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Abstract
Previously performed experiments on flow through an ordered porous media cell with 
tomographic particle image velocimetry reveal a complex three-dimensional steady-state 
flow pattern. This flow pattern emerge in the region where inertial structures have been 
previously reported for a wide range of packings. The onset of these steady-state inertial 
flow structures is here scrutinized for three different types of packing using a finite dif-
ference method. It is concluded that the onset of the flow structure coincides with a sym-
metry break in the flow field and discontinuities in the pressure drop, volume averaged 
body forces and heat transfer. A quantity for identifying the transition is proposed, namely 
the pressure integral across the solid surfaces. It is also shown that the transition can both 
increase and decrease the heat transfer dependent on the actual geometry of the porous 
medium.
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List of Symbols
L	� Unit dimension of length
M	� Unit dimension of mass
T	� Unit dimension of time
Θ	� Unit dimension of temperature
Ω	� Fluid domain ( L3)
�Ω	� Fluid solid boundary ( L2)
�	� Kinematic viscosity ( L2T−1)
�	� Dynamic viscosity ( ML−1T−1)
�	� Thermal diffusivity ( L2T−1)
�	� Density ( ML−3)
t	� Time coordinate ( T)
xi	� Position coordinate vector ( L)
ui	� Velocity vector ( LT−1)
u	� X-direction velocity component ( LT−1)
v	� Y-direction velocity component ( LT−1)
w	� Z-direction velocity component ( LT−1)
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T	� Temperature ( Θ)
p	� Pressure ( ML−1T−2)
�	� Compressibility factor ( ML−1T−2)
Uint	� Average speed of fluid inside pores ( LT−1)
UDarcy	� Average speed of fluid averaged over solid and liquid phase ( LT−1)
Dp	� Obstruction diameter ( L)
Dp	� Obstruction radius ( L)
L	� Cell side length ( L)
Fi	� Momentum volume source ( ML−2T−2)
F�	� Norm of force gradient ( MT−2)
S	� Temperature source ( �T−1)
TG	� Temperature gradient ( �L−1)
psolid	� Average pressure at �Ω ( ML−1T−2)
�	� Porosity
Nt	� Number of timesteps
Nn	� Number of viscosity values in sweep
Re	� Reynolds number
ReDarcy	� Darcy velocity based Reynolds number
p∗	� Dimensionless pressure drop
Pr	� Prandtl number
Nu	� Nusselt number
Nuavg	� Average Nusselt number at �Ω
T̄ 	� Time average of T
< T >	� Spatial average of T
T ′	� Fluctuating value of T
|T|	� Absolute value of T
|Ti|	� Norm of vector Ti
T,i	�

(
�T

�xi

)

�(T)	� Spatial standard deviation of T

1  Introduction

Porous media flow takes place in many natural and industrial processes including flow 
through soils, aquifers, oil and gas reservoirs (Bear 1972), textiles (filters, for instance), 
biological tissues and plants. Other examples are flow through fuel cells (Farzaneh et al. 
2021), cooling of batteries Moosavi et  al. (2021), flow during composites manufactur-
ing (Lu et al. 2017; Tan and Pillai 2012a, b, c),industrial wicks (Zarandi et al. 2022) flow 
during paper-making, drying of iron ore pellets (Burstrom et al. 2018), internal erosion in 
embankment dams (Frishfelds et al. 2011), heat exchangers (Odabaee and Hooman 2012) 
and in-tissue drug delivery. This long list of applications (although it is not by far com-
plete) points out that it is of utmost importance to increase the understanding of different 
flow structures present in various kinds of porous media. Increased knowledge will enable 
an optimization of the properties of the porous media as well as the parameters governing 
the flow. As to Reynolds number the flow in porous media is usually subdivided into four 
regions, these are called the Darcy region, laminar steady region, laminar unsteady region 
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and turbulent region. The regions are defined by the following flow conditions being 
observed (Seguin et al. 1998a, b):

•	 Darcy - p,i ∝ ui,
•	 Laminar steady - �ui

�t
= 0,

•	 Laminar unsteady - �ui
�t

≠ 0 without turbulent cascade,
•	 Turbulent - �ui

�t
≠ 0 with turbulent cascade.

Where p,i denotes �p
�xi

 . In addition other categories for flow through porous media can be 
identified including Newtonian or Non-Newtonian behaviour, single and multi-phase flow, 
wicking and saturated flow and free or confined flow, e.g. (Xu and Pillai 2017; Larsson 
et al. 2018; Jouybari and Lundstrom 2021). In this study Newtonian, single-phase, incom-
pressible, low Knudsen number, saturated confined flow is considered.

The different regions as to Reynolds number have been considered in a number of stud-
ies with focus on different types of porous media. To exemplify, for turbulent flow through 
ordered arrays the particle shape and the type of array are crucial for how important differ-
ent turbulent quantities are (Yang et al. 2014) and the heat flux due to thermal dispersion 
and turbulence is small as compared to the convective contribution (Jouybari et al. 2020). 
Plots from the same study also show that the heat flux caused by turbulence is limited 
to single pores confirming that the size of turbulent structures in porous media is gener-
ally limited to the pore scale, leading to the pore-scale prevalence hypothesis (Jin et  al. 
2015; Uth et  al. 2016). Only for a limited range of porosities 𝜙 > 0.93 and Darcy num-
bers, the turbulence structures can extend to nearby pores (Rao and Jin 2022). Randomly 
packed beds of spheres is another type of porous medium that has been scrutinized. With 
focus on turbulence, results in (Patil and Liburdy 2013) show that the characteristics of 
the turbulence is nearly the same between pores. In (Nguyen et  al. 2018) comparisons 
between velocities and the Reynolds stresses yield an increase in turbulent intensity and 
the mixing within the pores when the Reynolds number is increased. In (Khayamyan et al. 
2017a, 2017b) also flow through randomly packed beds is studied but with focus on the 
laminar unsteady region. From Stereoscopic Particle Image Velocimetry it is, for instance, 
shown that the spatial variation in the time averaged absolute velocity increases with 
particle Reynolds number up to about 410 and then the variation decreases (Khayamyan 
et al. 2017). This is explained with a transition from the laminar unsteady to the turbulent 
region. A similar observation is reported in Johns et al. (2000) who analyzed inertial transi-
tions in packed beds by using magnetic resonance imaging. The spatial variance of velocity 
decreases considerably at a local (pore) Reynolds number of about 30. The mechanisms is, 
however, likely to be different to that in Khayamyan et al. (2017) since the decrease with 
Reynolds number in Johns et al. (2000) takes place in the laminar steady regime. Scruti-
nizing the results in Khayamyan et al. (2017), in detail (Figures 9, 10), the spatial varia-
tion in velocity actually decreases when the Reynolds number increases between 20 and 40 
(before the variation increases up to Reynolds number 410). This is in the laminar steady 
flow region for this geometry and therefore in-line with the results in Johns et al. (2000) 
indicating that the epsilon shaped effect is a generic feature.

In the above discussion, a few values of the Reynolds number are mentioned. It should 
however be stated that the transitional Reynolds numbers are crucially dependent on the 
geometry studied. This will also be the case for the onset of the flow structures examined 
in this study. For porous media flow, the different types of Reynolds numbers used in the 
literature can complicate comparisons to actual Reynolds numbers even more.
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This study focuses on a type of inertial flow structure observed in the laminar steady flow 
region for saturated Newtonian single phase flow through structured porous media. The epsi-
lon-shaped effect studied inhere, was first observed in a previous work by the authors of this 
article when studying the flow through a porous medium consisting of pillars placed between 
two parallel horizontal and two parallel vertical plates see Fig. 1 (Forslund et al. 2021). The 
effect is named the epsilon effect due to the epsilon-shaped inertial cores that are formed for 
this particular geometry. Based on data available it is concluded that the structure is caused by 
wall interactions and that it remains steady as long as the Reynolds number is kept constant. 
Numerical simulations later confirmed that a similar, albeit distinct, flow structure could arise 
independent of wall interactions. In this study, a finite difference method (FDM) solver is uti-
lized and the onset of the effect is scrutinized to yield a greater insight into the underlying 
mechanisms. The results show that for high-tortuosity porous media, an inertial-viscous tran-
sition occurs that is characterized by a breakdown of the high pressure region on the imping-
ing surfaces. The transition manifests as a symmetry break in the flow field with inertial cores 
that are directed around the obstructing geometry. It is also shown that the transition occurs in 
packings of spheres.

2 � Theory

The full Navier–Stokes equations on tensor form reads

where ui is the velocity vector, � is the density, � is the kinematic viscosity and Fi is some 
external body force term like gravity on volume density form. For steady-state flows the 
transient flow field variation is zero, i.e. �ui

�t
= 0 . These two measures simplify Eq. (1) to

(1)�

(
�ui

�t
+ ujui,j

)
= −p,i + ��ui,jj + Fi

Fig. 1   The epsilon effect as 
observed experimentally by 
tomographic PIV measurements, 
the green planes indicates the 
position of the slices in the 
porous cell. Inlet is to the left 
and outlet to the right with the 
flow direction along the posi-
tive x-axis. The pillars seen are 
placed between two parallel 
horizontal and two parallel 
vertical walls. Further details are 
available in Forslund et al. (2021)
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From left to right the above terms are referred to as the inertial term, static pressure term, 
viscous drag term and the source term. Integrating this expression over the fluid domain Ω 
gives the average contribution of each term

These quantities are referred to as spatially averaged terms and is the average force balance 
in the fluid domain. In this study periodic boundary conditions are applied, this implies 
that the entire fluid domain consists of closed steady-state streamlines. Therefore the spa-
tially averaged value of the convective term ∫

Ω
ujui,j is zero, and Eq. (3) is reduced to

If the pressure gradient term is significantly larger than the viscous term, the flow is said 
to be inertially limited. Another useful quantity is the volume averaged force magnitudes 
defined by

These quantities give an idea of how much the average local force balance varies between 
the computational elements.

2.1 � Dimensionless Numbers

2.1.1 � Reynolds Number

The Reynolds number characterizes the flow-dynamics of the hydrodynamic phase, here 
defined as

Where Uint is the interstitial velocity defined as the average streamwise velocity in the fluid, 
Dp is the obstruction diameter and � is the kinematic viscosity as introduced earlier. This 

(2)�ujui,j + p,i − ��ui,jj = Fi.

(3)
�

(
∫Ω

dΩ

)−1(
∫Ω

ujui,jdΩ + ∫Ω

1

�
p,idΩ − ∫Ω

�ui,jjdΩ

)

=

(
∫Ω

dΩ

)−1(
∫Ω

FidΩ

)
.

(4)
�

(
∫Ω

dΩ

)−1(
∫Ω

1

�
p,idΩ − ∫Ω

�ui,jjdΩ

)

=

(
∫Ω

dΩ

)−1(
∫Ω

FidΩ

)
.

(5)

< �Fp� >=
�
∫Ω

dΩ

�−1�
∫Ω

√
p,ip,idΩ

�
,

< �F𝜈� >= 𝜌

�
∫Ω

dΩ

�−1�
∫Ω

𝜈
√
ui,jjui,kkdΩ

�
,

< �Fconv� >= 𝜌

�
∫Ω

dΩ

�−1�
∫Ω

√
ujui,jukui,kdΩ

�
.

(6)Re =
UintDp

�
.
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definition of the Reynolds number will be used in the analysis. For comparison to earlier 
works the Darcy-velocity-based Reynolds number is used, defined as

The value of UDarcy is related to the interstitial velocity via Uint = UDarcy∕� , where � is the 
porosity.

2.1.2 � Prandtl Number

The Prandtl number is defined as the ratio of the viscous diffusion to the thermal diffusion

2.1.3 � Dimensionless Pressure Drop

The dimensionless pressure drop, p∗ , can be interpreted as a dimensionless measure of the 
deviation from Darcy’s law for non-Stokesian flow. If p∗ is constant with respect to the Reyn-
olds number then the pressure drop increases linearly with velocity. This expression can be 
written as Lundstrom et al. (2010)

Here R is a reference length scale, which in this work is set to the radius of the obstruc-
tions, |Fi| is the norm of the force density, i.e. the body force acting on each unit volume, 
and � is the dynamic viscosity.

2.1.4 � Nusselt Number

The Nusselt number Nu is a dimensionless measure of the heat transfer between the solid 
phase and the fluid phase defined as Foudhil et al. (2012)

In this expression T is the temperature, n is the normal pointing out from the wall at the 
fluid solid boundary �Ω , L is some length scale, here set to the obstruction diameter 
L = 2R . Tfw is the wall temperature and Tfm is the bulk temperature defined by

Where ux is the streamwise velocity. For all cases discussed in this article Tfw ≡ 0 which 
simplifies the expression for the Nusselt number to

(7)ReDarcy =
UDarcyDp

�
.

(8)Pr =
�

�
.

(9)p∗ =
|Fi|R2

�Uint

.

(10)Nu =
(
�T

�n

)
n=�Ω

L

Tfm − Tfw
.

(11)Tfm =
∫
Ω
TuxdΩ

∫
Ω
uxdΩ

,
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The average Nusselt number taken across the entire boundary �Ω can then be written as

3 � Method

3.1 � Numerical Method

An in-house finite difference, artificial compressibility solver with explicit time-stepping is 
utilized for the numerical analysis. The code is available under a free license at https://gitlab.
com/c8383/gpu-fdm and further technical details regarding the implementation of the model 
is available in the repository. In addition to this, the discretization is described in detail in 
Appendix A. There are alternative models known to the authors such as LBM (Abbaszadeh 
et al. 2017; Forslund et al. 2021) and FVM methods (Lundstrom et al. 2010); the model in 
this work was chosen based on the simplicity of the discretization scheme which provides full 
insight into the flow field update procedure, which is essential to this study. Since the aim is to 
solve the equations for a fluid, Navier–Stokes equations are applied. The momentum balance 
hence becomes

The standard continuity condition ( ui,i = 0 ) is replaced by an artificial compressibility con-
dition (Kwak and Kiris 2011)

Where � is the compressibility factor. A known problem for collocated grids are checker-
boarding (Ferziger et al. 2002), in this solver the checkerboarding is reduced by a pressure 
field smoothing operation which increases neighboring cell interactions, the expression for 
the smoothing operation is

where Sp is some smoothing factor. The thermal distribution is governed by the convection-
diffusion equation

where T is the temperature, � is the thermal diffusivity, and S is a source term. The density 
is set to unit � = 1ML−3 for all calculations.

(12)Nu =
(
�T

�n

)
n=�Ω

2R ∫
Ω
uxdΩ

∫
Ω
TuxdΩ

.

(13)Nuavg =

∫
�Ω

(
�T

�n

)
n=�Ω

2R ∫
Ω
uxdΩ

∫
Ω
TuxdΩ

d(�Ω)

∫
�Ω

d(�Ω)
.

(14)
�ui

�t
+ ujui,j = −

1

�
p,i + �ui,jj +

1

�
Fi.

(15)
�p

�t
+ �ui,i = 0.

(16)
�p

�t
+ Spp,ii = 0,

(17)
�T

�t
+ ujT,j = �T,jj + S,
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3.2 � Temporal and Spatial Discretization

The spatial discretization is second-order accurate and utilizes central derivatives for all 
relevant quantities, i.e. if � is some field variable then the second- and first-order deriva-
tives are given by

The computational kernel consists of seven neighboring interacting elements as visualized 
in Fig.  2. The temporal discretization is first-order accurate and utilizes a simple Euler-
forward scheme, i.e. the value of the field variable � at time t + 1 is only dependent on field 
variables at time t

Here f is a general function which includes any field values at time t within the compu-
tational kernel. To ensure that the compressibility effects are minimal the Mach number, 
defined as cell velocity over sound velocity U∕Uc , should be kept at a low value (Kwak and 
Kiris 2011).

3.3 � Computational Grid

The nodes are spaced equidistantly in all directions ( Δx = Δy = Δz = 1 ) across a lattice of 
size nx × ny × nz . The nodes are then set as either wall elements or fluid elements, i.e. the 
geometry is approximated using the stepwise approximation as described in Ferziger et al. 
(2002).

(18)
d�

dxi
=

(�i+1 − �i−1)

2Δxi
+ O(Δx2

i
),

(19)
d2�

dx2
i

=
(�i+1 − 2�i + �i−1)

Δx2
i

+ O(Δx2
i
).

(20)�t+1 = �t + Δtf + O(Δt).

Fig. 2   The computational kernel 
for the FDM solver, all field val-
ues � are collocated. The colored 
spheres indicates the node 
centers in the different coordinate 
directions x (red), y (green) and 
blue (z)
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3.4 � Verification of Numerical Method

To ensure that the FDM model is accurate it is verified against two cases. For the thermal 
part the model is compared against an analytical solution for a heated channel case derived by 
Rybiński and Mikielewicz (2014). For the porous media part the dimensionless drag is com-
pared to the simulations of Koch and Ladd (1997).

3.4.1 � Thermal Plane Channel Flow

The thermal channel verification case, see Fig. 3 for the geometry, consists of a plane channel 
of dimensions a, b with constant temperature walls ( Tw ), and a driving force ( Fx ). The temper-
ature gradient in the streamwise direction is specified as some value dT

dx
= TG . For this case the 

following analytical solution for the velocity was derived by Rybiński and Mikielewicz (2014)

Where Cn = (2n − 1)� and K = a∕b . The analytical expression for the temperature is given 
by

The calculation input values are summarized in Table 1, Nt is the amount of time-steps 
before data is saved. The FDM model agrees perfectly with the analytical expression for 
the cases of velocity and temperature, see Fig. 4.

(21)

ux(z, y) =
Fx

�

[
1

2

(
y2 −

b2

4

)
+ ...

− 4b2
∞∑
n=1

(−1)n

C3
n

cosh
(
CnK

z

a

)

cosh
(
CnK

1

2

) cos
(
Cn

y

b

)]
.

(22)

T(x, y) = Tw +
FxTG

��

�
1

8

�
y4

3
−

b2y2

2
+

5b4

48

�
+ ...

+ 2b4
∞�
n=1

(−1)n

C5
n

�
2 + CnK

1

2
tanh

�
CnK

1

2

�
+ ...

− CnK
z

a
tanh

�
CnK

z

a

��
×

cosh

�
CnK

z

a

�

cosh

�
CnK

1

2

� cos

�
Cn

y

b

�⎫⎪⎬⎪⎭
.

Fig. 3   Geometry of the plane 
channel used for thermal verifica-
tion case
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3.4.2 � Porous Media Flow

The porous media verification case consists of an ordered cubic array of cylinders with the 
REV being a single quadratic elementary cell of side length L and cylinder diameter Dp , 
see Fig. 5. The flow is driven by a force gradient, F� , which results in an average stream-
wise Darcy velocity, UDarcy , that can be used to calculate the dimensionless drag, F�

�UDarcy

 , 

and the Reynolds number, ReDarcy =
UDarcyDp

�
 . The calculation input values are summarized 

in Table 2, Nt is the amount of time-steps before data is saved for each viscosity, Nn is the 
amount of viscosities, �(n) is the viscosity for sweep number n starting from n = 0 and end-
ing at n = Nn − 1 . The FDM model agrees excellently with the computations carried out by 
Koch and Ladd (1997) throughout the inertial region and into the unsteady region 
( ReDarcy > 150 ) as well, see Fig. 6.

4 � Results

Three different types of porous media are investigated, see Fig. 7 for the geometries and 
the meshes. These are a staggered array of cylinders, in which the epsilon-shaped, inertial 
flow structure of interest here was first discovered, a staggered array of rods with a quad-
ratic cross section, and a body-centered cubic (BCC) packing of spherical obstructions. 
The boundary conditions for the cells are periodic in all directions x, y and z where the wall 
elements are defined using a stepwise approximation, marked to the right in Fig. 7. The 
obstruction diameter Dp is the width of the obstruction and � is the resulting porosity from 
the stepwise approximation. The flow is driven by a body force in the x-direction, Fx , and 
the viscosity is varied to investigate how the properties of the bed changes with Reynolds 
number. For all cases, the temperature of the wall elements is set to zero and a constant 
temperature source, S, is applied to all fluid elements. This method of obtaining the Nusselt 
number is described by Chu et al. (2019) who use a varying temperature source to enforce 
a constant heat flux, for a steady-state temperature field the source term S can be specified 
as a constant. An Nt amount of time steps are calculated for each viscosity to allow all flow 
field variables to reach a steady-state. See Table 3 for a summary of the simulation param-
eters for each case. A grid sensitivity analysis is presented in Appendix B. The variation of 

Table 1   Summary of the 
specified simulation parameters 
used for the thermal plane 
channel flow verification case

Parameter Value

(nx × ny × nz) (128 × 64 × 64)

� 0.045
� 0.045
� 0.0125
Fx 3 × 10−5

TG 5 × 10−8

Tw 0
Δt 1
Nt 100000
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the dimensionless pressure drop p∗ with Re is presented in Fig. 8, it can be seen how the 
value of p∗ tends to a constant value for low Re Darcian flow.

4.1 � Flow Field Changes

For all geometries investigated a discontinuity is observed in a multitude of variables at 
a Reynolds number specific to each packing type. This discontinuity is accompanied by 
a dramatic change in the flow field as exemplified with the velocity fields in Fig. 9. For 
the staggered cylinder and staggered rod cases the flow field exhibits a symmetry break 
with the emergence of complex 3D flow structures. The value of Re where the structure 
appears coincides with the value in the experimental work presented in Forslund et al. 
(2021), appearing at an Re of ≈ 80 . For the BCC packing there are two separate transi-
tions, one occurring at Re = 150 and a second one occurring at Re ≈ 230 − 250 . Since 
the transitions are triggered by an increase in Re it is assumed that they are caused by 
inertial forces starting to dominate over viscous forces.

Fig. 4   Comparison between 
analytical (Rybiński and Mikiele-
wicz 2014) and FDM solution for 
thermal channel flow



562	 T. O. M. Forslund et al.

1 3

As mentioned in the introduction (Johns et  al. 2000) analyzed inertial transitions 
in packed beds by using magnetic resonance imaging and found an inertial transition 
characterized by a decrease in the spatial standard deviation of velocity with Reynolds 
number. Indications of such a behaviour can also be seen in (Khayamyan et al. 2017). 
Hence, for comparison to these observations plots of the standard deviation of veloc-
ity taken over the fluid phase for the current geometries are presented in Fig. 10. For 
the staggered cylinder and staggered rod cases a clear reduction of the spatial variation 
of velocity can be seen at the transition as indicated by the vertical lines. For the BCC 

Fig. 5   Porous media geometry 
for the verification. The para-
metrization (top) and mesh (bot-
tom). Red and green boundaries 
are respectively connected by 
periodic boundary conditions

Table 2   Summary of the 
specified simulation parameters 
for the porous media flow 
verification case

Parameter Value

(nx × ny × nz) (128 × 128 × 2)

�(n) 0.095∕(3n + 1)

� 0.0125
Fx 5.3 × 10−7

Δt 1
Nt 100000
Nn 10
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packing a clear and dramatic reduction is observed for the first transition (red line) and 
there is also a minor change in the shape of the curve at the second transition (blue line). 
This indicates that the inertial transition calculated for these geometries is of the same 
type that has been observed earlier, characterized by a decrease in the spatial standard 
deviation.

4.2 � Pressure Drop and Force Balance

In Fig.  11 the dimensionless pressure drop, as defined by Eq. (9), is plotted against Re 
for the staggered cylinder, staggered quadratic rod and BCC cases. At Re ≈ 85, 65, 250 , 
respectively, the pressure drop variation exhibits a sharp but small discontinuity accom-
panied by the aforementioned changes in the flow field that can be seen in Fig.  9. The 
transitions correlate with changes in the signed volume averaged forces as can be seen in 
Fig. 12 for the staggered cubic rods and BCC cases. However, the near non-existent change 
for the staggered cylinder case indicates that the streamwise volume-averaged ratio of pres-
sure gradient to viscous forces is not a good general indicator of transition. The transitions 
also correlate with a significant change in the volume averaged norm of the convective and 
pressure gradient forces as defined by Eq. 5, see Fig. 13. For this case the BCC packing 
does not follow the same trend as the other cases, indicating that this is not a general fea-
ture of the transition.

Fig. 6   Comparison between the 
computational results in Koch 
and Ladd (1997) and results from 
the FDM code for porous media 
flow (top). There is an excel-
lent agreement. Visualization of 
flow regions (bottom), from left 
to right, Stokes region, inertial 
steady and inertial unsteady
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4.3 � Quantifying the Transition Onset

It is expected that the deviation of the flow around the impinging solid surfaces reduces 
the pressure build-up at the front of the obstruction, therefore it can be hypothesized that a 

Fig. 7   The two columns to the left show the side 3D-views and top views of the geometries investigated for 
the transition. From top to bottom a staggered packing of cylinders (a), a staggered packing of quadratic 
rods (b) and a BCC packing of spheres (c). The meshes for respective case can be seen in the two columns 
to the right (side 3D-views and top views)

Table 3   Summary of the 
specified simulation parameters 
for the transition investigation 
sweeps

Parameter Cylinder Rod BCC

(nxnynz) (128 × 64 × 64) (128 × 64 × 64) (64 × 64 × 64)

Dp 44.8 42 48.5
� 0.614 0.590 0.544
�(n)

0.05

(
0.0038

0.05

) n

Nn−1
0.05

(
0.004

0.05

) n

Nn−1
0.01

(
0.001

0.01

) n

Nn−1

�(n)
0.05

(
0.0038

0.05

) n

Nn−1
0.05

(
0.004

0.05

) n

Nn−1
0.01

(
0.001

0.01

) n

Nn−1

� 0.0125 0.0125 0.0125
Fx 3 × 10−6 3 × 10−6 10−6

S 10−5 10−5 10−5

Tw 0 0 0
Δt 1 1 1
Nn 50 50 50
Nt 400000 400000 400000



565Steady‑State Transitions in Ordered Porous Media﻿	

1 3

Fig. 8   The variation of the 
dimensionless pressure drop p∗ 
with Re for all flow geometries

Fig. 9   The flow field change at the discontinuities visualized by a volume rendering of the velocity magni-
tude with increasing Reynolds number from left to right. From top to bottom the cases are for the staggered 
cylinder case, the staggered rod case and BCC packing. For the staggered cylinder case (top) the values of 
Re are from left to right {30, 50, 90, 120} , for the staggered rod case (middle) the values are {25, 40, 70, 90} 
and for the BCC case (bottom) {120, 190, 320, 410}
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useful quantity for recognizing the onset is to watch for a transition in the pressure integral 
across the solid surfaces. This integral can be written

where p is the pressure and �Ω is the solid–liquid boundary. The value of psolid changes sig-
nificantly at the transition, see Fig. 14. This discontinuity in pressure surrounding the solid 
surfaces indicate that the inertial cores no longer impinge the solid structures to the same 
extent as previously. For the BCC packing, the first transition reduces the value of psolid 
while the second transition increases it. This indicates that the first transition for the BCC 
packing may be of a fundamentally different type compared to the other transitions.

4.4 � Impact on Heat Transfer Properties

Since the transition coincides with an increase of the resistance and small-scale struc-
tures of the flow, it can be expected that this would yield better heat transfer properties, 
similar to what is seen for the transition to turbulence in porous media (Abraham et al. 
2011). From observing Fig. 15 it is clear that the heat transfer is significantly impaired 

(23)psolid =

(
∫
�Ω

d(�Ω)

)−1

∫
�Ω

pd(�Ω)

Fig. 10   The spatial standard 
deviation of absolute velocity in 
the critical Re range scaled by 
interstitial velocity Uint for the 
staggered cylinder case (a), the 
staggered quadratic rod case (b) 
and the BCC packing (c)
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for both the staggered cylinder and BCC case but very slightly improves for the stag-
gered rod case. It is therefore not possible to draw any general conclusions about how 
the transition will impact the heat transfer properties as it is geometry dependent. It 
can, however, be concluded that the transition can, significantly, affect the heat transfer.

5 � Conclusions and Future Work

The flow fields of steady-state inertial transitions which occur across a wide range of 
high-tortuosity porous media has been scrutinized and a quantity which characterizes 
the transition has been proposed namely the pressure integral across the solid surfaces. 
The transition can, significantly, affect the heat transfer but also has some impact on all 
variables investigated which indicates a significant change in general flow characteris-
tics. The BCC geometry case indicates that the transition can occur in systems similar 
to packed beds, which should be investigated explicitly in future studies. In addition 
to this a deepened study should be carried out on how the tortuosity of the porous bed 
impacts the possibility of the transition occurring.

Fig. 11   The dimensionless pres-
sure drop variation in the critical 
Re range for the staggered 
cylinder case (a), the staggered 
quadratic rod case (b) and the 
BCC packing (c)
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Appendix A—FDM Solver Implementation

The FDM solver used in this study utilizes central differences on an equidistant grid where 
the pressure and velocity nodes are collocated. The code is implemented in the CUDA 
framework and the source code is made publically available under a free license at https://
gitlab.com/c8383/gpu-fdm. Since unitary time and spatial steps are used for all variables 
Δx = Δy = Δz = Δt = 1 and will therefore be omitted in the algorithm description. A field 
variable � at position x, y, z and time t in the equidistant collocated grid is denoted by �t

x,y,z
 . 

If the variable is a vector, such as the velocity ui , it is denoted as ut
i,(x,y,z)

 . The velocities will 
occasionally be referred to by their coordinate direction, i.e. u0 = ux , u1 = uy and u2 = uz . 
Modular arithmetic is applied for the position coordinate at all boundaries and the mapping 
of the computational kernel should be interpreted accordingly.

Momentum Equation Discretization

Starting from (14) and applying central derivatives to all spatial quantities and a first-order 
Euler-forward in time the following update rule is obtained for the ut+1

i,(x,y,z)
 velocity

Fig. 12   The fraction of pressure 
gradient forces to viscous forces 
in the x-direction of the criti-
cal Re range for the staggered 
cylinder case (a), the staggered 
quadratic rod case (b) and the 
BCC packing (c)
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Where the last term p,i depends on the index i and is equal to

(24)

ut+1
i,(x,y,z)

= ut
i,(x,y,z)

+ �

(
ut
i,(x−1,y,z)

− 2ut
i,(x,y,z)

+ ut
i,(x+1,y,z)

)
+ ...

�

(
ut
i,(x,y−1,z)

− 2ut
i,(x,y,z)

+ ut
i,(x,y+1,z)

)
+ ...

�

(
ut
i,(x,y,z−1)

− 2ut
i,(x,y,z)

+ ut
i,(x,y,z+1)

)
+ ...

−
1

2
ux

(
ut
i,(x+1,y,z)

− ut
i,(x−1,y,z)

)
+ ...

−
1

2
uy

(
ut
i,(x,y+1,z)

− ut
i,(x,y−1,z)

)
+ ...

−
1

2
uz

(
ut
i,(x,y,z+1)

− ut
i,(x,y,z−1)

)
+ ...

−
1

2�
p,i +

1

�
Fi.

(25)p,x = pt
x+1,y,z

− pt
x−1,y,z

(26)p,y = pt
x,y+1,z

− pt
x,y−1,z

(27)p,z = pt
x,y,z+1

− pt
x,y,z−1

.

Fig. 13   The volume averaged 
norm of the force for the cylinder 
case (a), quadratic rod case (b) 
and BCC structure (c)
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Pressure Correction Discretization

The expression to obtain the updated pressure correction pt+1
x,y,z

 is based on a second-order 
accurate central derivative discretization of (15) with an advection term added, the expres-
sion becomes

(28)

pt+1
x,y,z

= pt
x,y,z

+ �

(
ut
x,(x+1,y,z)

− ut
x,(x−1,y,z)

)
+ ...

�

(
ut
y,(x,y+1,z)

− ut
y,(x,y−1,z)

)
+ ...

�

(
ut
z,(x,y,z+1)

− ut
z,(x,y,z+1)

)
+ ...

−
1

2
ux

(
pt
x+1,y,z

− pt
x−1,y,z

)
+ ...

−
1

2
uy

(
pt
x,y+1,z

− pt
x,y−1,z

)
+ ...

−
1

2
uz

(
pt
x,y,z+1

− pt
x,y,z−1

)
.

Fig. 14   The pressure integral on 
the solid boundary for the cylin-
der case (a), quadratic rod case 
(b) and BCC packing (c)
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Advection Diffusion Equation Discretization

The expression to obtain the updated species concentration or thermal value depending on 
interpretation of the variable T is based on a second-order accurate central derivative dis-
cretization of (17), the expression becomes

(29)

Tt+1
x,y,z

= Tt
x,y,z

+ �

(
Tt
x−1,y,z

− 2Tt
x,y,z

+ Tt
x+1,y,z

)
+ ...

�

(
Tt
x,y−1,z

− 2Tt
x,y,z

+ Tt
x,y+1,z

)
+ ...

�

(
Tt
x,y,z−1

− 2Tt
x,y,z

+ Tt
x,y,z+1

)
+ ...

−
1

2
ux

(
Tt
x+1,y,z

− Tt
x−1,y,z

+ TGx

)
+ ...

−
1

2
uy

(
Tt
x,y+1,z

− Tt
x,y−1,z

+ TGy

)
+ ...

−
1

2
uz

(
Tt
x,y,z+1

− Tt
x,y,z−1

+ TGz

)
+ S.

Fig. 15   The variation of the 
average Nusselt number Nuavg for 
Pr = 1 with Re for the staggered 
cylinder case (a), staggered rod 
case (b) and BCC case (c). The 
transition regions are marked by 
the vertical lines
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Pressure Smoothing Discretization

The pressure smoothing as described by (16) increases numerical stability and reduces 
checkerboarding. For this operation a second-order accurate central derivative discre-
tization is used for the spatial differences and a first-order accurate Euler-forward tem-
poral discretization

Where the variable Wx,y,z is the wall coordinate which is 1 if the element is a wall and 0 
otherwise.

(30)

pt+1
x,y,z

= pt
x,y,z

+ Sp
1

12

[
...

(
1 −Wx−1,y,z

)
×
(
pt
x−1,y,z

− pt
x,y,z

)
+ ...

(
1 −Wx+1,y,z

)
×
(
pt
x+1,y,z

− pt
x,y,z

)
+ ...

(
1 −Wx,y−1,z

)
×
(
pt
x,y−1,z

− pt
x,y,z

)
+ ...

(
1 −Wx,y+1,z

)
×
(
pt
x,y+1,z

− pt
x,y,z

)
+ ...

(
1 −Wx,y,z−1

)
×
(
pt
x,y,z−1

− pt
x,y,z

)
+ ...

(
1 −Wx,y,z+1

)
×
(
pt
x,y,z+1

− pt
x,y,z

)]
.

Fig. 16   The meshes, from top to bottom the staggered cylinder case, the staggered quadratic case and the 
BCC packing of spheres
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Order of Operations and Wall Treatment

The order of operations is as follows, for the main kernel the momentum update, pres-
sure correction update and advection diffusion update are applied to the state of the field 
variables at time t + 1 using the variables at time t. Following this n sweeps of the pres-
sure smoothing operation is applied, for the cases presented in this article n = 1 . Wall 
elements are treated as constant value elements for all field variables except for the pres-
sure correction equation.

Appendix B—Impact of Grid Resolution

In this section a grid sensitivity analysis is presented, four grid sizes are investigated for 
each geometry denoted by the short-side side length element count L, see Fig. 16. The 
numerical values used for the calculations are presented in Tables 4,  5 and 6. Due to the 
step-wise approximation of the geometry the porosity � varies between the cases. The 
results converge well across all cases presented in Fig. 17 which are the dimensionless 
pressure drop p∗ , the surface integral of the pressure across the boundaries psolid and the 
Nusselt number Nuavg.

Table 4   Summary of the specified simulation parameters for the staggered cylinder mesh study

Resolution L = 32 L = 64 L = 96 L = 128

(nxnynz) (64 × 32 × 32) (128 × 64 × 64) (192 × 96 × 96) (256 × 128 × 128)

Dp 22.4 44.8 67.2 89.6
� 0.608 0.614 0.615 0.615
�(n)

0.025

(
0.0038

0.05

) n

Nn−1
0.05

(
0.0038

0.05

) n

Nn−1
0.075

(
0.0038

0.05

) n

Nn−1
0.1

(
0.0038

0.05

) n

Nn−1

�(n)
0.025

(
0.0038

0.05

) n

Nn−1
0.05

(
0.0038

0.05

) n

Nn−1
0.075

(
0.0038

0.05

) n

Nn−1
0.1

(
0.0038

0.05

) n

Nn−1

� 0.0125 0.0125 0.0125 0.0125
Fx 6 × 10−6 3 × 10−6 2 × 10−6 1.5 × 10−6

S 10−5 10−5 10−5 10−5

Tw 0 0 0 0
Δt 1 1 1 1
Nn 50 50 50 50
Nt 200000 400000 600000 800000
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Table 5   Summary of the specified simulation parameters for the staggered quadratic rod mesh study

Resolution L = 32 L = 64 L = 96 L = 128

(nxnynz) (64 × 32 × 32) (128 × 64 × 64) (192 × 96 × 96) (256 × 128 × 128)

Dp 21 42 63 84
� 0.569 0.590 0.596 0.6
�(n)

0.025

(
0.004

0.05

) n

Nn−1
0.05

(
0.004

0.05

) n

Nn−1
0.075

(
0.004

0.05

) n

Nn−1
0.1

(
0.004

0.05

) n

Nn−1

�(n)
0.025

(
0.004

0.05

) n

Nn−1
0.05

(
0.004

0.05

) n

Nn−1
0.075

(
0.004

0.05

) n

Nn−1
0.1

(
0.004

0.05

) n

Nn−1

� 0.0125 0.0125 0.0125 0.0125
Fx 6 × 10−6 3 × 10−6 2 × 10−6 1.5 × 10−6

S 10−5 10−5 10−5 10−5

Tw 0 0 0 0
Δt 1 1 1 1
Nn 50 50 50 50
Nt 200000 400000 600000 800000

Table 6   Summary of the specified simulation parameters for the BCC packing mesh study

Resolution L = 32 L = 64 L = 96 L = 128

(nxnynz) (32 × 32 × 32) (64 × 64 × 64) (96 × 96 × 96) (128 × 128 × 128)

Dp 24.25 48.5 72.75 97
� 0.546 0.544 0.545 0.544
�(n)

0.005

(
0.001

0.01

) n

Nn−1
0.01

(
0.001

0.01

) n

Nn−1
0.015

(
0.001

0.01

) n

Nn−1
0.02

(
0.001

0.01

) n

Nn−1

�(n)
0.005

(
0.001

0.01

) n

Nn−1
0.01

(
0.001

0.01

) n

Nn−1
0.015

(
0.001

0.01

) n

Nn−1
0.02

(
0.001

0.01

) n

Nn−1

� 0.0125 0.0125 0.0125 0.0125
Fx 2 × 10−6 10−6 0.75 × 10−6 0.5 × 10−6

S 10−5 10−5 10−5 10−5

Tw 0 0 0 0
Δt 1 1 1 1
Nn 50 50 50 50
Nt 200000 400000 600000 800000



575Steady‑State Transitions in Ordered Porous Media﻿	

1 3

Funding  Open access funding provided by Lulea University of Technology. This research was funded by 
Swedish Research Council, Grant 2017-04390.

Data availability  The datasets generated and analysed during the current study are available from the corre-
sponding author on reasonable request. The source code for the solver used in this study is publically avail-
able via the link https://gitlab.com/c8383/gpu-fdm.

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbaszadeh, M., Salehi, A., Abbassi, A.: Lattice boltzmann simulation of heat transfer enhancement in an 
asymmetrically heated channel filled with random porous media. J. Porous Media 20(2) (2017)

Abraham, J., Sparrow, E., Minkowycz, W.: Internal-flow nusselt numbers for the low-reynolds-number end 
of the laminar-to-turbulent transition regime. Int. J. Heat Mass Transf. 54(1–3), 584–588 (2011)

Bear, J.: Dynamics of Fluids in Porous Media (1972)
Burstrom, P.E.C., Frishfelds, V., Ljung, A.-L., Lundstrom, T.S., Marjavaara, B.D.: Modelling heat transfer 

during flow through a random packed bed of spheres. Heat Mass Transf. 54, 1225–1245 (2018)

Fig. 17   The results from the mesh comparison study

http://creativecommons.org/licenses/by/4.0/


576	 T. O. M. Forslund et al.

1 3

Chu, X., Yang, G., Pandey, S., Weigand, B.: Direct numerical simulation of convective heat transfer in 
porous media. Int. J. Heat Mass Transf. 133(April), 11–20 (2019)

Farzaneh, M., Strom, H., Zanini, F., Carmignato, S., Sasic, S., Maggiolo, D.: Pore-scale transport and two-
phase fluid structures in fibrous porous layers: application to fuel cells and beyond. Transp. Porous 
Media 136, 245–270 (2021)

Ferziger J.H., Perić, M., Street, R.L.: Computational Methods for Fluid Dynamics, vol. 3. Springer (2002)
Forslund, T.O., Larsson, I., Lycksam, H., Hellström, J.G.I., Lundström, T.S.: Non-stokesian flow through 

ordered thin porous media imaged by tomographic-piv. Exp. Fluids 62(3), 1–12 (2021)
Forslund, T.O., Larsson, I., Hellström, J.G.I., Lundström, T.S.: The effects of periodicity assumptions in 

porous media modelling. Transp. Porous Media 137(3), 769–797 (2021)
Foudhil, W., Dhifaoui, B., Jabrallah, S.B., Belghith, A., Corriou, J.P.: Numerical and experimental study of 

convective heat transfer in a vertical porous channel using a non-equilibrium model. J. Porous Media 
15(6) (2012)

Frishfelds, V., Hellström, J.G., Lundström, T.S., Mattsson, H.: Fluid flow induced internal erosion within 
porous media: modelling of the no erosion filter test experiment. Transp. Porous Media 89(3), 441–457 
(2011)

Jin, Y., Uth, M.F., Kuznetsov, A.V., Herwig, H.: Numerical investigation of the possibility of macroscopic 
turbulence in porous media: a direct numerical simulation study. J. Fluid Mech. 766, 76–103 (2015)

Johns, M., Sederman, A., Bramley, A., Gladden, L., Alexander, P.: Local transitions in flow phenomena 
through packed beds identified by mri. AIChE J. 46(11), 2151–2161 (2000)

Jouybari, N.F., Lundstrom, T.S., Hellstrom, J.G.I.: Investigation of thermal dispersion and intra-pore turbu-
lent heat flux in porous media. Int. J. Heat Fluid Flow 81 (2020)

Jouybari, N.F., Lundstrom, T.S.: Investigation of post-darcy flow in thin porous media. Transp. Porous 
Media 138, 157–184 (2021)

Khayamyan, S., Lundström, T.S., Hellström, J.G.I., Gren, P., Lycksam, H.: Measurements of transitional and 
turbulent flow in a randomly packed bed of spheres with particle image velocimetry. Transp. Porous 
Media 116(1), 413–431 (2017)

Khayamyan, S., Lundström, T.S., Gren, P., Lycksam, H., Hellström, J.G.I.: Transitional and turbulent flow 
in a bed of spheres as measured with stereoscopic particle image velocimetry. Transp. Porous Media 
117(1), 45–67 (2017)

Koch, D.L., Ladd, A.J.: Moderate Reynolds number flows through periodic and random arrays of aligned 
cylinders. J. Fluid Mech. 349, 31–66 (1997)

Kwak, D., Kiris, C.C.: Computation of viscous incompressible flows (2011)
Larsson, I.A., Lundström, T.S., Lycksam, H.: Tomographic PIV of flow through ordered thin porous media. 

Exp. Fluids 59(6), 3–8 (2018)
Lu, J., Jang, H.K., Lee, S.B., Hwang, W.R.: Characterization on the anisotropic slip for flows over unidi-

rectional fibrous porous media for advanced composites manufacturing. Compos. Part A Appl. Sci. 
Manuf. 100, 9–19 (2017)

Lundstrom, T.S., Hellstrom, J.G.I., Jonsson, P.J.P.: Laminar and turbulent flow through an array of cylin-
ders. J. Porous Media 13(12), 1073–1085 (2010)

Moosavi, A., Ljung, A.-L., Lundstrom, T.S.: Design considerations to prevent thermal hazards in cylindrical 
lithium-ion batteries: an analytical study. J. Energy Storage 38 (2021)

Nguyen, T., Kappes, E., King, S., Hassan, Y., Ugaz, V.: Time-resolved piv measurements in a low-aspect ratio 
facility of randomly packed spheres and flow analysis using modal decomposition. Exp. Fluids 59 (2018)

Odabaee, M., Hooman, K.: Metal foam heat exchangers for heat transfer augmentation from a tube bank. 
Appl. Therm. Eng. 36, 456–463 (2012)

Patil, V.A., Liburdy, J.A.: Turbulent flow characteristics in a randomly packed porous bed based on particle 
image velocimetry measurements. Phys. Fluids 25(4) (2013)

Rao, F., Jin, Y.: Possibility for survival of macroscopic turbulence in porous media with high porosity. J. 
Fluid Mech. 937, 1–23 (2022)

Rybiński, W., Mikielewicz, J.: Analytical solutions of heat transfer for laminar flow in rectangular channels. 
Arch. Thermodyn. 35(4), 29–42 (2014)

Seguin, D., Montillet, A., Comiti, J.: Experimental characterisation of flow regimes in various porous 
media-II transition to turbulent regime. Chem. Eng. Sci. 53(22), 3897–3909 (1998)

Seguin, D., Montillet, A., Comiti, J.: Experimental charecterisation of flow regimes in various porus media - 
I: limit of laminar flow regime. Chem. Eng. Sci. 53(21), 3751–3761 (1998)

Tan, H., Pillai, K.M.: Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid com-
posite molding i: isothermal flows. Compos. Part A Appl. Sci. Manuf. 43, 1–13 (2012)

Tan, H., Pillai, K.M.: Multiscale modeling of unsaturated flow of dual-scale fiber preform in liquid compos-
ite molding ii: non-isothermal flows. Compos. Part A Appl. Sci. Manuf. 43, 14–28 (2012)



577Steady‑State Transitions in Ordered Porous Media﻿	

1 3

Tan, H., Pillai, K.M.: Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid com-
posite molding iii: reactive flows. Compos. Part A Appl. Sci. Manuf. 43, 29–44 (2012)

Uth, M.F., Jin, Y., Kuznetsov, A.V., Herwig, H.: A direct numerical simulation study on the possibility of 
macroscopic turbulence in porous media: effects of different solid matrix geometries, solid boundaries, 
and two porosity scales. Phys. Fluids 28 (2016)

Xu, Z., Pillai, K.M.: Modeling drying in thin porous media after coupling pore-level drying dynamics with 
external flow field. Dry. Technol. 35(7), 785–801 (2017)

Yang, J., Zhou, M., Li, S.Y., Bu, S.S., Wang, Q.W.: Three-dimensional numerical analysis of turbulent flow 
in porous media formed by periodic arrays of cubic, spherical, or ellipsoidal particles. J. Fluids Eng. 
Trans. ASME 136 (2014)

Zarandi, M.A.F., Pillai, K.M., Hasan, A.B.M.R.: Investigating liquid-fronts during spontaneous imbibition 
of liquids in industrial wicks. Part ii: validation by dns. AICHE J

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Steady-State Transitions in Ordered Porous Media
	Abstract
	1 Introduction
	2 Theory
	2.1 Dimensionless Numbers
	2.1.1 Reynolds Number
	2.1.2 Prandtl Number
	2.1.3 Dimensionless Pressure Drop
	2.1.4 Nusselt Number


	3 Method
	3.1 Numerical Method
	3.2 Temporal and Spatial Discretization
	3.3 Computational Grid
	3.4 Verification of Numerical Method
	3.4.1 Thermal Plane Channel Flow
	3.4.2 Porous Media Flow


	4 Results
	4.1 Flow Field Changes
	4.2 Pressure Drop and Force Balance
	4.3 Quantifying the Transition Onset
	4.4 Impact on Heat Transfer Properties

	5 Conclusions and Future Work
	Appendix A—FDM Solver Implementation
	Momentum Equation Discretization
	Pressure Correction Discretization
	Advection Diffusion Equation Discretization
	Pressure Smoothing Discretization
	Order of Operations and Wall Treatment

	Appendix B—Impact of Grid Resolution
	References




