and history-matched values 
for the porous medium in Tank 2 (Landa-Marbán et al. 2023, forthcoming).

Figure 12 shows gas saturation ( Sg ) and CO2 concentration ( CCO2
 ) maps at times at 

which quantities 1–4 described in Sect.  3.3 are evaluated. Snapshots are provided for 
Model 3 only, since all three calibrated models were qualitatively very similar. It can 
be seen that CO2 migration is successfully approximated by our numerical model. In 
detail, however, some differences are apparent: Firstly, sinking of CO2-rich water from 
the bottom injector and horizontal migration along the bottom of the rig is faster in 
the model. This is due to the higher permeability that our numerical model requires in 
order to match the gravity fingering advance (cf. Table  4). Secondly, the experiment 
shows that denser, CO2-rich water sinks with a rather compact front and closely spaced, 
wide fingers. Our model with constant D = 10−9 m2 /s approximates all gravity-driven 
migration of the CO2-rich water through thinner fingers, with the CO2-saturated region 
receding with Sg . To better represent fingering widths, we also matched Model 3 with 
D = 3 × 10−9 m2/s, used in Sect. 4.3.2.

Fig. 12  Comparison between Experiment A1 in Tank 1 (left column) and simulation results with Model 3 
after calibration (gas saturation shown in middle column, and CO2 concentration shown in right column). 
Location of injection ports shown by black stars in d. D = 10−9 m2/s. a–c End of injection in lower port. 
d–f End of injection in upper port. g–i Time at which the first finger touches the rig bottom. j–l Time at 
which the first finger touches the middle C layer
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4.3  Transferability: Model Forecasts

A key question after history matching a flow simulation model is whether the physi-
cal description has actually been improved, or whether parameters have been modified to 
match a set of specific observations only. By applying the history-matched models to a dif-
ferent injection protocol (Experiment A2 in Tank 1; refer to Table 2) and subsequently to a 
different geometry (Experiment B1 in Tank 2), this can be assessed to some extent.

4.3.1  Analog for a Longer CO
2
 Injection in the Same Geologic Setting

This case illustrates concordance of our history-matched models in a much longer injection 
in the same geology (Experiment A2). Before simulating this case, we observed that the 
trapped gas column against the fault in the experiment was different than what could be 
achieved with our previous pe for Models 1–3 (Table 4). Because the capillary properties 
of the C sand in the fault were not directly involved in Experiment A1, we increased pe in 
our calibrated models for that specific region ( pe = 5 mbar against the lower F sand, and 
3.5 mbar against the middle F sand). All other parameters were taken from the values cali-
brated to match Experiment A1.

Evaluation was performed at the end of injection, at t = 4 h 48 min, with a single run 
with Models 1–3. IR and D were set to the same value in all three models: 1.7 ml/min and 
10−9 m/s2 , respectively. The experimental result is shown in Fig.  13a, while the simula-
tion with Model 3 is depicted in Fig. 13b, c. We observe that the general distribution of 
CO2 is close to the experimental truth. However, the experiment shows a compact sinking 
front of the CO2-rich water without fingers; in our model, gravity fingering is apparent at 
this stage and fingers are close to the bottom of the rig. Additionally, CO2-saturated brine 
touches the right boundary in the upper F reservoir, which does not occur in the experi-
ment. This is due to capillary breach of the C sand above the middle F reservoir, as shown 
in Fig. 13b, and can be avoided by reducing the gas saturation value at which pe is defined, 
or by increasing pe.

The comparison of areal quantities is provided in Fig.  14 and demonstrates good-to-
very-good concordance. Models 2 (MAE = 16 cm2 , CCC = 0.996) and 3 (MAE = 14.54 
cm2 , CCC = 0.996) are similarly accurate and slightly better than Model 1 (MAE = 20.18 
cm2 , CCC = 0.988), but there are no marked differences.

4.3.2  Analog for a Larger‑Scale CO
2
 Injection in a Different Geologic Setting

Finally, we compare the forecasting ability of our calibrated models against Experiment 
B1, conducted in a larger-scale, more complex geology (Fig. 1e) (Flemisch et al. 2023, 

Fig. 13  Comparison between Experiment A2 in Tank 1 (a) and simulation results with Model 3 (b, c) at the 
end of the injection phase ( t = 4 h 48 min)
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this issue). Similar to Sect. 4.3.1, our goal is to assess the forecasting ability of our cali-
brated models—without changing their properties. However, given that sand D controls 
migration in the lower fault (see Fig. 2d) and it was not present in our calibrated models, 
we allowed one change for Models 1 and 2, which did not have access to local pc meas-
urements. This means that we ran an initial simulation of this experiment with Models 1 
and 2 and then adjusted the pc curve of the D sand. The selected curve lies at ≈ 1

3
 of the 

pc(Sw) shown in Fig. 3 and Fig. 4, respectively.
Next, we evaluate concordance of Models 1–3 by comparing them to the experimen-

tal truth after a single run. Evaluation is performed over the total duration of the experi-
ment (120 h), which is simulated with the same IR (10 ml/min) and D ( 10−9 m2/s) in all 
three models ( M1 , M2 , M3,1 ). Additionally, a run with D = 3 × 10−9 m2 /s was completed 
with Model 3 ( M3,3 ) to better approximate finger widths, as noted in Sect. 4.2.

Gas saturation and CO2 concentration maps at the end of injection with Model 1 are 
shown in Fig. 15a and Fig. 15b, respectively. The full visual comparison is provided in 
Fig. 16. We make the following observations:

• At the end of injection ( t = 5 h), all three models forecast some migration of CO2 
into Box B. Models 2 (Fig. 16c) and 3 (Fig. 16d) underestimate the amount of CO2 , 
while Model 1 (Fig. 16b) overestimates the amount of CO2 in the top C sand.

• Also at the end of injection, all models forecast faster sinking of the CO2-charged 
water tongue arising from the lower injector. This is due to the higher F sand perme-
ability required to match finger advance (see Sect. 4.2), particularly in Model 3 with 
D = 3 × 10−9 m2/s.

• The speed at which CO2-rich fingers sink is slightly faster in our models, compared 
to the experiment. As expected, Model 3, with a higher diffusion coefficient, dis-
plays thicker fingers, with closer widths to the experiment. Similar to our previous 

Fig. 14  a: Comparison of areas occupied by free gas ( Ag ) and water with dissolved CO2 ( Ad ) for Experi-
ment A2 in Tank 1. Experimental reference shown with a star (E). Ag (F mid, left) not shown because 
values are very close to 0. Refer to Fig. 6 or Fig. 13a for region location. b Concordance plot for each of the 
three models, using the same areal quantities as in a. Lin’s CCC (Lin 1989) is shown in the key, according 
to Eq. 2
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observations, the numerical models cannot approximate the compact, CO2-rich water 
front closely trailing the fingers.

Fig. 15  Comparison between Experiment B1 in Tank 2 (a) and simulation Model 1 (b, c) at the end of 
injection ( t = 5h). Circles in a denote the location of injection ports
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• Dissolution of CO2 is underestimated by Models 1 and 2, while it is closer, but overesti-
mated, by Model 3.

 
Consistent with our approach described in Sect. 3.3, quantitative analysis is provided 

by means of areal quantities over time in Fig. 17. Experimental values were obtained via 
segmentation of timelapse images, and the data were reported on a 1 × 1 cm grid where 0 is 
pure water, 1 is water with dissolved CO2 , and 2 is gaseous CO2 . The segmentation proce-
dure is explained in Nordbotten et al. (2023, this issue). We then obtained the areas of each 
phase within Box A and B to generate Fig. 17 (refer to Fig. 15a for box location).

In Box A, which contains the main F reservoir and ESF seal, we observe very good con-
cordance (accurate areas) during injection. Afterwards, Model 3 with D = 3 × 10−9 m2 /s 
continues to follow the experiment closely, whereas the others overestimate gaseous CO2 . 
Note that the PVT properties of our fluids are the same in all models; differences arise due 
to (1) higher sand F Swc in Model 3, and higher sand F k in Model 2 and especially Model 3 
( D = 3 × 10−9 m2/s), compared to Model 1, which allow greater convective mixing (Ennis-
King and Paterson 2005) (Table 4); and (2) lower pe and higher k of sand ESF in Model 2 
(Table 4), which allows some CO2 migration into the seal (Fig. 16). In Box B (Fig. 17d–f), 
Model 1 and Model 3 with D = 10−9 m2 /s are able to approximately track the experimental 
truth during injection. However, our models without dispersion cannot capture the areal 
increase of CO2-rich water that occurs afterwards (cf. Fig. 16).

To put these results in perspective, Fig.  18 provides a comparison with results sub-
mitted by the international benchmark study (IBS) participants, as well as Experiment 
B1 (Flemisch et al. 2023, this issue). Figure 18 presents, for each datapoint, mean Wasser-
stein distances to experiments and forecasts (simulations by IBS participants). Specifically, 

Fig. 16  Comparison between Experiment B1 in Tank 2 (leftmost column) and CO2 concentration maps for 
simulation Models 1–3 (middle-left, middle-right and rightmost, respectively). D = 10−9 m2 /s (Model 1 and 
2), D = 3 × 10−9 m2 /s (Model 3). The white contours in simulation plots indicate Sg = 10−3 . a–d End of 
injection. e–h t = 15 h. i–l t = 24 h. m–p t = 48 h. q–t t = 120h
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the Wasserstein metric (W) measures “the minimal effort required to reconfigure the prob-
ability mass of one distribution in order to recover the other distribution" (Panaretos and 
Zemel 2019). We expect W → 0 for two samples from the same distribution, given enough 
values, and two samples to be more similar or concordant the closer W is to 0. To calcu-
late distances shown in Fig.  18, the cell mass density in a 1 × 1  cm grid was estimated 
for all simulations and experiments and then normalized. Therefore, this metric provides 
a measure of the overall degree of agreement (i.e., in the whole domain). Resulting dis-
tances were dimensionalized using the total CO2 mass in the system, such that the units are 
grams × centimeter, with values < 100 gr cm and < 50 gr cm representing good concord-
ance and very good concordance, respectively. Details and code are provided by Flemisch 
et al. (2023, this issue). In Fig. 18, it can be seen that M1–M3 are comparable to or better 
than the best forecasts by IBS participants. M1 and M3,1 , in particular, achieved very good 
concordance.

Further evaluation of simulation model concordance, including comparison with model 
results before calibration, mass quantities and error measures, is provided in Appendix A. 
From this analysis (Sect. 4.3 and Appendix A), we find that:

Fig. 17  Comparison of areas occupied by each phase during the first 72 h of case B1. Experimental mean 
( E ) and standard deviation (std) obtained from four experimental runs with identical protocol, while 
the results for Models 1–3 are for a single run with each matched model. For M3 , two cases are shown: 
D = 10−9 m2 /s ( M3,1 ) and D = 3 × 10−9m2 /s ( M3,3 ). Top row shows areas in Box A, and bottom row shows 
areas in Box B. a, d Gaseous CO2 . b, e Dissolved CO2 (includes area with gaseous CO2 ). c, f Pure water
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• All matched models approximate well CO2 migration and distribution in the domain, 
seal capacity, and onset of convective mixing. M1 and M3,1 are most concordant to 
experiments (Fig. 18).

• Calibrated models are able to accurately estimate specific quantities during the injec-
tion phase, yet they accumulate higher errors later on (Fig. 17 and Appendix B).

• Similar to Experiment A1, the calibration procedure significantly improved the con-
cordance of M1 and M2 with the experiment (Figs. 19 and 16). In Box A, calibration 
also improved concordance for M3 (Figs.  20 and 24). Overall, however, matched 
M3,1 and M3,3 are less concordant than their initial versions, which were already in 
very good agreement with the experiment (Figs. 21 and 18).

In summary, calibrated models are transferable to a different operational setting or 
geologic structure, as long as sediments and trap systems remain the same (Experi-
ment A2 and Box A in Experiment B1). Where reservoir connectivity is provided by 
heterogeneous structures with uncertain properties, accurate deterministic estimates of 
CO2 migration are unlikely; models calibrated elsewhere (Experiment A1) were not 
accurate in our test (Box B in Experiment B1). Given unlimited computational time, 
the forecasting capability of numerical models calibrated with published data appears 
similar to those having access to local measurements; the main value of local data 
lies in reducing the time required for history matching. Obtained results suggest that 
history matching worsened M3 forecasts in a different setting (Experiment B1). There-
fore, forecasts in a given geologic setting may benefit more from local measurements 

Fig. 18  Wasserstein distances to experiments and forecasts (simulations). Colored circles show forecasts by 
IBS groups, and results with calibrated Models 1–3 are presented with light gray markers. In each subplot, 
the vertical axis shows the mean distance between a given datapoint and the forecasts (considering the IBS 
participants only), while the horizontal axis shows the mean distance between a given datapoint and the 
experiments. Markers not present fall outside of the axes limits. a 24 h. b 48 h. c 72 h. d 96 h. e 120 h
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and accurate physics, rather than history matching, unless historical data of the same 
setting are available. This is because CO2-brine flow is very sensitive to variations 
in petrophysical properties such as capillary pressure, which will change in different 
areas, even if the geology is similar.

5  Discussion

In the FluidFlower, strong buoyancy and high permeability lead to persistent appear-
ance and disappearance of fluid phases, as the gas migrates upward and dissolves in the 
water; coupled with other two-phase flow nonlinearities, these aspects make this prob-
lem difficult to solve numerically (e.g., Lie 2019). Comparison between the number of 
nonlinear iterations and the strength of different physical mechanisms (flow rates, buoy-
ancy, capillarity and dissolution) is presented in Appendix B. A clear correlation can be 
seen between flow rates and number of iterations. However, buoyancy, capillarity and 
dissolution all appear to be playing a role, and it is not straightforward to discern which 
effect dominates; hence, this is a topic that requires further study. We note that difficul-
ties with the convergence of the nonlinear solver have been reported by all participants 
in the international benchmark study  (Flemisch et  al. 2023, this issue). As hinted in 
Sect.  3.1, we addressed this by optimizing linear solver time, reducing the time-step 
length, increasing the number of time-step cuts and relaxing MRST’s maximum normal-
ized residual where required.

In a 2D isotropic medium and assuming uniform flow, the hydrodynamic dispersion 
coefficient ( D

h
 ) can be modeled as D

h
=
[�Lu 0

0 �Tu

]
 , where �L and �T are the longitudinal 

and transverse dispersivity, respectively, and u is the average Darcy velocity  (Bear 
1972). Assuming dispersivities ≥ 10−3 − 10−2 m (Garabedian et al. 1991; Gelhar et al. 
1992; Schulze-Makuch 2005) and u ≈ 3 × 10−6 m/s (from our simulations), we get 
D

h
∈ [3 × 10−9, 3 × 10−8]m2 /s or larger; this means that D

h
≥ D for the timescales con-

sidered (Riaz et al. 2004; Rezk et al. 2022). We also note that numerical dispersivity is 
on the order of the cell size ( h ≈ 4 mm in Tank 1, and ≈ 5 mm in Tank 2), so it is likely 
smaller than physical dispersivity. Numerical diffusion can be approximated as uh, 
which yields maximum values ∼ O(10−7 m2∕s) (water phase). However, using the mean 
of the 75th percentile flow velocity over all time-steps, we obtain ∼ O(10−9 m2∕s) . 
Therefore, we estimate that numerical diffusion is lower than physical diffusion almost 
everywhere in our simulations. Previous work suggested that hydrodynamic dispersion 
in homogeneous sediments can be accounted for by increasing D  (Riaz et  al. 2004, 
2006), as done here. However, our analysis shows that the spreading of CO2-rich water 
during convective mixing can be loosely, but not accurately, represented by molecular 
diffusion. Given (1) the dominance of convective mixing on solubility trapping (Ennis-
King and Paterson 2005; Neufeld et al. 2010; MacMinn and Juanes 2013; (2) heteroge-
neity of many natural reservoirs, which increases the importance of dispersion  (Riaz 
et al. 2006; Bear 2018); and (3) the acceleration of CO2 dissolution due to dispersion, as 
observed here and by others (e.g., Hidalgo and Carrera 2009), it is important to quantify 
the balance between diffusion and dispersion to estimate CO2 trapping.

Our study of CO2 injection and migration in unconsolidated sands at atmospheric 
p, T  conditions captures the CO2-water system dynamics at short to intermediate time-
scales: buoyancy-driven flow and structural trapping  (Bachu et  al. 1994; Bryant et  al. 
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2008; Hesse and Woods 2010; Szulczewski et al. 2013), residual trapping (Juanes et al. 
2006; Burnside and Naylor 2014) and convective mixing and dissolution trapping (Weir 
et  al. 1996; Ennis-King and Paterson 2005; Riaz et  al. 2006; Neufeld et  al. 2010; 
Hidalgo et  al. 2012; MacMinn and Juanes 2013; Szulczewski et  al. 2013). Due to the 
very large sand permeability ( 102 − 104 D), convective mixing and dissolution domi-
nate CO2 trapping. With respect to values at ∼ 1 km depth ( p ∼ 100 bar, T ∼ 40 C), the 
dynamic viscosity and density of CO2 are ≈ 1/3 and 3 × 10−3 . Conversely, previous stud-
ies with similar setups used analogous fluids with density and viscosity ratios similar 
to supercritical CO2-brine (Trevisan et al. 2017; Krishnamurthy et al. 2022). Dynamics 
observed in these systems are similar to ours, with vertical migration of CO2 dominated 
by buoyancy and lateral spreading of CO2 plumes with a main tongue at the top of the 
aquifer or high permeability layer. A quantitative scaling analysis of the FluidFlower 
(Tank 2) was performed by Kovscek et al. (2023, this issue), who showed that scaling 
of physical mechanisms to the field scale is possible. Compared to three CO2 storage 
projects (Northern Lights, Sleipner and In Salah) the vertical dimension of the storage 
reservoir is exaggerated 2 to 3 times. Temporally, 1 h in the FluidFlower is equivalent 
to ∼ 100 − 400 y in the field; thus, the experiment in Tank 2 (120  h) covers well the 
injection and post-injection periods. Similar to the FluidFlower, Kovscek et al. (2023, 
this issue) estimate the onset of convective mixing to occur during injection in high-
permeability formations like the Utsira Sand (Sleipner). This analysis demonstrates that 
observations made in the FluidFlower can be used to describe field-scale fluid dynamics 
and quantify forecasting accuracy.

Our models retained some error at the end of the calibration phase, which is a known 
problem of manual history matching (Oliver and Chen 2011). Consistent with previous find-
ings (e.g., Fisher and Jolley 2007), results show that Model 2 and 3, which had access to local 
data, achieved faster match to the experimental truth than Model 1 (Sect. 4.2). However, all 
models seem to have similar forecasting capability (Sect. 4.3). Subsurface heterogeneity and 
time constraints may explain why, in practice, it is critical to include local data to achieve his-
tory matching, and, especially, concordant forecasting (e.g., Gosselin et al. 2003; Fisher and 
Jolley 2007; Myers et al. 2007; Kam et al. 2015; Avansi et al. 2016). Calibration with Experi-
ment A1 decreased overall concordance of Model 3 to Experiment B1 (but improved concord-
ance in Box A), compared to forecasts with initial (measured) parameter values. We interpret 
this to be the result of fluid migration in Experiment A1 being controlled by different units 
than in Box B in Experiment B1. Therefore, local measurements are paramount, especially if 
historical data in the trap system of interest are not available.

Additionally, we did not quantify uncertainty in history-matched models due to the avail-
ability of a ground truth. In general, however, this is necessary to manage reservoir opera-
tions (e.g., Aanonsen et al. 2009; Oliver and Chen 2011; Jagalur-Mohan et al. 2018; Jin et al. 
2019; Liu and Durlofsky 2020; Santoso et al. 2021, and references therein). It is also impor-
tant to note that history-matched models may have grid-size dependencies (see Appendix C), 
which may require that the grid used to make forecasts, if different or encompassing additional 
regions, maintain a similar resolution. Finally, multiphase flow in poorly lithified sediments is 
non-unique (Haugen et al. 2023, this issue), which also contributes to uncertainty. Therefore, it 
seems prudent to adopt a probabilistic perspective when estimating subsurface CO2 migration. 
This is consistent with results in Fig. 18 and Flemisch et al. (2023, this issue): in the highly 
resolved and geologically simple FluidFlower (compared to the subsurface), forecasts by dif-
ferent simulation groups show large spread.
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6  Conclusions

We performed experiments (Sect. 2) and numerical simulations (Sect. 3) of CO2 migration 
in poorly lithified, siliciclastic sediments at the meter scale. Three simulation model ver-
sions, with access to different levels of local data, were manually history-matched to the 
experiments (Sects. 4.1, 4.2), and then used to make forecasts (Sect. 4.3). The main find-
ings are: 

1. The time required to history match Model 3 (access to both single-phase and multiphase 
measurements) is lower than Model 2 (access to local single-phase measurements), 
which is lower than Model 1 (no access to local petrophysical measurements).

2. All simulation models achieve a satisfactory qualitative match throughout the experi-
ments. Quantitatively, forecasting capability of Models 1–3 appears similar: in specific 
domain regions, models were close to the experimental truth during CO2 injection, and 
accumulated larger errors afterwards, especially where heterogeneous structures control 
CO2 migration.

3. Overall forecasts with Model 3 after calibration in a similar, but not identical, geologic 
setting were less accurate than forecasts made with measured values. This emphasizes 
the importance of local measurements and history matching in the same geologic setting.

4. The addition of a constant molecular diffusion coefficient allows matching convective 
finger widths to experimental observations. However, simulations without dispersion 
cannot approximate the compact, CO2-rich sinking front closely trailing convective 
fingers in our experiments.

Simulation models were not always accurate. Given the degree of control in our study, 
it seems prudent to quantify uncertainty when assessing subsurface CO2 migration in the 
field using numerical models. Obtained results suggest that confidence can be increased by 
obtaining local data, quantifying petrophysical parameter uncertainty, testing sensitivity to 
petrophysical parameters in different model regions, using historical data from the same 
setting and including post-injection data when history matching, and incorporating mul-
tiple scenarios of CO2 migration, particularly where heterogeneous structures are at play.

Appendix A: Additional Analysis of Simulation Model Concordance 
with Experiment B1

A.1 Results with Initial Model Parameters

Figure 19 compares Experiment B1 and concentration maps from simulations with initial 
parameters, for each of the three model versions considered. Qualitatively, all models esti-
mate the location of the two main gas plumes correctly, but it is clear that Models 1 and 2 
are less concordant to the experiment than Model 3. This is particularly true in the upper 
left of the domain, where CO2 migration is controlled by the heterogeneous fault. Similar 
to results presented in Sect. 4.1, Model 3 is already very close to the experiment, although 
the advance of convective fingers is slower.

Concordance between our initial models and the simulation is shown in Fig.  20 by 
means of the ratio between the model and experimental areas for different quantities in Box 
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A and Box B (see Fig. 15 for box location). Values below 1 indicate that the model under-
estimates the areal extent of a given quantity, while values above 1 indicate that the model 
overestimates it. During the first 48–72 h, all models except M3,1 are reasonably close to the 
experiment in Box A. Afterwards, M1 , M2 and M3,3 forecast earlier dissolution of the CO2 
plume, while M3,1 forecasts later dissolution. In Box B, concordance is relatively good for 
M3 during the first 48 h, but model accuracy diminishes with time for all model versions.

Further comparison between our initial model results and experimental values are 
provided in Fig. 21, where we evaluate mean Wasserstein distances to the international 
benchmark study (IBS) participants’ forecasts and experiments  (Flemisch et  al. 2023, 
this issue). Figure 21 is consistent with Fig. 19, where it can be seen that M3 is already 
very close to the experiment and is similarly concordant or more concordant than the 
best of the IBS participants.

A.2 Calibrated Models

First, we provide the total mass of CO2 in the computational domain in Fig. 22, and the 
mass in Boxes A and B in Fig. 23.

Next, in Table  5, the following measures are compared with quantities estimated 
from the experiment via segmentation of timelapse images (Nordbotten et al. 2023, this 
issue). These measures correspond to the sparse data requested to participants of the 
FluidFlower IBS (Flemisch et al. 2023, this issue): 

Fig. 19  Comparison between Experiment B1 in Tank 2 (leftmost column) and CO2 concentration maps 
for simulation Models 1–3 (middle-left, middle-right and rightmost, respectively) with initial parameters. 
D = 10−9 m2 /s (Model 1 and 2), D = 3 × 10−9 m2 /s (Model 3). a–d End of injection. e–h t = 15 h. i–l 
t = 24 h. m–p t = 48 h. q–t t = 120h
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1. Time of maximum mobile free phase in Box A
2. Mass of mobile CO2(g) , immobile CO2(g) , dissolved CO2 , and CO2 in the seal (in any 

phase), in Box A, 72 h after injection start (2a-d)
3. The same quantities as 2. for Box B (3a-d)
4. time at which m (defined below) exceeds 110% of the width of Box C
5. Total mass of CO2 in the ESF seal, in Box A, at t = 120 h

Convective mixing in Box C (see Fig. 1e) is reported as the integral of the magnitude of the 
gradient in relative concentration of dissolved CO2 (Flemisch et al. 2023):

where �w
CO2

 is the mass fraction of CO2 in water, and the dissolution limit is �w,max

CO2
 . Note 

that quantity 4, based on m, cannot be provided with full accuracy based on experimental 
data, so an uncertain lower and upper bound is provided instead. Therefore, error is not 
computed in Table 5.

Relative error is evaluated with respect to the experimental mean ( E ) as 
�i(%) = 100 ×

|Ei−MJ,i|
Ei

 , where i is a given measure and J refers to any of the Models 1–3. In 

(A1)m(t) = ∫C

||||
∇

( �w
CO2

�
w,max

CO2

)||||
dx

Fig. 20  Ratios between model (  AMi
  ) and experimental mean (  AE  ) areas occupied by each phase. Experi-

mental mean was obtained from four experimental runs with identical protocol, while the results for Models 
1–3 are for a single run. For M3 , two cases are shown: D = 10−9 m2 /s (  M3,1  ) and D = 3 × 10−9 m2 /s ( M3,3 ). 
Top row shows Box A, and bottom row shows Box B. Ratios for gaseous CO2 in Box B are not computed 
because experimental values are 0. a Gaseous CO2 . b, d Dissolved CO2 (includes area with gaseous CO2 ). 
c, e Pure water
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Table  5, it can be seen that all models accumulate some error in most of the quantities 
reported. The maximum errors are ≈ 140% for Models 1–2 and < 100% for Model 3. 
Model 1 is more concordant in the uncertain region (Box B; see Sect. 4.3.2 as well), while 
Models 2 and 3 are more accurate in Box A, the region where the calibration performed 
with Experiment A1 is more meaningful. Overall, M3,1 does marginally better.

We provide additional analysis in Fig.  24, which shows ratios between model and 
experimental areas, similar to Fig. 20. As shown in Sect. 4.3.2, M3,3 is most concordant in 
Box A, while M1 and M3,1 do better in Box B. Compared to Fig. 20, the maximum ratio is 
reduced. In Box A ( t < 72h), Models 1 and 2 are less accurate than in Fig. 20, but this is 
not representative of their concordance in the whole domain (Sect. 4.3.2).

Fig. 21  Wasserstein distances to experiments and forecasts (simulations). Colored circles show forecasts by 
IBS groups, and results with initial Models 1–3 are presented with light gray markers. In each subplot, the 
vertical axis shows the mean distance between a given datapoint and the forecasts (considering the IBS par-
ticipants only), while the horizontal axis shows the mean distance between a given datapoint and the experi-
ments. Markers not present fall outside of the axes limits. See Sect. 4.3.2 for details

Fig. 22  Total mass of CO2 for our simulations of Experiment B1 presented in Sect. 4.3.2. Results are pro-
vided for Models 1–3. For M3 , two cases are shown: D = 10−9 m2 /s ( M3,1 ) and D = 3 × 10−9 m2 /s ( M3,3)
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Appendix B: Nonlinear Solver Number of Iterations

According to fluid migration in the FluidFlower, flow dynamics are initially dominated 
by injection rates, then by buoyancy of the gas phase, and finally by capillarity and dis-
solution. In Fig. 25, we present, for the experiment in Tank 2, the relationship between 
the number of iterations, the maximum Darcy velocity (u) and the maximum concen-
tration rate ( Ċ ), evaluated as dC∕dt , as a function of time. Additionally, we estimated 
the maximum values of the dimensionless Reynolds ( Re , see Eq. 1), Capillary ( Ca ) and 
Bond ( Bo ) numbers during and after injection (e.g., Bear 1972):

where � is the dynamic viscosity, u the Darcy velocity, � the interfacial tension, Δ� the 
density difference, g the gravity, k the permeability, and subscript � denotes a generic 
fluid phase. Max Bo ∼ O(10−3) and remains constant in our system. Max Ca ∼ O(10−6) , 
∼ O(10−7) for water and ∼ O(10−6) , ∼ O(10−8) for gas (during and after injection, respec-
tively), while maxRe ∼ O(10−2) for water and ∼ O(10−1) , ∼ O(10−2) for gas (during and 
after injection, respectively).

From Fig. 25, a correlation between max |uh,g| and the number of iterations is appar-
ent during injection. The number of iterations increases significantly after an injection 
port becomes active, and also when CO2 spills out of the lower reservoir and starts 
migrating along the lower fault (see Fig.  15); this occurs at t ≈ 215 min and t ≈ 250 
for M1 and M3,3 , respectively. Peaks in Ċ appear at the onset of injection, but we do 
not observe significant variations otherwise. Values from the dimensionless groups 

(B1)Ca =
��u�

�

(B2)Bo =
Δ�gk

�

Fig. 23  Mass of CO2 in Boxes A and B defined in Fig. 1e, for our simulations of Experiment B1 presented 
in Sect. 4.3.2. Results are provided for Models 1 to 3. For M3 , two cases are shown: D = 10−9 m2 /s ( M3,1 ) 
and D = 3 × 10−9 m2 /s ( M3,3)
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are indicative of high flow rates ( Re close to 1), relatively strong capillary forces, com-

pared to viscous forces ( Ca ∼ O(10−6) or smaller), and appreciable buoyancy. We iden-

tify that high flow rates and sudden appearance/disappearance of fluid phases challenge 
the nonlinear solver during injection. Buoyancy and capillarity forces, which are active 
throughout the simulation, also impact convergence, but it is not straightforward to 
identify if one exerts a greater control on the number of iterations. After injection, we 
observe difficulties between t ≈ 315 and 1440 min in M1 , and t ≈ 720 and 1440 in M3,3 . 
Our analysis does not reveal why, so this is a topic that warrants further study.

Appendix C: Comparison of Simulation Results with Multiple Grid 
Resolutions

This section provides two comparisons of concentration maps obtained with Model 3 
after the calibration presented in Sect. 4.2: 

Fig. 24  Ratios between calibrated model (  AMi
  ) and experimental mean ( AE ) areas occupied by each phase 

in case B1. Experimental mean was obtained from four experimental runs with identical protocol, while the 
results for Models 1–3 are for a single run with each model. For M3 , two cases are shown: D = 10−9 m2 /s 
( M3,1 ) and D = 3 × 10−9 m2 /s ( M3,3 ). Top row shows Box A, and bottom row shows Box B. Ratios for gase-
ous CO2 in Box B are not computed because experimental values are 0. a Gaseous CO2 . b, d Dissolved CO2 
(includes area with gaseous CO2 ). c, e Pure water
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Fig. 25  Number of iterations and maximum values in the simulation domain for various quantities, as a 
function of time. Results are provided for M1 (left column) and M3,3 (right column). a,b Number of nonlin-
ear solver iterations. c,d Horizontal Darcy velocity. e,f Vertical Darcy velocity. g,h Concentration rate ( Ċ)

Fig. 26  Concentration maps from our simulations of Experiment A1 with Model 3. Results with two grids 
are shown: h = 4 mm (a, c, e, g) and h = 8 mm (b, d, f, h)
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1. For Experiment A1, we compare two grid sizes: h = 4 mm, as shown in the paper, and 
a coarser grid with h = 8 mm (Fig. 26).

2. For Experiment B1, we compare three grid sizes: h = 5 mm, used throughout the paper, and 
two coarser grids with h = 10 mm and h = 20 mm, respectively (Fig. 27). Note that, in the 
three simulations in Fig. 27, a total of 8.13 g of CO2 was injected; this is slightly smaller than 
the 8.55 g actually injected in the experiment and in our simulations in the rest of the paper.

It can be seen that, for the calibrated parameter set (Table 4), the coarser models main-
tain a general agreement with the finer ones (and the experimental solution). However, 
some differences are clear even in this qualitative comparison, including (1) smaller 
extent of the CO2 plume, (2) lower dissolution, (3) lower number of fingers and fin-
ger widths, and (4) different CO2-rich finger sinking speed. Therefore, the calibration 
process is somewhat cell-size dependent, which has implications for applying history 
matched models from e.g., pilot tests to field-scale CO2 storage projects.
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