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Abstract
A new model for the multi-scale simulation of solute transport in concrete is presented. The 
model employs plurigaussian simulations to generate stochastic representations of concrete 
micro- and meso-structures. These are idealised as two-phase medium comprising mortar 
matrix and pores for the micro-structure, and mortar and large aggregate particles for the 
meso-structure. The generated micro- and meso-structures are employed in a finite element 
analysis for the simulation of steady-state diffusion of solutes. The results of the simu-
lations are used to calculate effective diffusion coefficients of the two-phase micro- and 
meso-structures, and in turn, the effective diffusion coefficient at the macro-scale at which 
the concrete material is considered homogenous. Multiple micro- and meso-structures are 
generated to account for uncertainty at the macro-scale. In addition, the level of uncertainty 
in the calculated effective diffusion coefficients is quantified through a statistical analysis. 
The numerical predictions are validated against experimental observations concerning the 
diffusion of chloride through a concrete specimen, suggesting that the generated structures 
are representative of the pore-space and coarse aggregate seen at the micro- and meso-
scales, respectively. The method also has a clear advantage over many other structural gen-
eration methods, such as packing algorithms, due to its low computational expense. The 
stochastic generation method has the ability to represent many complex phenomena in par-
ticulate materials, the characteristics of which may be controlled through the careful choice 
of intrinsic field parameters and lithotype rules.
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1  Article Highlights

• Plurigaussian simulation can produce suitable structures at the meso- and micro-scale 
for cementitious materials.

• Uncertainty at the macro-scale is accounted for through the multi-level approach
• The effect of the pore-space geometry and aggregate distribution on the diffusion 

response is simulated

2 Introduction

The prediction of solute transport in cementitious materials is important for a wide range 
of applications including reinforcing bar corrosion, carbonation and self-healing. Typi-
cally, models developed for such applications are deterministic, and effective diffusion 
coefficients for the material are obtained through back-analysis of experimental data or 
through the use of empirical relationships (Papadakis 2000). However, it is well known 
that concrete transport properties are subject to a significant variability due to the inher-
ent heterogeneity of concrete (Neville 2011; Conciatori et al. 2014, 2015). In addition, the 
prediction of solute transport and therefore the service life of concrete structures are highly 
dependent on the effective diffusion parameters (Conciatori et al. 2015).

An alternative to using empirical relationships or fitting experimental data is to simu-
late transport at lower scales and either employ this directly in a multi-scale modelling 
framework, or combine this with a suitable up-scaling technique to feed into a macro-scale 
model. For the former, a number of approaches have been developed including  FE2 (Feyel 
and Chaboche 2000; Rocha et al. 2021), equation-free modelling (EFM) (Kevrekidis et al. 
2003) and the heterogeneous multi-scale method (HMM) (Weinan and Bjorn 2003). In the 
 FE2 approach, the lower-scale transport problem and macro-scale problem are solved in a 
nested manner. Whilst this has the advantage of avoiding the need for constitutive equa-
tions, this comes at an increased computational cost that can be prohibitive (Lange et al. 
2021). Recently, a number of researchers addressed this issue through techniques such 
as model reduction, GPU programming, and replacement of lower-scale solutions with 
machine learning-based surrogate models (Fritzen and Hodapp 2016; Raschi et al. 2021; 
Rocha et  al. 2021). HMM and EFM are similar approaches that employ a macro-scale 
model with large time steps, in which the primary variables evolve through the solution 
of a micro-scale model over smaller time steps (Tretiak et al. 2022). In such models, the 
need for macroscopic constitutive equations is avoided, and in some cases (e.g. EFM) the 
macro-scale finite element equations also are not required (Tretiak et  al. 2022). As with 
the  FE2 approach, the main disadvantage is the computational cost (Vassaux et al. 2019). 
In alternative approaches, steady-state transport simulations at the lower scales are used to 
calculate effective transport properties for the homogenous macro-scale model. Such effec-
tive properties can be calculated through a numerical homogenisation procedure (Pollmann 
et al. 2021), fitting of an analytical equation such as Fick’s or Darcy’s law for diffusion and 
permeability coefficients, respectively (Gostick et al. 2016), or through machine learning 
techniques (Wu et al. 2019). In the case of machine learning, the effective properties can 
be estimated directly from images of the structure of the medium, avoiding the need for the 
lower-scale simulations. Such an approach was taken by Wu et al. (2019), who employed 
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convolutional neural networks (CNNs) trained using images of porous media and effec-
tive coefficients predicted from numerical simulations. The authors found that the CNN 
performed better than a known empirical equation. For the simulation of transport at the 
lower scales, among the most common approaches are pore network models (PNM) (Gos-
tick et al. 2016; Babaei et al. 2021), finite element models (FEM) (Xu et al. 2020; Sun et al. 
2022) and lattice Boltzmann methods (LBM) (Yang and Wang 2018; Patel et al. 2021).

In order to simulate multi-scale solute transport in concrete, a representation of both 
micro- and meso-structure is required. Whilst such representations can be obtained from 
images, it can be advantageous to generate such structures virtually (Holla et  al. 2021). 
For cementitious materials, the most commonly employed approach to obtaining a vir-
tual micro-structure is to use a cement hydration model such as HYMOSTRUC3D (van 
Breugel 1995; Koenders 1997) or CEMHYD3D (Bentz 2005). Patel et  al. (2018a) com-
bined both HYMOSTRUC3D and CEMHYD3D with a LBM to simulate the effects of cal-
cium leaching on cement paste micro-structure. The authors found that the rate of leaching 
for both models was similar for a water-to-cement ratio of 0.25, but that the rate was faster 
for HYMOSTRUC3D-generated micro-structures for water-to-cement ratios of 0.4–0.5. 
The contrast in the results was thought to be due to differences in the predicted depercola-
tion of capillary pores that arose as a direct result of differences in model assumptions (i.e. 
CEMHYD3D employs a voxel-based approach as opposed to the vector-based approach 
employed in HYMOSTRUC3D). Cruz et al. (2016) used machine learning, trained on the 
results of Bullard’s (2007) cellular automation hydration model, to generate cement paste 
micro-structures. The authors found that the machine learning model was able to generate 
micro-structures that compared favourably to those produced by the hydration model and at 
a fraction of the computational cost. A random macro-meso-pores method (RGMMP) was 
proposed by Hussain et al. (2015) for the representation of the pore structure of building 
materials. The model is based on stochastic growth theory and assumes that macro-pores 
are connected through meso-pores. The authors combined the RGMMP with a LBM for 
predicting the effective diffusivity of a range of building materials and found good agree-
ment with experimental data.

Aggregate placing methods (Thilakarathna et  al. 2020) are usually employed for 
generating concrete meso-structures, comprising a mortar matrix and large aggregate 
particles. In such methods, aggregate particles are placed randomly within the volume 
starting with the largest, with constraints concerning the minimum distance to exist-
ing particles being enforced (Thilakarathna et  al. 2020). A review of approaches for 
the generation of concrete meso-structures is provided by Thilakarathna et  al. (2020). 
A key challenge in such models is the representation of the complex shapes exhibited 
by aggregate particles, with a number of models idealising their shape as spherical 
or ellipsoidal (Zheng et  al. 2009; Li et  al. 2016). In order to generate more realistic 
concrete meso-structures, a number of techniques for capturing the complex shape of 
aggregate particles have been proposed (Qian et al. 2016; Zhang et al. 2018; Holla et al. 
2021). In the Anm model, developed by Qian et  al. (2016), aggregate particle shapes 
are represented using spherical harmonic functions. The model was used to represent 
both large aggregate particles, embedded in a mortar matrix, and fine aggregate parti-
cles, embedded in a cement paste matrix. In Lu and Garboczi (2014), meso-structures 
generated with the Anm model were combined with an algorithm that produces tetrahe-
dral finite element meshes for use in numerical analyses. Zhang et al. (2018) generated 
polyhedral-shaped aggregate particles by first creating a 3D Voronoi tessellation of the 
domain, before employing a shrinking algorithm to generate the aggregate phase. An 
open-source toolbox, written in Python, for the generation of concrete meso-structures 
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was presented by Holla et al. (2021). In their model, polyhedral-shaped aggregate par-
ticles are generated by reduction of a cuboid to an angular ellipsoid shape through slic-
ing operations, whilst concave depressions are represented using Gaussian surfaces. 
The ability of the model to generate realistic meso-structures was demonstrated both 
qualitatively through an image comparison and quantitatively through the comparison 
of the predicted elastic properties (calculated using a numerical homogenisation tool) to 
experimental values.

A less explored method of structural generation at the micro- or meso-scale is that 
of plurigaussian simulation (PGS), first introduced by Galli et  al. (1994) and developed 
further in following years (Le Loc’h and Galli, 1997; Dowd et al. 2003; Armstrong et al. 
2014) for geological applications. The approach is primarily applied in this domain as the 
generated fields match well with discrete geological structures observed in the field. The 
method is derived from truncated Gaussian simulation where a Gaussian distribution is 
truncated sequentially to represent different geological facies in a nested fashion (Matheron 
et  al. 1987; Beucher and Renard 2016). PGS is not limited to sequential relationships 
between facies. More complex connectivity patterns, between the distinct components in 
the resulting field, can be generated through a prescribed lithotype rule. The lithotype is a 
representation of the spatial relationship between facies (Doligez et al. 2011) and can be 
used to determine the connectivity and relative proportions they exhibit. The method is 
most commonly applied in attaining field-scale representations of ore deposits (Betzhold 
and Roth 2000; Yunsel and Ersoy 2011; Renard and Beucher 2012; Talebi et  al. 2013; 
Maleki and Emery 2014; Mery et al. 2017) and petroleum reservoirs (Chautru et al. 2015; 
Beucher and Renard 2016; Zagayevskiy and Deutsch 2016; Martinius et al. 2017; Madani 
et al. 2018), but has also been used at much smaller scales such as in the generation of the 
micro-structure of solid oxide cells (SOCs). Abdallah et al. (2016) applied the truncated 
plurigaussian model in a set of 3D simulations of three-phase anode layers. The authors 
found good agreement in the covariance, granulometry, and visual representation between 
2D SEM images and the simulated results, with the ease, efficiency and versatility of the 
method being highlighted. Moussaoui et  al. (2018) also replicated SOC micro-structure 
and focused on validating the resulting fields through comparison with effective gas dif-
fusivities and effective charge conductivities, as well as on analysing the morphology of 
the fields. Furthermore, the authors discussed the effects of non-stationary random fields in 
replicating a graded electrode. They explored different correlation lengths in the underly-
ing fields and introduced localised roughness into the system. The method was shown to be 
flexible in depicting more complex microstructural architectures and matched well with the 
experimental phase effective diffusivities. Other applications at this scale that have been 
considered are: rock mineralogical composition (Méndez-Venegas and Díaz-Viera 2013), 
partially miscible liquids confined in nanopores (Gommes 2013), and food micro-structure 
(Bron and Jeulin 2011).

In this study, PGS is coupled with a finite-element (FE) model for chemical transport 
in concrete using a multi-level modelling approach. Structural representations of pores 
and aggregate in mortar are generated at the micro- and meso-scale, respectively, using 
the plurigaussian method, and are employed in a FE model to calculate the effective dif-
fusion coefficients of the two-phase medium at both scales. From these results, a range of 
effective diffusion coefficients at the macro-scale are calculated and used to simulate an 
example problem concerning the diffusion of chloride ions through a saturated concrete 
specimen. By using this stochastic approach, variability can be inferred at the macro-scale 
when using a homogenised model due to the variation in diffusion coefficients obtained at 
the different scales.
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Section 2 presents the theory of the plurigaussian model, solute transport model and multi-
level upscaling approach. Section 3 describes the finite element framework of the chemical 
transport model and explains how the field is implemented. Section 4 gives details of how 
PGS is used to represent the specific micro- and meso-structures considered in this paper. Sec-
tion 5 presents an example problem of multi-level chemical transport using structures gen-
erated through PGS, including an experimental validation, and Sect.  6 highlights the main 
conclusions of the study.

3  Theoretical Basis

3.1  Plurigaussian Model

Let 
{

Z1, Z2
}

 be a set of two independent random fields in ℝ2 whose covariance kernels can be 
of Gaussian or Matérn forms and define a random field Z where

Let L =
{

D1,… ,Dn

}

 be a partition of ℝ2 into n disjoint subdomains, such that the 
plurigaussian random field P with n distinct facies is defined as:

(1)Z(x) =
(

Z1(x), Z2(x)
)

, ∀x ∈ ℝ
2.

(2)(x) = i if and only if Z(x) ∈ Di,∀x ∈ ℝ
2

Fig. 1  Schematic of plurigaussian simulation where a, b are Gaussian random fields, c is the lithotype con-
sisting of facies D1, D2, and D3, and d the resulting simulated field



100 E. J. Ricketts et al.

1 3

The set L is the selected lithotype rule and can be used to assign different facies for rep-
resentation in terms of the micro- or meso-structure. Figure 1 shows an example realisation 
of the phasal structures that can be generated. Z1 and Z2 are two Gaussian random fields 
(Fig. 1a, b, respectively) generated using the Fourier integral method (Pardo-Igúzquiza and 
Chica-Olmo 1993; Müller et al. 2022), and the lithotype (Fig. 1c) consists of three quadrilat-
eral facies. Due to the construction of the lithotype, there is a connectivity between all facies, 
meaning that � will have connectivity between the same facies. Conversely, taking disjoint 
facies will result in disjoint facies in � . Similarly, the choice of quadrilaterals is not unique. 

At both the micro- and meso-scales, the structure of a multi-phase system can be controlled 
through careful choice of subdomains in the lithotype rule L . Similarly, the underlying covari-
ance kernel of the fields Z1, Z2 can be used as a way of controlling the roughness of the result-
ing field: if the kernel is smooth such as the Gaussian kernel, then the resulting field structure 
will reflect this. See Sect. 4 for a discussion on the effects of varying the lithotype rule subdo-
mains on the resulting field, as well as on the choices made at both scales.

3.2  Solute Transport Model

In the present work, the reactive transport model described in Freeman et  al. (2019) is 
employed. Solute transport is governed by the mass balance equation that, with boundary con-
ditions, reads:

where Ω is the problem domain, � is the porosity of the medium, Sl is the degree of satura-
tion of the pores, �l and �p are the liquid and sorbed material densities, respectively, ci is the 
solute concentration for a species i , �

i
 is the diffusive flux and Sp is the degree of saturation 

of sorbed material. The Cauchy-type boundary condition (3b) represents the transfer of 
mass between the specimen and the environment where � is the outward facing unit nor-
mal, � is a mass transfer coefficient, cenv is the solute concentration in the environment and 
Γc ⊂ Γ (where Γ is the domain boundary) is the part of the boundary to which Cauchy-type 
boundary conditions are applied. Finally, the Dirichlet boundary condition (3c) fixes the 
solute concentration at cb on Γd ⊂ Γ.

The diffusive flux is given by the Poisson–Nernst–Planck equations that can be written as 
(Baroghel-Bouny et al. 2011):

(3a)
�
(

�Sl�lci
)

�t
+ ∇ ⋅ �

i
= ��p

�
(

Sp
)

�t
,∀� ∈ Ω

(3b)�
i
⋅ � − �

(

ci − cenv
)

= 0,∀� ∈ Γc

(3c)ci = cb,∀� ∈ Γd

(4a)�
i
= −�Sl�lDi

(

∇ci +
ziF

RT
∇�

)

(4b)�∇2
⋅ � + F

(

ns
∑

i=1

zici + �

)

= 0
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where Di is the coefficient of molecular diffusion, zi is the charge of an ion, F is Faraday’s 
constant, R is the ideal gas constant, T  is the temperature and � is the electric potential. 
Equation (4b) describes the electric potential, where � is the dielectric permittivity of the 
medium, � is the charge density and ns is the number of solutes. Noting that both � and � 
are negligible, (4b) reduces to the charge neutrality condition (Lasaga 1979), which, noting 
that the pore solution is initially charge neutral, is ensured through the no-electric-current 
condition (Lasaga 1979; Song et al. 2014), leading to a diffusive flux given by:

Finally, the chemical reaction considered is of the sorption of chemical ions onto the 
cementitious matrix and is simulated using a kinetic Freundlich-type isotherm that reads 
(Baroghel-Bouny et al. 2011):

in which � is the binding capacity, � is a rate parameter and � is a characteristic time. It is 
noted that molar concentrations are employed in the calculation of the reaction rates.

3.3  Multi‑level Upscaling

In this study, transport properties—in this case diffusion coefficients—are up-scaled 
from the micro-scale, assumed to comprise mortar matrix and saturated pores, through 
the meso-scale comprising the homogenous porous mortar matrix and large aggre-
gate phase and finally to the macro-scale that considers the concrete as a homogenous 
medium. This process is illustrated in Fig. 2.

The OpenPNM approach is used to calculate the effective diffusion coefficients of the 
two-phase medium (Gostick et  al. 2016), whereby steady-state diffusion is simulated, 
and then, the effective diffusion coefficient is computed as:

(5)�
i
= −�Sl�lDi

�

∇ci + zici

∑ns

i=1
ziDi∇ci

∑ns

i=1
z2
i
Dici

�

(6)
�Sp

�t
=

(

Sp − �c�
i

)

�

Level 1 – Micro-Scale (μm)

Pores (yellow) and Mortar 
Matrix (purple)

Level 2 – Meso-Scale (mm)

Homogenised Porous Mortar Matrix 
(purple) and Large Aggregate (yellow)

Level 3 – Macro-Scale (cm-m)

Homogenised Concrete

Fig. 2  Schematic of multi-level upscaling of transport properties
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where Jxr
i

 is the flux in the x direction on the right-hand boundary, L is the domain 
length, A is the cross-sectional area and Δc is the concentration gradient applied to the 
domain. Given the effective diffusion coefficients, the formation factor can also be cal-
culated, Fm = Dr∕Deff  , and tortuosity, Tt = �Dr∕Deff  , where Dr = 1 is a relative diffusion 
coefficient.

The effective diffusion coefficient at the macro-scale ( Dmas ) is calculated by multiply-
ing the free water diffusion coefficient, Dfw , by the effective coefficients at both the micro- 
( Deff

mic
 ) and meso- ( Deff

mes ) scales:

4  Numerical Implementation

4.1  Finite Element Framework

The governing equations for solute transport are discretised using the finite element 
method. The weak form of the governing equations reads:

The Galerkin-weighted residual method is employed such that the weight functions ( � ) 
are equal to the shape functions ( � ), with the primary variables being the solute concentra-
tions. The resulting system of equations reads:

in which the primary variable is interpolated from the nodal values in the usual manner 
(i.e. ci = ��

i
).

The global matrices read:

(7)Deff =
Jxr
i
L

AΔc

(8)Dmas = DfwD
eff

mic
Deff

mes

(9)

∫Ω

�

�

�
�

�Sl�lci
�

�t
− ��p

�
�

Sp
�

�t

�

dΩ − ∫Ω

∇� ⋅

�

−�Sl�lDi

�

∇ci + zici

∑ns

i=1
ziDi∇ci

∑ns

i=1
z2
i
Dici

��

dΩ

+ ∫Γc

�
�

�
�

ci − cenv
��

dΓc = 0

(10)��t
(

�i

)

+��i = �

(11)� =
∑

nel

(

∫
�

e

N
T
(

�Sl�l
)

NdΩe

)

(12)� =
∑

nel

(

∫
�

e

∇NT
(

�Sl�lDi

)

∇NdΩe

)

(13)

� =
�

nel

�

∫
�e

∇NT

�

−�Sl�lDi

�

zici

∑ns

i=1
ziDi∇ci

∑ns

i=1
z2
i
Dici

��

dΩe − ∫ Γc,e

�
�

�
�

ci − cenv
��

dΓc,e

�
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An implicit Euler backward difference scheme is used for the temporal discretisation:

The nonlinear equations are solved with a standard Newton–Raphson procedure, which 
gives the following iterative update of the solution:

where � is the approximation error that is given by:

and the iterative updates are terminated once the norm of the error meets a defined conver-
gence tolerance of 0.001%.

The numerical simulations at the micro- and meso-scales employ a pixel-based finite 
element method, such that the discretisation of the finite element mesh matches the reso-
lution of the micro- and meso-structure images, and the material properties assigned to a 
given element are based on the phase in which the element is found. An example of this 
at the micro-structure level is shown in Fig. 3, where the red elements represent the pore 
space and the blue elements the mortar matrix.

4.2  Field

A plurigaussian simulation tool was written in Python to generate fields of varying 
structure. First, the lithotype rule must be defined in terms of facies shape, position 
and phase, and then, the lithotype is constructed by combining the defined facies. Two 
random fields are then generated based on the supplied covariance kernel, where here 
we can choose between Gaussian and Matérn kernels. The initial random fields are gen-
erated using the Python package gstools (Müller et al. 2022), and for a given domain, 
a simple pixelwise evaluation is carried out to determine the phase of each point in 

(14)
1

Δt
�

(

c
t+1

i
− c

t

i

)

+�c
t+1

i
= �

(15)�c
t+1

i,k+1
=

[

��t+1

�ci,k

]−1

(−�)

(16)� = �

(

c
t+1

i
− c

t

i

)

+ Δt�c
t+1

i
− Δt�

Fig. 3  Pixel-based finite element 
mesh of two-phase material
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the simulation domain adhering to the field-based mapping. The final discrete fields are 
then recorded on a pixel-wise basis to be read by the FE model on execution. Here, the 
correlation lengths of the two underlying fields are chosen to be the same in both cases. 
Whilst it is possible to introduce a localised roughness effect by using differing lengths, 
a similar effect can be achieved by using the Matérn covariance kernel.

5  Plurigaussian Field Representation

5.1  Effect of Lithotype Facies

The resulting structure of the generated plurigaussian field P will depend on the litho-
type facies chosen, as well as the covariance functions of the random fields Z1, Z2 used 
in the generation process. Thus, the probability density function of Z1, Z2 will determine 
the likelihood of reaching certain areas in the lithotype. In the following example, we 
consider a binary lithotype rule with fields Z1, Z2 having a Gaussian covariance kernel. 
Figure 4c shows a lithotype with a central circular facie to illustrate how such a facie 
would capture most of the possible combinations of the two Gaussian fields. The black 
dots depict the positions of the lithotype that are mapped by fields (a) and (b). As both 
(a) and (b) are based on a Gaussian distribution, their combination can be thought of as 
a multivariate normal distribution, and as such, we attain a concentration of points near 
the centre of the lithotype rule. Clearly, a change of shape or size in facies located near 
the centre of the lithotype will have a larger effect on the structure of P . We can see this 
in Fig. 5, where three different facies are taken at the centre and corner of the lithotype. 
Table 1 shows the relative areas of the facies and structure in P relative to the domain 
area. Thus, we can choose a combination of facies based on the connectivity and spar-
sity of the structure we are looking to represent. Multiple disjointed shapes in P can be 
generated using a lithotype with disjoint facies away from its centre. For the opposite 

Fig. 4  Gaussian random fields (a), (b), and their mapping positions show in binary lithotype (c)
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case of a generated field with well-connected phases, a single facie that spans the centre 
of the lithotype is employed.

5.2  Example of Mortar Micro‑Structure Lithotypes

It is worth noting here that in the following, the choice of lithotype facies shape and posi-
tion is not unique, and other combinations exist that would give similar results. A num-
ber of examples are given below of how different lithotype rules can be used to achieve a 
desired structure.

To develop representative plurigaussian fields of the typical micro-structure found in 
cement paste, backscattered electron scanning electron microscope (SEM-BSE) images 
from Lyu et al. (2019) (reproduced in Fig. 6) were used to match the relative size of the 
pore network. The average generated micro-scale porosity was 0.261 with a range of 0.053, 
which is within the range of the porosity observed in Lyu et al. (2019), which was found 
to be 0.117–0.294 for a w/c ratio of 0.4. In addition to this, the pore size range was com-
parable (≤ 9.47 µm for w/c ratio of 0.3 (Lyu et al. 2019), compared with ≤ 6.67 µm in the 
generated micro-structures).

Much of the connectivity of the network relies on having three spatial dimensions, 
but here it is assumed that there is some degree of planar connectivity to allow for dif-
fusion across the domain. It has been shown that a porosity above a percolation thresh-
old of 0.2 will lead to good predictions of diffusivity when considering samples of w/c 
rations in the range of 0.3–0.5 (Patel et  al. 2018b). As such, the generated porosity 

Fig. 5  Central facies and resulting plurigaussian field below (a), and the equivalent plurigaussian field for 
shifted lithotype facies (b)

Table 1  Comparison of relative 
phase areas for different lithotype 
facies shapes and their position

Shape Plurigaussian relative 
nonzero phase area %

Lithotype relative 
nonzero phase 
area %

Centre Quadrilateral 73.39 25
Ellipse 66.33 19.63
Triangle 40.51 12.5

Shifted Quadrilateral 25.41 25
Ellipse 19.31 19.63
Triangle 5.83 12.5
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and level of connectivity present at the micro-scale are sufficient in leading to suitable 
predictions in diffusivity. The correlation length and covariance kernel of both Z1, Z2 , 
as well as the lithotype rule, were used together to match the micro-structure. It was 
found that a Gaussian kernel resulted in a field with a smooth idealised network, whilst 
a Matérn kernel produced a field with the structural irregularities seen in the scans (see 
Fig. 7 for a comparison).

Similarly, the correlation length of Z1, Z2 allowed for control over the relative length 
of connecting channels and the size of the pores which they connect. Finally, an ellipse 
with large eccentricity was found to be an appropriate lithotype facie, and as can be 
seen in Fig. 8c along with the Matérn fields (a),(b) and resulting plurigaussian field (e). 
Figure 8d also shows the mapping from (a), (b) to (c). It is worth noting that in this case, 
the choice of lithotype shape is practically equivalent to segmenting the random field Z1.

In a mortar paste, it is known that high levels of porosity do not translate to high lev-
els of permeability due to the likelihood of low connectivity in the pore structure (Bin-
diganavile et al. 2018). In addition, connected porosity obtained from SEM images has 
been shown to be lower than the total porosity (Song et al. 2019). The generated micro-
structures exhibit this behaviour, with several disconnected regions being observed in 
Fig. 8e.

Fig. 6  BSE images of cement paste with a water-to-cement ratio of 0.4 of size 0.19 mm × 0.14 mm for a 
original BSE image, b binary image. (Reused with permission after Lyu et al. (2019))

Fig. 7  Comparison between micro-scale structure generated with fields of Gaussian kernels (a) and Matérn 
kernels (b)
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5.3  Example of Concrete Meso‑Structure Lithotypes

A similar process can be performed in representing the meso-structure. Images were taken 
of fractured concrete samples (Fig. 9), where the sample and aggregate size influenced the 
choice of model parameters.

As the sample aggregate pieces were relatively polygonal in shape, a convex hull trans-
form was applied to the final field to ensure the plurigaussian field would have a simi-
lar structure. Applying a convex closure to the shapes generated through PGS (Fig. 10e) 
results in the smallest convex shape, which contains the original shape. The Gaussian 
covariance kernel was chosen to give smoother output. Taking disjoint facies in the litho-
type resulted in disjoint structures in the plurigaussian field, so here four disjoint quadri-
laterals facies were chosen, positioned away from the centre of the lithotype. This leads to 

Fig. 8  a, b Random Matérn fields, c lithotype rule, d mapping distribution, e resulting plurigaussian field 
representing mortar micro-structure

Fig. 9  Example image of con-
crete meso-structure
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less frequent mapping to the facies based on the probability density functions of the Gauss-
ian fields, which further lead to more disjoint structures in the plurigaussian field. Finally, 
the correlation length of Z1, Z2 gave the control over the size of the aggregate pieces, which 
can be seen in Fig. 10f.

The average generated meso-scale aggregate content was 0.4147, which compares well 
with aggregate content in Selvarajoo et al. (2020), which was 0.4108. In addition to this, 
the aggregate size range was comparable (≤ 10.00 mm (Selvarajoo et al. 2020), compared 
with ≤ 10.63 mm in the generated meso-structures).

6  Example Problem

6.1  Multi‑Scale Solute Transport Simulations

To demonstrate the performance of the model, we consider an example problem concern-
ing the diffusion of chloride ions through a saturated concrete specimen presented in Oh 
and Jang (2007). To this end, a series of virtual micro- and meso-structures were generated 
to calculate the effective diffusion coefficients. The effective diffusion coefficient of the 
concrete at the macro-scale varies as a result of the statistical variability of the micro- and 
meso-structures. As such, uncertainty in its value is accounted for, and the numerical simu-
lations produce an envelope of predicted chloride profiles.

6.1.1  Micro‑Scale

The first step is the simulation of diffusion at the micro-scale, which was accomplished by generating 
nine virtual micro-structures of size 100 × 100 μm using the lithotypes shown in Fig. 8 (see Fig. 11), 
with an average porosity of 0.264 (Patel et al 2018b). The simulation considered steady-state diffu-
sion, with the left-hand and right-hand boundaries being fixed at concentrations of 1 and 0, respec-
tively, whilst at the top and bottom boundaries a zero flux condition was applied. It was assumed that 
the pore space was saturated and that the mortar matrix was impermeable. The finite element mesh 
employed matched the resolution of the micro-structure images and contained 62,500 elements of 
size 0.4 μm. To simulate for the assumed impermeability of the mortar matrix, the physical domain 
was restricted to the pore space (i.e. elements representing the mortar matrix were removed). The 
results of the simulations can be seen in Fig. 12, and the calculated effective diffusion coefficients, 

Fig. 10  a, b Gaussian random fields, c lithotype rule, d mapping distribution, e resulting plurigaussian 
field, f plurigaussian field after convex hull transformation
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formation factors and tortuosities are given in Table 2. It can be seen from Fig. 12 that in some cases 
large sections of the pore space are not connected across the domain and therefore do not contrib-
ute to the transport of solutes. For the case with the lowest porosity, it was found that there was no 
connected pore space that crossed the domain and as such the effective diffusion coefficient for 
the domain was zero (and effective formation factor and tortuosity infinity). This suggests that the 
percolation threshold is around 23% porosity, which is in good agreement with the results of Patel 
et al. (2018b). In addition, the relative diffusivity predicted at the micro-scale compares well with 
the results of Ma et al. (2014) (reported in Patel et al. 2018b). (The average calculated value was 
0.02194, whilst the results of Ma et al. (2014) are in the range 0.0194–0.0265.)

It can be seen that there is large variance between the properties of the nine samples. 
Modelling in 3D would increase how statistically representative the simulations are of the 
diffusive processes and would decrease the observed variance (Marafini et  al. 2020). It 
is noted that whilst the micro-scale domain constitutes a representative elementary vol-
ume (REV) when considering the porosity (see Appendix), it does not necessary for other 
quantities of interest (such as diffusivity). As such, the micro-scale domain size could be 
enlarged to be more representative of the pore-structure characteristics.

Fig. 11  Generated micro-structures
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6.1.2  Meso‑Scale

For the meso-scale simulations, nine virtual meso-structures of size 75 × 75 mm were gen-
erated using the lithotypes shown in Fig. 10 (see Fig. 13), with an average aggregate con-
tent of 0.411 (Qian et al. 2016; Holla et al. 2021). Again, the simulation considered steady-
state diffusion, with the left-hand and right-hand boundaries being fixed at concentrations 
of 1 and 0, respectively. It was assumed that the aggregate particles were impermeable. The 
finite element mesh employed contained 62,500 elements of size 0.3 mm. The results of 
the simulations can be seen in Fig. 14, whilst the calculated effective diffusion coefficients, 
formation factors and tortuosities are given in Table  3. It can be seen that the transport 
through the domain is non-uniform due to the presence of the aggregate, with regions of 
slower transport being found behind large or clusters of aggregate particles.

Fig. 12  Steady-state concentration profiles at micro-scale
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Table 2  Micro-scale results

Sample no. Effective diffusion coef-
ficient (-)

Effective formation 
factor (-)

Effective tortuos-
ity (-)

Porosity (-)

1 0.0288 34.7717 8.2679 0.2378
2 0.0000 Inf Inf 0.2331
3 0.0221 45.2602 11.4425 0.2528
4 0.0116 86.5041 21.9125 0.2533
5 0.0127 78.7279 20.5625 0.2612
6 0.0403 24.8468 6.8589 0.2760
7 0.0191 52.4223 14.4241 0.2752
8 0.0169 59.2573 16.3939 0.2767
9 0.0240 41.7115 11.9168 0.2857

Fig. 13  Generated meso-structures
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As with the micro-scale results, there is a large variance between the properties of 
the 9 samples. It is again noted that this could be decreased through both modelling in 
3D (Marafini et al. 2020) and, potentially, through increasing the domain size (though 
the meso-scale domain does constitute an REV when considering aggregate content, see 
Appendix).

6.2  Statistical Analysis of Effective Diffusion Coefficients

In order to quantify the uncertainty associated with the calculated effective diffusion coef-
ficients, at both the micro- and meso-scales, a statistical analysis was undertaken. The dif-
fusion coefficients were assumed to follow a normal distribution. The mean values of the 

Fig. 14  Steady-state concentration profiles at the meso-scale
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diffusion coefficients at the micro- and meso-scales ( Dmi and Dme , calculated as the aver-
age of the effective diffusion coefficients found in Tables 2 and 3, respectively), the corre-
sponding standard deviations ( s ) and mean normalised standard deviations can be seen in 
Table 4, and a plot of the probability density functions is given in Fig. 15. The figure shows 
that the effective diffusion coefficient is higher at the meso-scale than at the micro-scale 
and that there is less uncertainty in its value when considering the mean normalised stand-
ard deviation. It can be noted that in the results, the second sample at the micro-scale was 
neglected due to the fact that the porosity is below the percolation threshold, as indicated 
by the zero value for the effective diffusion coefficient. 

Using this underlying distribution, the confidence level that the mean effective diffusion 
coefficient of the population at each scale ( D

p

mi
 and D

p

me
 ) lies within the range of calculated 

effective diffusion coefficients can be calculated. The confidence interval ( CI ) is calculated 
based on the following formula:

Table 3  Meso-Scale results

Sample no. Effective diffusion coef-
ficient (–)

Effective formation 
factor (–)

Effective tortuosity 
(–)

Aggregate 
content (–)

1 0.3860 2.5907 1.5938 0.3848
2 0.3730 2.6811 1.6128 0.3985
3 0.3346 2.9885 1.7799 0.4044
4 0.3466 2.8852 1.6972 0.4118
5 0.3564 2.8059 1.6474 0.4129
6 0.3087 3.2394 1.8803 0.4196
7 0.3509 2.8496 1.6448 0.4228
8 0.3098 3.2277 1.8127 0.4384
9 0.3623 2.7598 1.5462 0.4397

Table 4  Statistical parameters Scale Mean (–) Standard devia-
tion (–)

Mean normalised 
standard devia-
tion (–)

Micro 0.02194 0.00937 0.42700
Meso 0.34759 0.02631 0.07568

Fig. 15  Distribution of diffusion 
coefficients at micro- and meso-
scales
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where x , s and n indicate the sample mean, sample standard deviation and sample size, 
respectively, and SE is the standard error. Finally, t is the t-score that has been used in 
place of the z-score to correct for the sample size (Campbell 2021). Using Eq.  (17), the 
t-scores for the range of effective diffusion coefficients at the micro- and meso-scales 
(Tables 2 and 3, respectively) can be calculated. Once the t-scores are obtained, the cor-
responding confidence level can be found from a t-table (Campbell 2021). For the micro-
scale, the lowest diffusion coefficient was found to be 3.12 SE s from the mean, whilst 
the highest was 5.54 SE s away, giving a range of Dmi − 3.12SE ≤ D

p

mi
≤ Dmi + 5.54SE , 

which gives 99.52% certainty that the mean effective diffusion coefficient of the popula-
tion lies in this range. For the meso-scale, the lowest diffusion coefficient was found to 
be 4.43 SE s from the mean, whilst the highest was 4.38 SE s away, giving a range of 
Dme − 4.43SE ≤ D

p

me
≤ Dme + 4.38SE , which gives 99.73% certainty that the mean effec-

tive diffusion coefficient of the population lies in this range. In addition to quantifying the 
confidence that the population mean lies within the range of calculated effective diffusion 
coefficients, the distribution can also be used to calculate what the range of values need to 
be for a given confidence level. An example of this for a 95% confidence level, along with a 
summary of the current confidence levels and range of values, is given in Table 5.

6.3  Experimental Validation of Macro‑scale Reactive Transport

The example considered here is that presented in Oh and Jang (2007) which concerns 
the diffusion of chlorides in a concrete specimen. In the experiments, concrete cylinders 
(100(h) × 200(d) mm) were cured for 28 days in water, before being immersed in a 3.5% 
chloride solution for 15 weeks, after which concentration profiles were measured. The sur-
faces of the specimen were sealed, with the exception of one face, ensuring one-dimen-
sional transport of chlorides.

For the numerical simulations, the range of diffusion coefficients is accounted for 
through the consideration of the bounding values, obtained as the product of the extreme 
values at each scale with the free-water diffusion coefficient. It is noted that the median of 
the range compares well with the approximate experimental value for ordinary Portland 
cements reported in Oh and Jang (2007) (2.01 ×  10–11  m2/s compared with ~ 2.00 ×  10–11 
 m2/s). Following mesh and time step convergence studies, a finite element mesh contain-
ing 42 elements with a maximum size of 3 mm and a time step size of 36 s was employed. 

(17)CI = x ± t
s

√

n
= x ± tSE

Table 5  Diffusion coefficient 
ranges at each scale and 
confidence level

Confidence level

Scale  > 99.5% 95%

Micro 0.0116 ≤ D
p

mi
≤ 0.0403 0.0141 ≤ D

p

mi
≤ 0.0298

Meso 0.3087 ≤ D
p

me
≤ 0.3860 0.3273 ≤ D

p

me
≤ 0.3678
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The parameters used in the simulations are given in Table 6. The porosity was calculated 
as the average from the micro- and meso-structures, whilst the diffusion coefficient range 
accounts for the statistical variability. A comparison between the numerical predictions and 
the experiment results is given in Fig. 16 where ‘Exp–C1’ and ‘Exp–C5’ denote the experi-
mental profiles that correspond to cement types Cem-I and Cem-V, respectively. It can be 
seen that there is a good agreement between the simulations and the experimental data, 
with the latter being mostly contained within the envelope of numerical predictions. It may 
also be seen that the width of the envelope of numerical predictions is non-uniform, with a 
wider range (and therefore uncertainty) present at higher depths.

7  Concluding Remarks

A new coupling of plurigaussian simulation for micro- and meso-structure represen-
tation with multi-scale modelling of particulate materials has been presented, and 
its application to the finite element simulation of chloride diffusion in a concrete 

Table 6  Model parameters Parameter Value Parameter Value

� 0.15 �(s) 360,000
�(kg/m2s) 0.0001 DCl(m2/s) 7.494 ×  10–12−3.263 ×  10–11

� 5.22 Cli(kg/kg) 0
� 0.61 Clb(kg/kg) 0.035

Fig. 16  Comparison between 
numerical envelope and experi-
mental results of Oh and Jang 
(2007)
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specimen. The method carries out a geometric evaluation of the effective diffusion 
coefficients at the micro- and meso-scales and passes these up to the macro-scale. In 
doing so, a level of statistical variability is introduced into the macro-scale simula-
tions, accounting for the uncertainty associated with the properties of cementitious 
materials. In addition, such an approach avoids the need to use either empirical for-
mulas, or experimental calibration, to estimate the effective diffusion coefficients at 
the macro-scale. The approach instead relies only on statistical parameters describ-
ing the micro- and meso-structures of the material.

Plurigaussian simulation has been shown to be a suitable method in random struc-
tural generation for pore networks and aggregate distributions, highlighting the abil-
ity of this computationally inexpensive and tractable method to represent highly 
complex structures in a stochastic manner. At both the micro- and meso-scales, the 
correlation length and covariance kernel of the two input fields were shown to be 
significant in altering the resulting plurigaussian field. Similarly, the lithotype rule 
and facies were influential in the outcome, since these are directly coupled with 
the probability density function of both input fields. The shapes of the facies affect 
the resulting field in terms of the roughness of the structure, but this has not been 
explored systematically in the present work. A binary system produced realistic rep-
resentations of the observed structure at both scales for the particulate materials con-
sidered in this study. It is worth noting that the current generative model can account 
for an arbitrary number of lithotype facies and is therefore applicable to a wide range 
of composite materials and physical phenomena.

The performance of the model was demonstrated through the simulation of a chlo-
ride diffusion test. The results showed that the model was able to accurately repro-
duce the experimental behaviour and showed the validity of a multi-level upscaling 
approach as an alternative to more computationally expensive methods such as  FE2. 
Whilst in the present study the model is implemented in 2D, the approach can be 
readily extended to 3D. Even though there was agreement between the experimental 
and numerical results in this 2D idealisation, this extension would further improve the 
statistical representation of the generated structures at all scales and reduce the REV 
size.

Appendix

REV Size at Micro- and Meso-scales
 In this study, the open-source image analysis python package PoreSpy (Gostick et al. 

2019) was employed to calculate the REV size at the micro- and meso-scales. The quantity 
of interest (QoI) considered at the micro- and meso-scales was selected as the porosity and 
aggregate content, respectively. The REV size was calculated through the determination 
of the QoI for subdomains of varying sizes. The domain constitutes an REV once the QoI 
changes negligibly with increasing domain size.

The results of the analyses are shown in Figs. 17 and 18 for the micro- and meso-scales, 
respectively. It can be seen from the figures that the domain sizes employed in the present 
work constitute and REV when considering the porosity and aggregate content. 
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