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Abstract
Effective diffusion is an important macroscopic property for assessing transport in 
porous media. Numerical computations on segmented 3D CT images yield precise esti-
mates for diffusive properties. On the other hand, geometrical descriptors of pore space 
such as porosity, specific surface area and further transport-related descriptors can be 
easily computed from 3D CT images and are closely linked to diffusion processes. How-
ever, the investigation of quantitative relationships between these descriptors and diffusive 
properties for a diverse range of porous structures is still ongoing. In the present paper, 
we consider three different soil samples of each loam and sand for a total of six samples, 
whose 3D microstructure is quantitatively investigated using univariate as well as bivariate 
probability distributions of geometrical pore space descriptors. This information is used 
for investigating microstructure–property relationships by means of empirically derived 
regression formulas, where a particular focus is put on the differences between loam and 
sand samples. Due to the analytical nature of these formulas, it is possible to obtain a 
deeper understanding for the relationship between the 3D pore space morphology and the 
resulting diffusive properties. In particular, it is shown that formulas existing so far in the 
literature for predicting soil gas diffusion can be significantly improved by incorporating 
further geometrical descriptors such as geodesic tortuosity, chord lengths, or constrictivity 
of the pore space. The robustness of these formulas is investigated by fitting the regression 
parameters on different data sets as well as by applying the empirically derived regression 
formulas to data that is not used for model fitting. Among others, it turns out that a formula 
based on porosity as well as mean and standard deviation of geodesic tortuosity performs 
best with regard to the coefficient of determination and the mean absolute percentage error. 
Moreover, it is shown that regarding the prediction of diffusive properties the concept of 
geodesic tortuosity is superior to geometric tortuosity, where the latter is based on the crea-
tion of a skeleton of the pore space.
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1  Introduction

The three-dimensional morphology of the pore space has a strong impact on effective mac-
roscopic properties of porous media Sahimi (2011); Bear (2018); Blunt (2017). Among 
others, diffusive properties are of great interest in a wide spectrum of applications ranging 
from lithium-ion batteries via solid-oxide fuel cells to civil engineering Bear (2018); New-
man and Thomas-Alyea (2004); Cooper et al. (2013); Das et al. (2018); Blunt (2017). Like-
wise, the 3D microstructure of the pore space greatly affects water, gas and carbon fluxes 
in soils Rabot et al. (2018). A typical example of a soil structure-mediated gas transport is 
the emission of greenhouse gases into the atmosphere Smith et al. (2003). Gas transport 
in soils is known to be primarily a diffusion-dominated process. More precisely, diffusion 
of gas in soils is mainly governed by the so-called soil gas diffusivity, for which empiri-
cal relationships, i.e., regression formulas (also called analytical prediction formulas), have 
been developed using easily available soil bulk properties like the air-filled porosity Mil-
lington (1959); Penman (1940); Marshall (1959) and then further improved by the integra-
tion of other soil properties such as soil bulk density Millington and Quirk (1961); Mol-
drup et al. (2000); Deepagoda et al. (2011) or specific surface area Moldrup et al. (2001). 
Moreover, it turned out that regression formulas of this type can be improved by incorpo-
rating further geometrical descriptors of the pore space Prifling et al. (2021). This moti-
vates a more detailed characterization of the pore space.

Due to recent efforts and technological advancements in the field of soil imaging, nota-
bly in X-ray computed tomography (CT), it is possible to accurately visualize and char-
acterize the soil pore space in three dimensions at high resolution. As a result, X-ray CT 
also offers the unprecedented opportunity to test the validity and relevance of incorporating 
physical descriptors of the pore space in empirical relationships aiming at predicting soil 
gas diffusivity. Previous studies relying on X-ray CT to derive gas transport parameters 
have shown promising results so far. In a study of no-tillage system in a subtropical cli-
mate, significant correlations between the porosity derived with X-ray CT and the loga-
rithm of relative gas diffusivity and air permeability were found da Silva et al. (2021). In 
another study Katuwal et al. (2015), the porosity obtained by means of X-ray CT was also 
shown to be well correlated with air permeability. Furthermore, in Katuwal et al. (2015), 
it has been shown that there is a strong correlation of the lumped tortuosity-connectivity 
parameter obtained from standard gas measurements (as described in Buckingham (1904)) 
and the one obtained from X-ray CT. Thus, based on the literature, it seems that X-ray CT 
can be considered as a powerful tool to derive gas transport parameters. It is however still 
unclear which combination of geometrical descriptors can be used to best predict effective 
macroscopic properties as effective diffusivity.

Likewise, the progress in computational power and sophisticated numerical methods 
enables the computation of orientation-dependent diffusive properties from sound math-
ematical theory Ray et al. (2018). This is possible even on an extensive dataset of real and 
therefore quite complex geometries, which forms the basis for the quantitative investigation 
of microstructure–property relationships within this research. In particular, we consider the 
relationship between descriptors of 3D microstructure and diffusive properties.

In the present paper, we consider different kinds of regression formulas to predict dif-
fusive properties from geometric descriptors of 3D pore space. Applying this approach to 
data from two different soil textures, we quantitatively investigate the performance and 
robustness of the considered regression formulas. We thoroughly investigate geometrical 
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descriptors of the 3D microstructure of the samples’ pore space and analyze them in detail 
in the context of sand and loam. For this purpose, the loam and sand samples under con-
sideration as well as the corresponding tomographic imaging techniques are explained 
in Sects. 2.1 and 2.2, respectively. Moreover, we provide details regarding the numerical 
computation of diffusive properties (Sect.  2.3) as well as various descriptors of the 3D 
pore space morphology (Sect. 2.4), which are used to characterize its 3D microstructure 
geometrically and with regard to its diffusive properties. Finally, in Sect.  2.5, our meth-
ods of model fitting and validation are stated, which are used for assessing the predictive 
power of microstructure–property relationships. Then, in Sect. 3.1, a statistical analysis of 
4608 subsamples is carried out to quantitatively investigate differences between loam and 
sand by means of univariate as well as bivariate probability distributions. Moreover, micro-
structure–property relationships for soil gas diffusion are established in Sect.  3.2, where 
the goal is to derive accurate (and possibly general) prediction formulas, i.e., they do not 
require individual sets of fitting parameters for the two soil textures. In contrast to other 
methods of data science as, for example, neural networks, the empirically derived predic-
tion formulas establish an interpretable relationship between the 3D morphology of the 
pore space and its diffusive properties. In particular, in Sect. 4, we compare the predictive 
power of conventional models discussed in the literature with that of more sophisticated 
models which additionally include further geometrical descriptors of the 3D pore space 
morphology. It turns out that the more accurate microstructure description achieved in this 
way allows us to surpass traditional prediction formulas with regard to the coefficient of 
determination as well as the mean absolute percentage error. Moreover, a quantitative com-
parison between two different notions of tortuosity, namely geodesic and geometric tortu-
osity, is carried out to investigate their suitability for establishing microstructure–property 
relationships. Section 5 concludes the paper and outlines possibilities for future research.

2 � Materials and Methods

2.1 � Sample Acquisition

The samples analyzed in this study were acquired within the framework of the plant growth 
experiments described in Lippold et al. (2021). In particular, cylindrical columns of 23 cm 
in height and 7 cm in diameter were packed with soil, where two different substrates (loam 
and sand) were used. The loam substrate was obtained from the upper 50 cm of a haplic 
Phaeozem soil profile, dried to 10 % gravimetric water content and then sieved to < 1 mm . 
The sand substrate constitutes a mix of 83.3 % quartz sand (WF 33, Quarzwerke Weferlin-
gen, Germany) and 16.7 % of the sieved loam. Details on chemical and physical proper-
ties of these substrates are provided in Vetterlein et al. (2021). The loam pots were packed 
homogeneously to a bulk density of 1.26 g/cm3 , whereas the sand pots were packed to a 
bulk density of 1.47 g/cm3 . At the end of the growth period, a total of six samples (alu-
minum rings of 1.6 cm in height and diameter) were taken from 5, 10 and 15 cm depth (3 
per substrate, one per depth) and were stored at 4◦C in sealed plastic bags prior to X-ray 
CT scanning.
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2.2 � X‑ray Computed Tomography Scanning and Binarization

X-ray CT scanning was performed with an industrial � CT scanner (X-TEK XTH 225, 
Nikon Metrology) including an Elmer-Perkin 1620 detector panel ( 1750 × 2000 px). The 
scanner was operated at 115 kV and a current of 85�A . A total of 2748 projections with 
an exposure time of 708ms each were acquired during a full rotation of the samples. The 
obtained images were reconstructed into a three-dimensional tomogram by means of the 
filtered back projection algorithm with the CT Pro 3D software (Nikon Metrology) Ban-
hart (2008). During reconstruction, the grayscale range was normalized with a percentile 
stretching method, which sets the darkest and brightest 0.2 % voxels to 0 and 255, respec-
tively, and performs a linear stretching in between. The voxel size equals 10�m.

Denoising and contrast enhancement of the grayscale images were performed using a 
2D non-local means filter ( � = 15 ) and an unsharp mask filter (radius = 1 and weight = 
0.6) Buades et al. (2005); Burger and Burge (2016), respectively. Subsequent binarization 
of the images was performed to distinguish between pore space and the soil matrix. The 
automatic threshold detection method presented in Otsu (1979) was used for an adequate 
and objective choice of the global threshold.

For each texture and depth, the samples were truncated into stacks of 1536 slices with 
each 1024 × 1024 voxels. This coincides with cuboid of 15.36mm height, 10.24mm width 
and 10.24mm length. For the purpose of the study, we further divided the cuboid into non-
overlapping cubic cutouts with 128 × 128 × 128 voxels ( 1.28mm × 1.28mm × 1.28mm ) 
each. Thus, we obtained 768 cubic cutouts for each depth and soil texture, which led to a 
total number of 4608 subsamples. Selected subsamples are shown in Fig. 1.

Fig. 1   Three-dimensional renderings of selected loam (top row) and sand (bottom row) subsamples, where 
the solid phase is depicted in gray. The three columns correspond to minimum (left, † ), mean (center, ◦ ) and 
maximum (right, ⋆ ) porosity
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Finally, isolated pores were removed, which led to only marginal changes with regard to 
the porosity, i.e., the 3D binary images contained only few unconnected pores. The overall 
difference in porosity for loam was smaller than 2 % of the initial porosity, for sand even 
less than 0.5 %.

2.3 � Computation of Diffusive Properties

Diffusive transport of a chemical species with concentration field c ∶ ℝ
3 → [0,∞) through 

porous media is, in its simplest form, described by the Laplace equation

where 𝔻 ∈ ℝ
3×3 denotes the effective diffusion tensor, which is the essential input to the 

transport model. It contains all the information that is specific to the porous medium under 
consideration. However, it is quite difficult to characterize � for (natural) porous media. If 
the underlying geometry is available, e.g., from binary CT data, one possibility to deter-
mine the tensor � is to apply the results of homogenization theory Hornung (1997); Ray 
et al. (2018), which was originally derived for periodic settings.

In order to carry out the numerical simulations for the effective diffusivities by homoge-
nization within a reasonable time frame, the subsamples have been coarsened by combining 
eight voxels into one (super-) voxel. If four of the original voxels were solid and four void, 
the resulting (super-) voxel was at random turned into a void or solid voxel, otherwise the 
majority defines the type of the resulting voxel. Hence, after performing this procedure, the 
dimensions of the subsamples are 64 × 64 × 64 voxels ( 1.28mm × 1.28mm × 1.28mm ), 
where a voxel corresponds to 203 �m3 = 8000�m3.

For a connected, sufficiently smooth pore space Yp ⊂ Y = [0, 1.28mm]3 and comple-
menting solid phase Ys = Y�Yp , the entries of the diffusion tensor � are given as

with molecular diffusivity Dm > 0 and the following supplementary cell problems in �j , 
j ∈ {1, 2, 3}:

Here, V(Y) denotes the volume of V, � is the unit outer normal of the solid phase, ej the unit 
vector in direction j, and �ij the Kronecker delta. Note that in the present setting, we assume 
zero diffusivity within the solid phase.

The partial differential equations given in  (3) are solved within the connected pore 
space and discretized using the local discontinuous Galerkin (LDG) method Aizinger et al. 
(2018); Rupp and Knabner (2017), which is implemented within the parallel finite element 
software, M++ Wieners (2005). The resulting linear systems are solved using a combina-
tion of the BiCGstab solver and the ILUT preconditioner Saad (2003) through Trilinos 
Heroux and Willenbring (2003).

As a result of the computations described above, the 3 × 3 diffusion tensor � has been 
determined for all 4608 subsamples obtained from the X-ray CT scans of sand and loam, 

(1)−∇ ⋅ (�∇c) = 0,

(2)�ij =
1

V(Y) ∫Yp

Dm

(
�yi�j(y) + �ij

)
dy, for i, j ∈ {1, 2, 3},

(3)

⎧
⎪⎨⎪⎩

−∇y ⋅ (∇y�j + ej) = 0 in Yp,

(∇y�j + ej) ⋅ � = 0 on �Ys,

�j is periodic in y and has vanishing mean
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as described in Sect. 2.2. Further details regarding the analysis of these diffusion tensors 
are presented in Prechtel et  al. (2022). In the following, the soil gas diffusion for the 
sand and loam subsamples will be described by the ratio of effective and intrinsic diffu-
sivity which is sometimes called microstructure factor or M-factor  Gaiselmann et  al. 
(2014). In particular, we average over the three Cartesian axes directions such that the 
averaged M-factor is obtained from the diagonal entries of the diffusion tensor as 
M =

1

3Dm

(�11 + �22 + �33) . This averaging is motivated by the fact that neither the loam 
nor the sand samples show pronounced anisotropy effects Prechtel et al. (2022).

Fig. 2   Schematic 2D illustration of microstructure descriptors: Exemplarily chosen 2D slice, where the pore 
space is depicted in black (a); surface between pore and solid phases, appearing as one-dimensional object 
in the 2D slice (b); chords in horizontal direction for two exemplarily chosen vertical height levels (c); sub-
sets of pore space used in the definitions of ���� (d) and ���� (e), respectively; shortest distances from 
pore space to soil (f); two exemplarily chosen shortest paths (from left to right) (g); skeleton of pore space 
and shortest paths along the skeleton (from left to right) depicted in green and red color, respectively (h)
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2.4 � Geometrical Descriptors of Pore Space

In this section, various geometrical descriptors of the 3D pore space morphology and 
methods for their estimation from voxelized image data are presented. In Fig. 2, two-
dimensional versions of these descriptors are illustrated.

2.4.1 � Porosity "

One of the most fundamental descriptors of the 3D pore space morphology is the porosity 
� ∈ [0, 1] . The estimation of this geometrical descriptor from binarized 3D image data is 
straight-forward and carried out by computing the number of voxels assigned to the pore 
space (depicted in black in Fig. 2a), which is divided by the total number of voxels of the 
entire sampling window.

2.4.2 � Specific Surface Area S

In addition to porosity, we consider the specific surface area of the pore space, denoted 
by S. It is defined as the surface area between the pore space and the solid phase divided 
by the volume of the sampling window. This quantity is then estimated from voxelized 
3D image data using an approach presented in Schladitz et al. (2007), which is based on a 
convolution of the image with a 2 × 2 × 2 kernel avoiding the reconstruction of the actual 
surface. In Fig. 2b, the interface between pore and solid phases is depicted in red.

2.4.3 � Mean Chord Length �(C)

A further descriptor of the 3D pore space morphology is its chord length distribution 
Matheron (1975); Serra (1982), where a chord is a line segment that is completely con-
tained in a predefined phase and cannot be extended further without intersecting the com-
plementary phase. Obviously, in general, the probability distribution of chord lengths 
depends on the orientation of the line segments. We compute the chord length distribution 
of the pore space for the three Cartesian axes directions. In particular, for each of these 
three directions, we compute the mean value of the corresponding chord length distribu-
tion. In the following, the average of these three mean values, denoted by �(C) , is used for 
characterizing the 3D pore space morphology. In Fig. 2c, five different chords are shown in 
horizontal direction and depicted in five different colors, for two exemplarily chosen verti-
cal height levels.

2.4.4 � Constrictivity ˇ

In order to explain this descriptor, we first recall the concept of the continuous pore size 
distribution ( ���� ) as well as of simulated mercury intrusion porosimetry ( ���� ). The 
continuous pore size distribution is a function 𝖢𝖯𝖲𝖣 ∶ [0,∞) → [0, 1] , where the value 
����(r) is given by the volume fraction of the pore space which can be covered by (possi-
bly overlapping) spheres with radius r ≥ 0 (such that the spheres are completely contained 
in the pore space) Serra (1982); Soille (2013). Furthermore, by r��� the maximum radius 
r > 0 is denoted such that ����(r) ≥ �∕2 where � is the porosity. Note that the green 
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shaded area in Fig. 2d corresponds to that part of the pore space which can be covered by 
potentially overlapping spheres having the same radius as the red circle in Fig. 2d.

The concept of ���� is similar to that of ���� , with the only difference that ����(r) 
is now given by the volume fraction of the pore space which can be covered by (poten-
tially overlapping) spheres with radius r forming an intrusion from a predefined direction, 
see Fig. 2e for an intrusion of spheres from left to right. Analogously to r��� , by r��� the 
maximum radius r > 0 is denoted such that ����(r) ≥ �∕2 . In general, r��� depends on the 
direction of the intrusion. However, as already mentioned above, the lack of pronounced 
anisotropy effects in the loam and sand samples motivates the following averaging. First, 
r��� is computed for each of the three axes directions separately and, subsequently, the aver-
age of the three obtained values is used.

The constrictivity of the pore space is then defined as � = (
r���

r���

)2 . It is a measure for the 
strength of bottleneck effects and has been originally introduced in Münch and Holzer 
(2008). Since r��� ≤ r��� by definition, it holds that � ∈ [0, 1] , where � ≈ 1 corresponds to 
a situation such that (almost) no constrictions within the pore space exist. In Prifling et al. 
(2021); Holzer et al. (2013); Neumann et al. (2020), it has been shown that this quantity 
has a significant impact on effective macroscopic properties of porous media such as effec-
tive diffusivity or permeability.

2.4.5 � Mean Spherical Contact Distance �(H)

Here we consider the distribution of the shortest (contact) distances from randomly cho-
sen points within the pore space to the solid phase. It is estimated from voxelized image 
data by an algorithm presented in Mayer (2004), which is based on the computation of the 
Euclidean distance transform Soille (2013); Maurer et al. (2003). The mean value of this 
distribution will be denoted by �(H) in the following. In Fig. 2f, the shortest distances from 
points in the pore space to the solid phase are visualized by (brighter and darker) colors, 
where the increase of brightness corresponds to an increase of contact distance. In particu-
lar, the radii of the red spheres in Fig. 2f correspond to the shortest distances from their 
midpoints to the soil.

2.4.6 � Mean value �(��) and standard deviation �(��) of geodesic tortuosity

A further transport-relevant quantity is the so-called geodesic tortuosity of the pore space. 
It describes the lengths and windedness of transport paths, which are completely contained 
in the pore space. From 3D image data, the distribution of (local) geodesic tortuosity is 
determined by computing the lengths of shortest paths from randomly selected pore voxels 
on a predefined starting plane to a parallel target plane, divided by the distance between 
those two planes, where shortest paths are computed using Dijkstra’s algorithm Jungnickel 
(2008). In Fig. 2g, two exemplarily chosen shortest paths (from left to right) are shown in 
red, where the color of each pore space pixel corresponds to the extent of shortest distance 
to the target plane and the increase of brightness corresponds to an increase of path length. 
Usually, the starting and target planes are chosen orthogonal to the relevant transport direc-
tion. For the image data considered in the present paper, we compute the distribution of 
geodesic tortuosity with respect to each of the three Cartesian axes directions. The mean 
geodesic tortuosity �(��) is then determined by averaging over all shortest path lengths 
divided by the distance between the starting and target planes. Analogously, the standard 
deviation �(��) is the empirical standard deviation of these normalized path lengths.
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Note that in many applications, only �(��) is considered in order to characterize the 
microstructure of porous media, despite the fact that �(��) contains further useful informa-
tion about the 3D morphology of the pore space, see Sect. 3.2 for a detailed discussion. 
Furthermore, besides geodesic tortuosity, there exist several other concepts of tortuosity in 
the literature, see e.g., Holzer et al. (2022); Ghanbarian et al. (2013) for a comprehensive 
overview. An example of such alternative tortuosity concepts is the so-called geometric 
tortuosity, which is described in the next paragraph.

2.4.7 � Mean value �(��) and standard deviation �(��) of geometric tortuosity

In contrast to geodesic tortuosity described above, the concept of geometric tortuosity 
(sometimes called skeletonized tortuosity) is based on the computation of a skeleton 
of the pore space, see Fig. 2h for an illustration where the skeleton is depicted in green 
color. In the present study, we compute the skeleton of the pore space by means of the 
Lee thinning Lee et  al. (1994); Saha et  al. (2016). Similar to the concept of geodesic 
tortuosity, shortest paths along the transport direction are computed by Dijkstra’s algo-
rithm Jungnickel (2008), where in case of geometric tortuosity only voxels that belong 
to the skeleton of the pore space are allowed to be visited. Two such shortest paths 
(from left to right) along the skeleton of the pore space are shown in Fig.  2h in red. 
Finally, we consider the distribution of the lengths of these shortest paths divided by 
the Euclidean distances between the starting and the target plane. Mean and standard 
deviation of this distribution are denoted by �(��) and �(��) , respectively. As in case of 
all direction-dependent microstructure characteristics considered in the present paper, 
these quantities are computed for each of the three Cartesian axis directions separately 
and then averaged.

Note that there exist various approaches for computing the skeleton of a 3D binary 
image, which in turn affects the computation of geometric tortuosity Soille (2013); Saha 
et al. (2016).

2.5 � Model Fitting and Validation

We now present statistical methods which will be used in Sect. 3 for a comprehensive 
structural analysis of the loam and sand samples as well as for establishing microstruc-
ture–property relationships, which quantitatively characterize the connection between 
geometrical descriptors of 3D pore space morphology and soil gas diffusion. In par-
ticular, in Sect. 3.2, regression formulas for the prediction of the M-factor are consid-
ered, which are based on different sets of descriptors of the 3D pore space morphology. 
In general, this approach leads to results that are easier to interpret compared to other 
methods from data science such as neural networks.

The regression formulas considered in Sect.  3.2 contain a small number of regres-
sion parameters, which are fitted by means of training data, i.e., a fraction of the 4608 
subsamples described in Sect. 2.2 is selected for determining “optimal” values for the 
regression parameters. In order to compute these parameters, the Levenberg–Marquardt 
algorithm Moré (1978) implemented in the python package scipy Virtanen et al. (2020) 
is used. This algorithm solves the unconstrained nonlinear least-squares problem of 
finding an optimal set of parameter values for a given regression formula and training 
data.
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To evaluate the performance of regression formulas, we select k = 1024 subsamples as 
test data, which have not been used for model fitting. Then, the goodness of fit is quantified 
by computing the coefficient of determination, denoted by R2 , as well as the mean absolute 
percentage error, denoted by MAPE . These two quantities are defined as

where M1,… ,Mk denote the M-factors computed by means of numerical simulations as 
described in Sect. 2.3 (ground truth), M̄ is the mean of M1,… ,Mk , and M̂1,… , M̂k denote 
the M-factors obtained by an empirically derived regression formula.

For fitting the model parameters, we use all data of subsamples from 5 cm and 10 cm 
depth from both loam and sand (3072 subsamples). Model validation by means of R2 and 
MAPE is performed on subsamples from 15 cm depth from both loam and sand (1536 sub-
samples). The parameters of all regression formulas considered in this study are fitted on 
the same (training) dataset, while validation of the fitted regression formulas is performed 
on subsamples from a depth which is not used for fitting. By performing model fitting and 
validation on different types of soil (loam and sand), we can show whether the best fitting 
regression formula is applicable for a general soil microstructure or only for structures very 
similar to those on which the model was fitted.

3 � Results

3.1 � Statistical Analysis of 3D Pore Space Morphology

The geometrical descriptors stated in Sect. 2.4 are used to quantitatively characterize the 
3D microstructure of the soil subsamples considered in this paper. Figure 3 shows the his-
tograms which have been obtained for various geometrical descriptors of subsamples from 
loam and sand, respectively. It turned out that some descriptors, such as porosity � and 
constrictivity � , can vary a lot between subsamples from the same soil texture at the chosen 
scale, whereas on average they differ only little between loam and sand, see Fig. 3a and 
f. Thus, such descriptors might be less useful to distinguish between the textures of both 
soil textures, but rather useful for describing variations of individual samples from a given 
soil texture. On the other hand, descriptors like the specific surface area S and mean chord 
length �(C) behave rather different for the two soil textures, see Fig. 3b and c. Therefore, 
they seem to capture the morphological differences between the textures much better than 
� and �.

A more detailed characterization of soil textures can be achieved by considering bivari-
ate probability densities for pairs of descriptors, see Fig. 4. While the univariate histograms 
of the mean chord length �(C) obtained for subsamples of loam and sand show a certain 
overlapping, see Fig. 3c, the joint (bivariate) probability densities of �(C) and the mean 
spherical contact distance �(H) allow to reliably distinguish between loam and sand, see 
Fig. 4b.

When looking at Fig. 3g and j, see also Fig. 4e, we observe that the results obtained for 
the two notions of (geodesic and geometric) tortuosity are rather different. In particular, 

(4)R2 = 1 −

∑k

j=1
(Mj −

�Mj)
2

∑k

j=1
(Mj − M̄)2

and MAPE =
100

k

k�
j=1

������

�Mj −Mj

Mj

������
,
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the mean geodesic tortuosity �(��) is smaller for sand in comparison with the correspond-
ing value obtained for loam (i.e., paths in the pore space of sand are shorter than those of 
loam), whereas the mean geometric tortuosity �(��) is greater for sand. This is likely to be 
caused by the fact that sand comprises of larger pores than loam such that the paths along 
the coarse skeleton become comparatively long, whereas the finer pore structure observed 
in loam leads to a skeleton with a large number of nodes, which is closer to the actual axes 
of the pore space. The two notions of (geodesic and geometric) tortuosity will be further 
discussed in Sect. 4 with regard to their usefulness as geometrical descriptors for micro-
structure–property relationships.
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Fig. 3   Histograms of geometrical descriptors—namely porosity (a), specific surface area (b), mean chord 
length (c), bottleneck radius r��� (d), characteristic pore radius r��� (e), constrictivity (f), mean and stand-
ard deviation of geodesic tortuosity (g, h), mean distance to solid phase (i), mean and standard devia-
tion of geometric tortuosity (j)—and the M-factor (l) computed from tomographic image data for the 
2 ⋅ 3 ⋅ 768 = 4608 subsamples of loam (blue) and sand (orange), respectively. The symbols † , ◦ and ⋆ indi-
cate the values obtained for the subsamples shown in Fig. 1
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A full analysis of the correlation coefficients between all pairs of geometrical 
descriptors considered in this paper is provided in the Appendix, see Fig. 7. For selected 
pairs of geometrical descriptors, Fig.  4 shows bivariate probability densities obtained 
by kernel density estimation as well as the corresponding Pearson correlation coeffi-
cients. With the exception of (�,�(��)) , the joint densities of all other pairs of geometri-
cal descriptor shown in Fig.  4 strongly depend on the considered soil texture, which 
once again highlights the structural differences between loam and sand. This suggests 
that any regression formula expressing the M-factor in terms of one of these pairs of 
geometrical descriptors would need to be adapted specifically to the distinct textures of 
sand and loam. Vice versa, regression formulas based on � and �(��) may be valid inde-
pendent of the considered soil texture.
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Fig. 4   Bivariate probability densities for pairs of geometrical descriptors, visualized as contour plots based 
on kernel density estimation, which have been obtained for the 2 ⋅ 3 ⋅ 768 = 4608 cubic subsamples of 
either loam (blue) or sand (orange). Furthermore, the values of Pearson’s correlation coefficient � are given 
for each descriptor pair, separately computed for loam and sand
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3.2 � Regression Formulas for the Quantification of Microstructure–Property 
Relationships

The scatter plots shown in Fig. 5 illustrate the dependence of the M-factor on various pairs 
of geometrical descriptors. In this section, we consider several empirically derived regres-
sion formulas which will be used for the quantification of microstructure–property relation-
ships and, in particular, for predicting the M-factor from the knowledge of an appropriately 
chosen vector of geometrical descriptors of the 3D pore space morphology.

A simple regression formula, which only involves the porosity � , is given by

This power-law type of a regression formula is frequently used in the literature, where the 
most well-known examples are probably the Buckingham formula ( c1 = 2 ) Buckingham 
(1904), the Millington–Quirk formula ( c1 =

4

3
 ) Millington and Quirk (1961), the formula 

(5)M̂1 = �c1 , for some c1 ≥ 1.
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Fig. 5   Scatter plots visualizing the dependence of the M-factor on various pairs of geometrical descriptors. 
The (brighter or darker) colors of the data points indicate whether the value of the corresponding M-factor 
is high or low. In this figure we do not distinguish between the two soil textures. For clarity of presentation, 
only randomly selected 10 % of the 4608 cubic subsamples have been used to generate the 461 data points 
in each subfigure
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derived by Marshall ( c1 =
3

2
 ) Marshall (1959), and the work of Lai et  al. (c1 =

5

3
) Lai 

et al. (1976). The data considered in the present paper leads to c1 = 1.71 , which is right in 
between the values used in the Buckingham and Millington–Quirk formulas, but closest to 
that of Lai et al. Lai et al. (1976).

Another simple regression formula is given by

which is used, for example, in Currie (1960) ( c1 = 1.9, c2 = 1.4 ), Currie (1961) 
( c1 = 1.75, c2 = 2.1 ) and Grable and Siemer (1968) ( c1 = 5.25, c2 = 3.36 ). Moreover, the 
formula

which has been introduced in Richter and Großgebauer (1978) with c1 = 0.0085 and 
c2 = 6.8 , is considered in the following. Besides, there are many other prediction formulas 
that only involve porosity, see e.g., Holzer et al. (2022); Shen and Chen (2007) for further 
details. However, a further consideration of this type of formulas is beyond the scope of 
the present paper, where a particular focus is now put on empirically derived regression 
formulas that—besides porosity—involve further (more sophisticated) descriptors of 3D 
pore space morphology such as the mean geodesic tortuosity �(��) or the constrictivity � . 
In particular, we consider the formula

which has been originally introduced in Stenzel et  al. (2016) (with 
c1 = 1.15, c2 = 0.37, c3 = −4.39 ), and refitted to 63,000 virtually generated microstruc-
tures in Prifling et al. (2021) (with c1 = 1, c2 = 0, c3 = −8.45).

Since Equation (8) does not hold in the dilute limit (i.e. for � → 1 ), the modified formula

has been used in Neumann et  al. (2020) (with c1 = 1.67, c2 = −0.48, c3 = −5.18 ) and in 
Prifling et al. (2021) (with c1 = 1.25, c2 = −1.25, c3 = −7.82 ), where the constrictivity � 
appears now in the exponent of the porosity �.

Besides formulas based on porosity, constrictivity and mean geodesic tortuosity, further 
geometrical descriptors of 3D pore space morphology can be taken into account. For example, 
the formula

which has been introduced in Barman et  al. (2019) for j = � (with 
c1 = 0.06, c2 = −2, c3 = −0.6, c4 = 1 ) and also considered in Prifling et  al. (2021) (with 
c1 = 1.18, c2 = −9.17, c3 = 0.03, c4 = 1.02 ), uses the standard deviation �(�j) of (geodesic 
or geometric) tortuosity as an additional geometrical descriptor.

Moreover, we consider the formula

which has not yet been considered in the literature. In general, the specific surface area 
S has only rarely been used in the literature for the prediction of diffusive properties. 

(6)�M2 = c1𝜀
c2 , for some c1, c2 > 0,

(7)M̂3 = c1e
c2�,

(8)�M4 = 𝜀c1𝛽c2𝜇(𝜏�)
c3 , for some c1 >, c2 ≥ 0, c3 ≤ 0,

(9)M̂5 = �c1+c2��(��)
c3 , where c1 + c2 ≥ 0, c3 ≤ 0,

(10)M̂6,j = c1�(�j)
c2�(�j)

c3�c4 , where j ∈ {�, �},

(11)M̂7 = �c1Sc2r
c3
���,
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However, a particular case of such a regression formula is presented in Moldrup et  al. 
(2001), which uses the formula M̂ = 1.1(� − 0.039S0.52) . However, this kind of regression 
formula can lead to negative values for the M-factor. In contrast, Equation (11) ensures that 
M̂7 ≥ 0.

Finally, we predict the M-factor by means of

which—besides porosity—contains the ratio of mean chord length �(C) and the mean 
spherical contact distance �(H) of a randomly chosen point within the pore space to the 
solid phase. The latter quantity can be regarded as some kind of shape information since 
this quotient in Equation (12) is larger for more elongated pores.

(12)M̂8 = �c1
(
�(C)

�(H)

)c2

,
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Fig. 6   Scatter plots visualizing the values obtained for the M-factor by numerical simulations versus those 
of the predicted M-factors M̂i, i = 1,… , 8 obtained for the test data of either loam (blue) or sand (orange). 
The parameters appearing in the prediction formulas given in Eqs. (5)−(12) have been fitted to the entire 
training data for loam and sand, see Table 1. In particular, Eq. (10), i.e. M̂6,j , occurs twice since the con-
cepts of both geodesic and geometric tortuosities are considered
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4 � Discussion

First, we consider the case, where data gained for both loam as well as sand samples 
(taken in the depths of 5 and 10 cm ) are used for training. Scatter plots visualizing the 
values obtained for the M-factor by numerical simulations versus those of the predicted 
M-factors M̂i, i = 1,… , 8 obtained for the test data of either loam or sand is shown in 
Fig. 6, where the parameters appearing in the prediction formulas given by Eqs. (5)–(12) 
have been fitted to the entire training data for loam and sand, see Table 1. The resulting 
values obtained for the coefficient of determination ( R2 ) and the mean absolute percent-
age error ( MAPE ) can also be found in Fig.  6. Furthermore, we compare the perfor-
mance of the regression formulas given by Eqs. (5) −(12), where the model parameters 
are fitted to data considered in the present paper, with that of regression formulas which 
have been proposed previously in the literature, see Table  2. Bear in mind that when 
using the latter formulas we do not refit the model parameters, but use the same param-
eter values as they have been derived—based on different kinds of data and using differ-
ent methodological approaches—in the original papers.

As expected, due to its simplicity, Equation (5) performs worst among all prediction formu-
las stated in Sect. 3.2. In this case, important structural details of the 3D pore space morphology 
are disregarded since only the porosity � is used to characterize the morphology of the pore 
space. In case of Equation (5), one obtains c1 = 1.71 , when fitting it to the entire set of train-
ing data considered in the present paper. This value is roughly in the middle between 1.5 Mar-
shall (1959) and 2 Buckingham (1904), but quite close to the values of c1 derived in Millington 
and Quirk (1961) and Lai et al. (1976). When introducing an additional model parameter, as 
in Eqs. (6) and (7), the MAPE can be reduced to 7.2% and 7.5% , respectively. However, fit-
ting Equation (6) to our soil data leads to quite different values for c1 and c2 compared to those 
obtained in Grable and Siemer (1968). Due to the large difference in the values of the expo-
nent c2 of the porosity � obtained in the present study and in Currie (1961); Grable and Siemer 
(1968), respectively, it is not surprising that the predictive power of Equation (6) with c1 = 1.92 
and c2 = 2.29 , as derived from our soil data, is significantly better. On the other hand, note 
that the value which we obtained for c1 in Equation (6) is similar to the one obtained in Currie 
(1960). In case of results derived in Currie (1961), applying an already existing regression for-
mula directly to the present soil data performs reasonably well (leading to a MAPE of 13.12% ), 
even though refitting the regression parameters to the soil data considered in the present paper 
leads—as expected—to better results. With regard to Equation (7), it is interesting to point out 
that choosing c1 = 0.02 and c2 = 6.88 leads to a significantly better predictive power compared 
to that obtained in Richter and Großgebauer (1978), even though their parameter values of 
c1 = 0.01 and c2 = 6.8 are quite close to the ones derived in the present paper.

A significant improvement of predictive power can be achieved by including further geo-
metrical descriptors of the 3D pore space morphology into the regression formulas. However, 
fitting the model parameters in Equation (8) to our soil data leads to c2 = 0.04 , i.e., the con-
strictivity � only plays a negligible role in the prediction of the M-factor. This effect has already 
been observed in Prifling et al. (2021), where 63,000 microstructures have been used for model 
fitting. Furthermore, directly applying the regression formulas derived in Prifling et al. (2021) 
and Stenzel et al. (2016) to the present soil data leads to the best results among all (previously 
derived) formulas from the literature listed in Table 2. In general, the validation scores R2 and 
MAPE can be significantly improved by using Equation  (8) compared to the prediction for-
mulas given in Eqs.  (5)−(7), which only use the porosity � . This emphasizes the impact of 
the mean geodesic tortuosity �(��) with regard to the prediction of diffusive mass transport in 
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porous media. Interestingly, the value which we obtained in Equation (9) for the coefficient c2 
of constrictivity � is not equal to zero, see Table 1. This matches with the results derived in Pri-
fling et al. (2021) and Neumann et al. (2020). Anyhow, it turned out that the predictive power 
of the regression formula given in Equation (9) is similar to that of the formula given in Equa-
tion (8), even though the value which we obtained for the exponent c2 of � in Equation (8) is 
close to zero, i.e., practically Equation (8) does not include the constrictivity � at all.

Note that the predictive power can be further increased when using Equation (10) for 
predicting the M-factor, where the regression formula given in Equation (10) is based on 
porosity, mean geodesic tortuosity as well as the standard deviation of geodesic tortuos-
ity. In this case, for the validation scores R2 and MAPE we obtained that R2 = 0.9 and 
MAPE = 5.4% , which turns out to be the best result among all prediction formulas con-
sidered in the present paper. This indicates that not only the mean value �(��) of shortest 
path lengths is of interest with regard to the prediction of diffusive mass transport, but also 
the corresponding standard deviation �(��) . However, directly applying Equation (10) with 
the values of the regression parameters derived in Prifling et al. (2021) and Barman et al. 
(2019) leads to a MAPE of 11.2% and 46.7% , respectively. This large difference can be 
explained by the corresponding values of the regression parameters, where in particular the 
values obtained for the exponents of �(��) and �(��) differ significantly between the results 
of Prifling et al. (2021) ( c2 = −9.17, c3 = 0.03 ), Barman et al. (2019) ( c2 = −2, c3 = 0.6 ) 
and our results ( c2 = −6.07, c3 = 0.07 ) obtained in the present paper.

We also remark that Equation (11), which uses porosity, specific surface area as well as 
the characteristic pore radius r��� , leads to similar results as Eqs. (8) and (9). Interestingly, 
using r��� for predicting the M-factor turns out to be useful, even though Equation (8) fitted 
to our soil data does practically not make use of the constrictivity � , which is closely linked 
to r��� . Finally, the M-factor can be predicted by means of Equation  (12). This leads to 
R2 = 0.87 and MAPE = 6.2% , which are similar values to those obtained for Eqs. (8), (9) 
and (11), see Table 1. Thus, the dimensionless quantity in Equation (11) given by the ratio 
of the mean chord length �(C) and the mean spherical contact distance �(H) , which char-
acterizes the shape of pores, is—in combination with porosity—well suited for predicting 
diffusive properties.

It is worth mentioning, that—in general—the question of the best geometrical descrip-
tors with regard to the prediction of the M-factor is hard to answer, since certain geometri-
cal descriptors that do not seem to be correlated with diffusive mass transport can be well 
suited for establishing microstructure–property relationships when they are combined with 
further microstructure characteristics. Moreover, for some features of 3D microstructures, 
several variants of geometrical descriptors are considered in the literature for one and the 
same structural feature. For example, as already mentioned in Sect. 2.4, there exist different 
notions of tortuosity, where it turned out that geodesic tortuosity is superior to geometric 
tortuosity with regard to the prediction of diffusive mass transport in soil, see the validation 
scores stated in Table 1 for M̂6,� and M̂6,� . This is likely to be caused by the fact that the 
skeleton of the pore space considered in the definition of M̂6,� takes the complex morphol-
ogy of the pore space only partially into account. On the other hand, not surprisingly, all 
regression formulas for predicting the M-factor, whose parameters have been fitted to the 
soil data considered in the present paper, perform better with respect to both validation 
scores R2 and MAPE than the corresponding regression formulas previously derived in the 
literature (and fitted to other types of image data), see Tables 1 and 2. This highlights the 
importance of using appropriately chosen data sets, which represent the nature of the 3D 
microstructure under consideration, for fitting the parameters of the regression formulas 
stated in Sect. 3.2.
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Recall that so far we considered the case, where data gained from both loam as well as 
sand samples (taken in the depths of 5 and 10 cm ) were used for training. Results regarding 
microstructure–property relationships, where only a subset of the training data (either for 
loam or sand) is used for fitting the regression parameters, can be found in the Appendix, 
see Figs.  8, 9 and 10. As expected, the predictive power decreases in most cases when 
using only a subset of the training data for fitting compared to using the complete training 
data. However, using only data from sand for both fitting and validation often leads to even 
better results. This may be due to the fact that many descriptors as well as the M-factor 
show a smaller variation for sand than for loam. In addition, similar to the previously con-
sidered case, the concept of geodesic tortuosity leads to better results regarding the predic-
tion of diffusive transport properties compared to geometric tortuosity. Moreover, it can be 
observed that Equation (10) seems to be quite robust in the sense that this regression for-
mula leads to a large predictive power even if the corresponding regression parameters are 
fitted based on one soil texture and applied to the other soil texture. However, note that the 
regression formulas discussed in this section might only be valid to a limited extent if they 
are applied to other types of 3D microstructures, which are significantly different compared 
to the soil samples considered in the present paper.

In addition, the microstructure–property relationships in this study have been estab-
lished on fairly small volumes ( 1.28mm × 1.28mm × 1.28mm ). This had the favorable 
effect that the variability of the M-factor across all subsamples was quite large for packed 
soils and hence suitable for testing the accuracy of different models. However, not only dif-
fusion but also some geometrical descriptors of 3D pore space morphology like tortuosity 
are scale-dependent Ghanbarian (2022). Therefore, it will be tested in a forthcoming study 
to which extent these models hold for larger soil volumes.

5 � Conclusion

In the present paper, we investigated the relationship between various geometrical descrip-
tors of the 3D pore space morphology and diffusive transport properties for two soil differ-
ent textures, namely loam and sand. For this purpose, sand and loam samples in 5, 10 and 
15 cm depth have been imaged by means of X-ray computed tomography and segmented 
into two phases (pores and solid). The six binary 3D images obtained in this way have been 
partitioned into 768 non-overlapping subsamples each, which resulted in a total number 
of 4608 subsamples. For each of these subsamples, the 3D morphology of the pore space 
has then been characterized by means of various geometrical descriptors including, among 
others, the porosity as well as the specific surface area, mean geodesic tortuosity, con-
strictivity and mean spherical contact distance of the pore space. Besides this geometrical 
characterization of the pore space, diffusive transport properties have been computed by 
numerically solving the Laplace equation with inhomogeneous flux boundary conditions.

A comprehensive statistical analysis of the 3D pore space morphology has been car-
ried out to quantify structural differences between sand and loam by determining univariate 
as well as bivariate probability distributions for individual geometrical descriptors and for 
pairs of them. Among others, it turned out that specific surface area and mean chord length 
of the pore space can be used to distinguish between loam and sand.

Moreover, microstructure–property relationships have been investigated for both 
types of soil, loam and sand, by means of parametric regression formulas. By using 
sophisticated geometrical descriptors of the 3D pore space morphology, which have 
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not yet been considered in the context of soil gas diffusion, the predictive power of the 
regression formulas could be increased significantly. Among others, the considered 
descriptors of 3D microstructure include mean and standard deviation of geodesic tor-
tuosity, constrictivity and mean chord length. In particular, it has been shown that with 
regard to the prediction of diffusive properties, the concept of geodesic tortuosity is 
superior compared to geometric tortuosity, which is based on skeletonization of the pore 
space. Furthermore, the robustness of the regression formulas has been investigated by 
fitting the regression parameters to one soil texture and applying the resulting regression 
formulas to the other soil texture. It turned out that the best performing regression for-
mula is based on porosity as well as mean and standard deviation of geodesic tortuosity, 
leading to a mean absolute percentage error of about 5 %. While, in general, the predic-
tive power of parametric regression formulas depends on the specific soil texture under 
consideration, the best regression formula performed well also in the case when fitted 
on one soil texture and applied to the other soil texture.

In summary, by our analysis we obtained an improved understanding of the rele-
vance of certain structural features of 3D soil microstructures—which we measured by 
means of geometrical descriptors—for diffusive transport properties and we were able 
to predict them much more accurately compared to the precision of conventional regres-
sion formulas from the literature. A possible topic for future research is extending this 
analysis to structures at different length scales. Developing an appropriate multi-scale 
approach would allow for the prediction of diffusive properties for very large soil struc-
tures. Moreover, the present approach can be applied to more realistically developed 
soils, where pronounced anisotropy effects are to be expected.

Appendix

See Figs. 7, 8, 9, 10. See Tables 1 and 2
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Fig. 7   Correlation coefficients between all pairs of geometrical descriptors (as well as the M-factor) con-
sidered in the present paper computed for the set of all 4608 subsamples (left) and for loam and sand indi-
vidually (right), where in the latter case the upper right part of the matrix (blue frame) shows the values 
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Table 1   Parameter values of 
regression functions fitted on the 
entire training data; validation 
scores R2 and MAPE obtained 
for the validation data considered 
in the present paper

Regression formula R
2 MAPE [%]

M̂1 = �1.71 0.79 8.40

M̂2 = 1.92�2.29 0.82 7.23

M̂3 = 0.02e6.88� 0.79 7.52

M̂4 = �1.06�−0.04�(��)−7.28 0.89 6.19

M̂5 = �1.17−0.18��(��)−7.00 0.88 6.23

M̂6,� = 2.19�(��)−6.07�(��)0.07�1.63 0.9 5.39

M̂6,� = 1.68�(��)0.23�(��)0.00�2.28 0.85 6.81

M̂7 = �2.60S−0.61r−0.45
���

0.87 6.23

M̂8 = �2.23(�(C)∕�(H))0.16 0.87 6.22

Table 2   Regression functions taken from the literature; validation scores R2 and MAPE obtained for the 
validation data considered in the present paper

Regression formula R
2 MAPE [%] References

M̂1 = �2.00 −1.1 27.83 Buckingham (1904)

M̂1 = �1.50 −0.62 28.03 Marshall (1959)

M̂1 = �1.33 −5.1 55.00 Millington and Quirk (1961)

M̂2 = 1.90�1.40 −62 172.81 Currie (1960)

M̂2 = 1.75�2.10 0.53 13.12 Currie (1961)

M̂2 = 5.25�3.36 −0.016 20.08 Grable and Siemer (1968)

M̂3 = 0.01e6.80� −4.4 46.70 Richter and Großgebauer (1978)

M̂4 = �1.15�0.37�(��)−4.39 0.76 8.56 Stenzel et al. (2016)

M̂4 = �1.00�0.00�(��)−8.45 0.73 8.93 Prifling et al. (2021)

M̂5 = �1.67−0.48��(��)−5.18 0.084 17.79 Neumann et al. (2020)

M̂5 = �1.25−0.25��(��)−7.82 0.46 13.27 Prifling et al. (2021)

M̂6,� = 0.06�(��)2.00�(��)−0.60�1.00 −1.2 30.35 Barman et al. (2019)

M̂6,� = 1.18�(��)−9.17�(��)0.03�1.02 0.6 11.22 Prifling et al. (2021)

M̂ = 1.1
(
� − 0.039S0.52

)
−43 146.67 Moldrup et al. (2001)
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Fig. 8   M-factor obtained by numerical simulations versus the predicted M-factor M̂i, i = 1,… , 4 , obtained 
for the validation data, where different regression formulas (given by Eqs. (5), (6), (7) and (8); from top to 
bottom) have been used. The colors of data points represent loam (blue) and sand (orange), respectively. 
The parameter values of regression formulas have been fitted on the entire training data (left), loam (center) 
and sand (right), respectively
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Fig. 9   M-factor obtained by numerical simulations versus the predicted M-factor M̂i, i = 5,… , 8 , obtained 
for the validation data, where different regression formulas (given by Eqs. (9), (10), (11), (12); from top to 
bottom) have been used. In particular, Equation (10) is used twice, once for geodesic tortuosity and once for 
geometric tortuosity. The colors of data points represent loam (blue) and sand (orange), respectively. The 
parameter values of regression formulas have been fitted on the entire training data (left), loam (center) and 
sand (right), respectively
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Fig. 10   Validation scores R2 and MAPE obtained for the regression formulas considered in the present 
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used for training/fitting and validation



524	 B. Prifling et al.

1 3

Acknowledgements  Nadja Ray and Alexander Prechtel thank Alice Lieu and Anne Hermann for supporting 
the data generation and handling of the effective diffusivities.

Author Contributions  Material preparation and data collection was performed by MP and SS. NR and AP 
elaborated the homogenized diffusion problems on the samples. Quantitative analysis and fitting of regres-
sion formulas were performed by BP and MW. The first draft of the manuscript was written by BP and MW. 
All authors contributed to writing and editing of the manuscript as well as the conception and design of the 
study.

Funding  Open Access funding enabled and organized by Projekt DEAL. This work was supported by the 
German Research Foundation (DFG) within the priority programme 2089 ’Rhizosphere spatiotemporal 
organization - a key to rhizosphere functions’ (grant numbers SCHM 997/33-1, 403640293, 403660839, 
403801423).

Data Availability  The data sets generated during and/or analyzed during the present study are available in 
the Zenodo repository https://​doi.​org/​10.​5281/​zenodo.​75162​28.

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Aizinger, V., Rupp, A., Schütz, J., Knabner, P.: Analysis of a mixed discontinuous Galerkin method for 
instationary Darcy flow. Comput. Geosci. 22, 179–194 (2018)

Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. in Proceedings of the IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2:60–65, IEEE Com-
puter Society, 2005

Banhart, J.: Advanced Tomographic Methods in Materials Research and Engineering. Oxford University 
Press, Oxford (2008)

Barman, S., Rootzén, H., Bolin, D.: Prediction of diffusive transport through polymer films from character-
istics of the pore geometry. AIChE J. 65, 446–457 (2019)

Bear, J.: Modeling Phenomena of Flow and Transport in Porous Media. Springer, Cham (2018)
Blunt, M.: Multiphase Flow in Permeable Media: A Pore-Scale Perspective. Cambridge University Press, 

Cambridge (2017)
Buckingham, E.: Contributions to our knowledge of the aeration of soils. US Department of Agriculture, 

Bureau of Soils, Washington (1904)
Burger, W., Burge, M.: Digital Image Processing: An Algorithmic Introduction Using Java, 2nd edn. 

Springer, London (2016)
Cooper, S.J., Kishimoto, M., Tariq, F., Bradley, R.S., Marquis, A.J., Brandon, N.P., Kilner, J.A., Shear-

ing, P.R.: Microstructural analysis of an LSCF cathode using in situ tomography and simulation. ECS 
Trans. 57, 2671–2678 (2013)

Currie, J.A.: Gaseous diffusion in porous media. Part 2. - Dry granular materials. British J. Appl. Phys. 
11(8), 318–327 (1960)

Currie, J.A.: Gaseous diffusion in porous media. Part 3 - Wet granular materials. British J. Appl. Phys. 
12(6), 275–281 (1961)

da Silva, T.S., Pulido-Moncada, M., Schmidt, M.R., Katuwal, S., Schlüter, S., Köhne, J.M., Mazurana, M., 
Juhl Munkholm, L., Levien, R.: Soil pore characteristics and gas transport properties of a no-tillage 
system in a subtropical climate. Geoderma 401, 115222 (2021)

https://doi.org/10.5281/zenodo.7516228
http://creativecommons.org/licenses/by/4.0/


525Quantifying the Impact of 3D Pore Space Morphology on Soil Gas…

1 3

Das, M.K., Mukherjee, P.P., Muralidhar, K.: Modeling Transport Phenomena in Porous Media with Appli-
cations. Springer, Cham (2018)

Deepagoda, T.C., Moldrup, P., Schjønning, P., de Jonge, L.W., Kawamoto, K., Komatsu, T.: Density-cor-
rected models for gas diffusivity and air permeability in unsaturated soil. Vadose Zone J. 10(1), 226–
238 (2011)

Gaiselmann, G., Neumann, M., Schmidt, V., Pecho, O., Hocker, T., Holzer, L.: Quantitative relationships 
between microstructure and effective transport properties based on virtual materials testing. AIChE J. 
60(6), 1983–1999 (2014)

Ghanbarian, B.: Scale dependence of tortuosity and diffusion: finite-size scaling analysis. J. Contam. 
Hydrol. 245, 103953 (2022)

Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. 
Soc. Am. J. 77(5), 1461–1477 (2013)

Grable, A.R., Siemer, E.G.: Effects of bulk density, aggregate size, and soil water suction on oxygen diffu-
sion, redox potentials, and elongation of corn roots. Soil Sci. Soc. Am. J. 32(2), 180–186 (1968)

Heroux, M.A., Willenbring, J.M.: Trilinos Users Guide. Tech. Rep. SAND2003-2952, Sandia National Lab-
oratories, 2003

Holzer, L., Marmet, P., Fingerle, M., Wiegmann, A., Neumann, M., Schmidt, V.: Tortuosity and Micro-
structure Effects in Porous Media: Classical Theories, Empirical Data and Modern Methods. 2022. 
submitted

Holzer, L., Wiedenmann, D., Münch, B., Keller, L., Prestat, M., Gasser, P., Robertson, I., Grobéty, B.: The 
influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel 
cells. J. Mater. Sci. 48, 2934–2952 (2013)

Hornung, U.: Homogenization and Porous Media. Springer, New York (1997)
Jungnickel, D.: Graphs Netw. Algorithms, 2nd edn. Springer, Berlin (2008)
Katuwal, S., Arthur, E., Tuller, M., Moldrup, P., de Jonge, L.W.: Quantification of soil pore network com-

plexity with X-ray computed tomography and gas transport measurements. Soil Sci. Soc. Am. J. 79(6), 
1577–1589 (2015)

Katuwal, S., Norgaard, T., Moldrup, P., Lamandé, M., Wildenschild, D., de Jonge, L.W.: Linking air and 
water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. 
Geoderma 237, 9–20 (2015)

Lai, S.-H., Tiedje, J.M., Erickson, A.E.: In situ measurement of gas diffusion coefficient in soils. Soil Sci. 
Soc. Am. J. 40(1), 3–6 (1976)

Lee, T., Kashyap, R., Chu, C.: Building skeleton models via 3-D medial surface axis thinning algorithms. 
CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994)

Lippold, E., Phalempin, M., Schlüter, S., Vetterlein, D.: Does the lack of root hairs alter root system archi-
tecture of zea mays? Plant Soil 467, 267–286 (2021)

Marshall, T.: The diffusion of gases through porous media. J. Soil Sci. 10, 79–82 (1959)
Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)
Maurer, C.R., Qi, R., Raghavan, V.: A linear time algorithm for computing exact Euclidean distance 

transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 25, 
265–270 (2003)

Mayer, J.: A time-optimal algorithm for the estimation of contact distribution functions of random 
closed sets. Image Anal. Stereol. 23, 177–183 (2004)

Millington, R.: Gas diffusion in porous media. Science 130(3367), 100–102 (1959)
Millington, R.J., Quirk, J.P.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961)
Moldrup, P., Olesen, T., Gamst, J., Schjønning, P., Yamaguchi, T., Rolston, D.: Predicting the gas diffu-

sion coefficient in repacked soil water-induced linear reduction model. Soil Sci. Soc. Am. J. 64(5), 
1588–1594 (2000)

Moldrup, P., Olesen, T., Komatsu, T., Schjønning, P., Rolston, D.: Tortuosity, diffusivity, and permeabil-
ity in the soil liquid and gaseous phases. Soil Sci. Soc. Am. J. 65(3), 613–623 (2001)

Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) 
Num. Anal., vol. 630, pp. 105–116. Springer, Heidelberg (1978)

Münch, B., Holzer, L.: Contradicting geometrical concepts in pore size analysis attained with electron 
microscopy and mercury intrusion. J. Am. Ceram. Soc. 91(12), 4059–4067 (2008)

Neumann, M., Stenzel, O., Willot, F., Holzer, L., Schmidt, V.: Quantifying the influence of microstruc-
ture on effective conductivity and permeability: virtual materials testing. Int. J. Sol. Struct. 184, 
211–220 (2020)

Newman, J., Thomas-Alyea, K.: Electrochemical Systems, 3rd edn. Wiley, Hoboken (2004)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 

9(1), 62–66 (1979)



526	 B. Prifling et al.

1 3

Prechtel, A., Lieu, A., Phalempin, M., Schulz, R.: Evaluating the effective diffusion in soil columns 
including biopores by homogenization. 2022. Preprint-Reihe Angewandte Mathematik 416, Frie-
drich-Alexander Universität Erlangen-Nürnberg, ISSN 2194-5127

Penman, H.L.: Gas and vapour movements in the soil: I. The diffusion of vapours through porous solids. 
J. Agric. Sci. 30(3), 437–462 (1940)

Prifling, B., Röding, M., Townsend, P., Neumann, M., Schmidt, V.: Large-scale statistical learning for 
mass transport prediction in porous materials using 90,000 artificially generated microstructures. 
Front. Mater. 8, 786502 (2021)

Rabot, E., Wiesmeier, M., Schlüter, S., Vogel, H.-J.: Soil structure as an indicator of soil functions: A 
review. Geoderma 314, 122–137 (2018)

Ray, N., Rupp, A., Schulz, R., Knabner, P.: Old and new approaches predicting the diffusion in porous 
media. Trans. Porous Media 124, 803–824 (2018)

Richter, J., Großgebauer, A.: Untersuchungen zum Bodenlufthaushalt in einem Bodenbearbeitungsver-
such. 2. Gasdiffusionskoeffizienten als Strukturmaße für Böden. Zeitschrift für Pflanzenernährung 
und Bodenkunde 141(2), 181–202 (1978)

Rupp, A., Knabner, P.: Convergence order estimates of the local discontinuous Galerkin method for 
instationary Darcy flow. Num. Methods Partial Differ. Eq. 33, 1374–1394 (2017)

Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied 
Mathematics, Philadelphia (2003)

Saha, P.K., Borgefors, G., Sanniti di Baja, G.: A survey on skeletonization algorithms and their applica-
tions. Pattern Recognit. Lett. 76, 3–12 (2016)

Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Mod-
ern Approaches, 2nd eds. Wiley-VCH, Weinheim (2011)

Schladitz, K., Ohser, J., Nagel, W.: Measuring intrinsic volumes in digital 3D images. In: Kuba, A., 
Nyúl, L., Palágyi, K. (eds.) 13th International Conference on Discrete Geometry for Computer 
Imagery, 247–258. Springer, (2007)

Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)
Shen, L., Chen, Z.: Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62(14), 

3748–3755 (2007)
Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., Rey, A.: Exchange of greenhouse gases 

between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. 
Soil Sci. 54(4), 779–791 (2003)

Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Berlin (2013)
Stenzel, O., Pecho, O.M., Holzer, L., Neumann, M., Schmidt, V.: Predicting effective conductivities 

based on geometric microstructure characteristics. AIChE J. 62, 1834–1843 (2016)
Vetterlein, D., Lippold, E., Schreiter, S., Phalempin, M., Fahrenkampf, T., Hochholdinger, F., Marcon, 

C., Tarkka, M., Oburger, E., Ahmed, M., Javaux, M., Schlüter, S.: Experimental platforms for the 
investigation of spatiotemporal patterns in the rhizosphere - Laboratory and field scale. J. Plant 
Nutr. Soil Sci. 184(1), 35–50 (2021)

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peter-
son, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., 
Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ, Feng, Y., Moore, E.W., VanderP-
las, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, 
A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P, SciPy 1.0 Contributors.: SciPy 1.0: Fundamental 
algorithms for scientific computing in python. Nat. Methods 17, 261–272 (2020)

Wieners, C.: Distributed point objects A new concept for parallel finite elements. In: Barth, T.J., Griebel, 
M., Keyes, D.E., Nieminen, R.M., Roose, D., Schlick, T., Kornhuber, R., Hoppe, R., Périaux, J., Piron-
neau, O., Widlund, O., Xu, J. (eds.) Domain Decomposition. Methods in Science and Engineering, pp. 
175–182. Springer, Berlin (2005)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.



527Quantifying the Impact of 3D Pore Space Morphology on Soil Gas…

1 3

Authors and Affiliations

Benedikt Prifling1   · Matthias Weber1 · Nadja Ray2 · Alexander Prechtel3 · 
Maxime Phalempin4 · Steffen Schlüter4 · Doris Vetterlein4 · Volker Schmidt1

 *	 Benedikt Prifling 
	 benedikt.prifling@uni-ulm.de

1	 Institute of Stochastics, Ulm University, Ulm, Germany
2	 Mathematical Institute for Machine Learning and Data Science, Catholic University of Eichstätt-

Ingolstadt, Ingolstadt, Germany
3	 Department of Mathematics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, 

Germany
4	 Department of Soil System Science, Helmholtz-Centre for Environmental Research – UFZ, Halle, 

Germany

http://orcid.org/0000-0002-2952-0208

	Quantifying the Impact of 3D Pore Space Morphology on Soil Gas Diffusion in Loam and Sand
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Sample Acquisition
	2.2 X-ray Computed Tomography Scanning and Binarization
	2.3 Computation of Diffusive Properties
	2.4 Geometrical Descriptors of Pore Space
	2.4.1 Porosity 
	2.4.2 Specific Surface Area S
	2.4.3 Mean Chord Length 
	2.4.4 Constrictivity 
	2.4.5 Mean Spherical Contact Distance 
	2.4.6 Mean value  and standard deviation  of geodesic tortuosity
	2.4.7 Mean value  and standard deviation  of geometric tortuosity

	2.5 Model Fitting and Validation

	3 Results
	3.1 Statistical Analysis of 3D Pore Space Morphology
	3.2 Regression Formulas for the Quantification of Microstructure–Property Relationships

	4 Discussion
	5 Conclusion
	Appendix
	Acknowledgements 
	References




