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Abstract
In this paper, we derive an effective model for transport processes in periodically perfo-
rated elastic media, taking into account, e.g., cyclic elastic deformations as they occur in 
lung tissue due to respiratory movement. The underlying microscopic problem couples the 
deformation of the domain with a diffusion process within a mixed Lagrangian/Eulerian 
formulation. After a transformation of the diffusion problem onto the fixed domain, we use 
the formal method of two-scale asymptotic expansion to derive the upscaled model, which 
is nonlinearly coupled through effective coefficients. The effective model is implemented 
and validated using an application-inspired model problem. Numerical solutions for both, 
cell problems and macroscopic equations, are investigated and interpreted. We use simula-
tions to qualitatively determine the effect of the deformation on the transport process.

Keywords Perforated elastic medium · Evolving microstructure · Diffusive transport · 
Two-scale expansion · Finite-element methods

1 Introduction

Heat and mass transport in materials characterized by a complex microgeometry are 
actively researched topic in various fields such as material sciences or geosciences as well 
as in the biological/medical field. Here, mathematical models can help to identify underly-
ing mechanisms as well as complement or replace experiments by numerical simulations. 

 * Jonas Knoch 
 jonas.knoch@fau.de

 Markus Gahn 
 markus.gahn@iwr.uni-heidelberg.de

 Maria Neuss-Radu 
 maria.neuss-radu@math.fau.de

 Nicolas Neuß 
 neuss@math.fau.de

1 IWR, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, 
Germany

2 Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 11, 
91058 Erlangen, Germany

http://orcid.org/0000-0003-4474-3167
http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-022-01896-z&domain=pdf


94 J. Knoch et al.

1 3

This is of particular importance in the medical field, where experiments and animal stud-
ies or clinical trials are expensive if at all feasible. The main question of this work is, how 
transport processes are influenced by a complex microstructure of the carrier medium and 
its deformation. Applications are especially found in the context of diseases whose clini-
cal picture includes a dysfunction of the lung, such as COVID-19, pneumonia or sepsis. 
Experimental evidence already indicates that in addition to the microstructure formed at 
the cellular level by pneumocytes, the periodic deformation caused by inhalation and exha-
lation also plays an important role in transport processes such as those for nutrients or res-
piratory gases, see e.g. Huh et al. (2010).

Unfortunately, the heterogeneous microstructure of such problems can only be resolved 
to a very limited extent for small domains in numerical simulations. For problems involv-
ing multiple scales, one has to rely on mathematical tools that are capable of deriving 
approximate problems, which are easier to solve but still incorporate the information on the 
microgeometry. To this end, we derive in this paper an effective model for transport pro-
cesses in an elastically deformable, periodically perforated medium, where we restrict our-
selves to the case of a purely elastic solid phase that is not coupled with a fluid phase. This 
model is suitable for applications involving low-density fluids, for example, and it is also a 
first step for dealing with more general problems. We approach the problem by formulating 
first the microscopic problem on the perforated domain in a mixed Lagrangian/Eulerian 
framework. The deformation process is described by a linear elasticity equation on the 
microscopic reference domain as opposed to the transport problem, which is initially for-
mulated on the current, moving microscopic domain. In this form, the problem is not acces-
sible for standard upscaling tools. Therefore, we use a transformation, which is defined by 
means of the solution to the elasticity problem, to reformulate the transport problem on 
the reference domain for the elasticity equation. Then we can exploit the formal method of 
two-scale asymptotic expansion in order to obtain a macroscopic model describing trans-
port processes and deformation for a periodically perforated domain. The resulting model 
is formulated on a homogeneous domain and involves effective coefficient functions. These 
effective quantities are computed by means of solutions to so-called cell problems which 
are formulated on the reference cell and carry the information on the microscopic geome-
try. Additionally, we develop and study numerical methods for the derived effective model. 
A lot of work has been done concerning the upscaling of fluid–structure-interaction-mod-
els, pure diffusion or elasticity, or (linear) coupled models for heat transport and deforma-
tion. In contrast, there are hardly any papers considering modeling and numerical simula-
tions for an elasticity-diffusion problem, where the diffusion process is formulated within 
the Eulerian framework and transformed into a common framework, leading to coupling 
through nonlinear coefficients. We discretize both, the cell problems as well as the macro-
scopic problem using the finite element method and the implicit Euler method for discre-
tization in time. Afterwards, we use a application-inspired model problem with oscillating 
Dirichlet boundary conditions in the deformation for numerical convergence tests to vali-
date the code. For the model problem, we investigate and interpret the numerical results. 
Finally, again within the scope of the model problem, we give a quantitative answer to the 
question how the deformation affects the transport of a diffusing substance. To this end, we 
perform a parameter study for key parameters involved in the deformation of the domain 
and analyze the sensitivity of the effective model with respect to these parameters. This is 
accompanied by the visualization of the homogenized coefficient functions.

Homogenization techniques for elastic heterogeneous media (modelling, e.g., deform-
able composite materials) have been extensively studied in Oleinik et  al. (1992). Trans-
port processes in porous media involving an elastically deformable solid phase interacting 
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with a fluid occupying the pore space where firstly modelled under the assumption of small 
deformations. Hence the equations for the fluid flow as well as the transport equation were 
formulated with respect to Lagrangian coordinates. For such problems, a rigorous homog-
enization can be found in Clopeau et al. (2001); Gilbert and Mikelić (2000) for the pure 
fluid–structure interaction without transport. See also references therein for similar results, 
especially using formal upscaling. In Clopeau et al. (2001) in the limit the famous Biot-
law is obtained, see (Biot 1956, 1962). The rigorous homogenization for the transport of 
biochemical substances within a deformable porous medium and their interaction with 
the mechanical properties of the elastic solid phase was performed in Jäger et al. (2011). 
A similar framework involving a deformable porous medium coupled to heat transport 
is upscaled in Brun et  al. (2018). Furthermore, the authors of Allaire et  al. (2017) con-
sider the transport of electrolytes through the pore space of a deformable, charged porous 
medium and rigorously derive an effective model. More recently, models involving a mixed 
Lagrangian/Eulerian framework were considered, where the equations for the fluid flow as 
well as the transport equation were formulated on the deformed domain, i.e., with respect 
to Eulerian coordinates. Here, we mention, e.g., Collis et al. (2017), where a macroscopic 
model for transport processes in porous media, involving fluid–structure-interaction and 
growth has been derived by formal upscaling, see also (Brown et  al. 2014) for the case 
without transport. However, the explicit representation of the effective coefficients was not 
specified. This was overcome for the pure fluid–structure interaction problem for porous 
media (without transport) in Miller and Penta (2020) for linear elastic and in Miller and 
Penta (2021) for hyperelastic multi-composite media. Further results related to our investi-
gations deal with processes in porous media with an evolving microstructure. In Gahn et al. 
(2021); Peter (2007, 2009) reaction-diffusion models were homogenized assuming a given 
evolution of the microstructure. For the homogenization of a model of thermoelasticity, 
assuming again a given evolution of the microstructure due to phase transformation, see 
(Eden and Muntean 2017). In the context of crystal precipitation and dissolution, where 
the evolution of the microstructure is dictated by the local dissolution/precipitation rate, an 
upscaled model has been derived in van Noorden (2009), and the macroscopic model for 
a similar micro-model was analyzed in Schulz et al. (2017) for specific geometries lead-
ing to a dependence of the effective diffusion on the porosity. We emphasize that rigorous 
homogenization results of problems including a free boundary are quite rare, see for exam-
ple (Gahn and Pop 2023) for a microstructure including spherical grains, where the radii 
depend on the solute concentration at the surface.

The paper is organized as follows: In Sect. 2, we introduce the microscopic problem and 
rewrite it in non-dimensionalized form on a fixed, heterogeneous reference domain. This is 
the starting point for the derivation of the effective model, which we obtain by means of a 
two-scale asymptotic expansion. In Sect. 3, we numerically compute, evaluate and interpret 
the solutions to the macroscopic problem. Before we finish with some final remarks and 
an outlook, we use computer experiments in Sect. 4 to quantitatively investigate how the 
cyclic deformation of the domain affects the transport process in the macroscopic model.

2  The Mathematical Model

Let us consider a macroscopic domain Ω given by the hyper-rectangle Ω = (a, b) ⊂ ℝ
n , n ≥ 2 

(the physically relevant cases are obtained for n = 2, 3 ), with a, b ∈ ℤ
n such that ai < bi for 

all i = 1,… , n . This macroscopic domain contains a subdomain Ωs
�
 which exhibits a periodic 
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microstructure and can be interpreted as the reference configuration of the solid part of a 
porous medium. The small parameter � with �−1 ∈ ℕ describes the ratio between the length 
of one microscopic cell and the size of the whole domain Ω . We require �−1 ∈ ℕ in order to 
avoid dissected microscopic cells near the boundary of Ω . The microscopic domain Ωs

�
 is con-

structed in the following way: Let Y = (0, 1)n be the n-dimensional open unit cube and Ys ⊊ Y  
be a connected domain in Y that intersects all faces of Y, i.e. we have

Additionally, we require that opposite faces of Ys are equal, i.e. it holds that

By Γ ∶= int(�Ys ⧵ �Y) we denote the internal boundary of Ys in Y. Then we define the sub-
domain Ωs

�
 as

and the internal boundary of the heterogeneous subdomain in Ω

We note that by our assumptions Ωs
�
 is connected. This allows us to make sense of elas-

tic deformation and diffusion processes in Ωs
�
 for n ≥ 2 . For a sketch of the microscopic 

domain, see Fig. 1.

�Ys ∩ {yi = 0} ≠ � and �Ys ∩ {yi = 1} ≠ � for i = 1, ..., n.

(�Ys ∩ {yi = 0}) + ei = (�Ys ∩ {yi = 1}) for i = 1, ..., n.

Ωs
�
∶= int

(
Ω ∩

(⋃
k∈ℤn

�(Ys + k)

))

Γ� ∶= int(�Ωs
�
⧵ �Ω).

Fig. 1  Sketch of the microscopic geometry, see also Sect. 2
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2.1  The Microscopic Problem

Due to elastic deformation, the physical domain changes with time. We denote the cur-
rent solid domain at time t ∈ [0, T] , T > 0 , by Ωs

�
(t) and the current internal interface by 

Γ�(t) ∶= �Ωs
�
(t) ⧵ �Ω(t) . The reference domain Ωs

�
 is given by the current solid domain at 

time t = 0 , i.e. Ωs
�
= Ωs

�
(0) , and, analogously, for the internal reference interface we have 

Γ� = Γ�(0) . In the following, quantities and operators defined on or associated with the cur-
rent domain Ωs

�
(t) are marked by a hat ⋅̂  whereas quantities and operators defined on or asso-

ciated with the reference domain Ωs
�
 do not carry a distinct label. The outer boundary of Ωs

�
 

is divided into a Dirichlet and a Neumann boundary for the elasticity problem, i.e. we have 
�Ωs

�
∩ �Ω = Γelast

�,D
∪ Γelast

�,N
 with Γelast

�,D
∩ Γelast

�,N
= � . Analogously, for the diffusion problem, we 

have �Ωs
�
(t) ∩ �Ω(t) = Γdiff

�,D
(t) ∪ Γdiff

�,N
(t) with Γdiff

�,D
(t) ∩ Γdiff

�,N
(t) = � for all t ∈ [0, T] . In similar 

fashion, the boundary of �Ω is split into corresponding Dirichlet and Neumann parts for the 
elasticity problem ( �Ω = Γelast

D
∪ Γelast

N
 ) and for the diffusion problem ( �Ω = Γdiff

D
∪ Γdiff

N
).

We assume that the displacement u� and the concentration ĉ� satisfy the system 

 Here, 𝜌s > 0 is the constant density of the solid phase, A is a constant fourth-order elastic-
ity tensor and by felast ∶ [0, T] × Ω → ℝ

n we denote a body force acting on the solid phase. 
e(w) =

1

2
(∇w + (∇w)T ) denotes the symmetric gradient and on the Dirichlet boundary of 

the elasticity problem, the displacement is prescribed by a function h ∶ [0, T] × Γelast
D

→ ℝ
n 

with h(0, x) = 0 . Further, D̂ is a constant, positive-definite diffusion tensor, 
f̂ diff ∶

⋃
t∈(0,T)

{t} × Ω(t) → ℝ is a source/sink term and ĝ ∶
⋃

t∈(0,T)

{t} × Γdiff
D

→ ℝ , 

ĉ0 ∶ Ω → ℝ denote the Dirichlet boundary value and the initial value for the diffusion 
problem, respectively. By n and n̂ , we denote the outer unit normals to the reference 

(2.1a)�s
�2u�
�t2

− ∇ ⋅

(
Ae(u�)

)
= f

elast in (0, T) × Ωs
�
,

(2.1b)−Ae(u�) ⋅ n = 0 on (0, T) × Γ� ∪ Γelast
�,N

,

(2.1c)u� = h on (0, T) × Γelast
�,D

,

(2.1d)u�(0, x) =
�u�
�t

(0, x) = 0 in Ωs
�
,

(2.1e)
�ĉ�
�t

+ ∇̂ ⋅

(
ĉ�v̂� − D̂∇̂ĉ�

)
= f̂ diff in QT

�
∶=

⋃
t∈(0,T)

{t} × Ωs
�
(t),

(2.1f)−D̂∇̂ĉ� ⋅ n̂ = 0 on GT
�
∶=

⋃
t∈(0,T)

{t} × (Γ�(t) ∪ Γdiff
�,N

(t)),

(2.1g)ĉ� = ĝ on ET
�
∶=

⋃
t∈(0,T)

{t} × Γdiff
�,D

(t),

(2.1h)ĉ�(0, x̂) = ĉ0 (̂x) in Ωs
�
(0) = Ωs

�
.
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domain Ωs
�
 and the current domain Ωs

�
(t) , respectively. Further, v̂� is the velocity field 

induced by the deformation of the domain.
The elasticity problem (2.1a)–(2.1d) is defined within the Lagrangian framework 

on the reference domain Ωs
�
 . In contrast, the natural setting for the diffusion problem 

(2.1e)–(2.1h) is the Eulerian framework, i.e. it is defined on the current deformed 
domain Ωs

�
(t) . In the present context, the shape of Ωs

�
(t) is solely dictated by the elastic-

ity problem, whereas in general, other processes, e.g., growth, might also be conceiv-
able as driver of the deformation of the domain. Thus, using the elastic deformation 
defined by

the current deformed domain Ωs
�
(t) is given by

and its internal, microscopic boundary is given by

The velocity field v̂� in equation (2.1e) is given by

As previously remarked, the advection term for the concentration is solely due to the elas-
tic deformation of the domain. Additional contributions to the velocity field which take 
into account other transport processes are of course possible but not considered in the 
following.

2.2  Transformation of the Diffusion Equation to the Reference Domain

In order to make the elasticity-diffusion system accessible for standard homogenization 
techniques, we transform equations (2.1e)–(2.1h) to the reference domain Ωs

�
 by using 

the deformation S� defined in (2.2). For given, sufficiently smooth, scalar- and vector-
valued functions on the current deformed space-time domain QT

�

we obtain their respective counterparts on the reference domain via

Additionally, we define the deformation gradient and its determinant by

The following well-known computation rules connect differential operators and integrals 
from Ωs

�
 and Ωs

�
(t) via the transformation mapping x̂ = S�(t, x) . Similar transformations are 

used, e.g., in Peter (2007).

(2.2)S�(t, x) ∶= x + u�(t, x), (t, x) ∈ [0,T] × Ωs
�
,

Ωs
�
(t) ∶= {x̂ ∈ ℝ

n ∣ x̂ = S�(t, x), x ∈ Ωs
�
}, t ∈ [0,T],

Γ�(t) ∶= {x̂ ∈ ℝ
n ∣ x̂ = S�(t, x), x ∈ Γ�}, t ∈ [0, T].

v̂�(t, x̂) ∶=
�S�
�t

(t,S−1
�
(t, x̂)), (t, x̂) ∈ QT

�
.

�̂ ∶ QT
�
→ ℝ and �̂ ∶ QT

�
→ ℝ

n,

�(t, x) ∶= �̂(t,S�(t, x)) and �(t, x) ∶= �̂(t, S�(t, x)) for (t, x) ∈ (0, T) × Ωs
�
.

(2.3)F�(t, x) ∶= ∇S�(t, x) and J�(t, x) ∶= det(F�(t, x)) for (t, x) ∈ (0,T) × Ωs
�
.
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Accordingly, the equations governing the diffusion process on the reference domain are 
given by 

 where we use the definitions

We note that the advective term in Eq. (2.1e) (on the current deformed domain) now van-
ishes. The effect of the deformation of the domain is encoded in the coefficients J� and D� 
which depend on the displacement u� in a nonlinear manner.

2.3  The Non‑dimensional Model

We analyse system (2.1a)–(2.1e), (2.4a)–(2.4d) further by introducing dimensionless quanti-
ties. The relationship between these quantities gives an idea of the qualitative behaviour of 
the system and also might influence significantly the homogenization result. As stated in the 
introduction, we have in mind the experimental setup from (Huh et al. 2010), where the cross-
sectional size of the microchannels is 4 ⋅ 10−4m × 7 ⋅ 10−5m . To mimic physiological breath-
ing motion, the domain was cyclically stretched on two opposing boundaries by approximately 
10% to reach a maximal length of 4.4 ⋅ 10−4m . In order to maintain applicability of the model 
to a broader variety of settings, we choose as characteristic size of the domain x̄ = 5 ⋅ 10−3 

∇̂�̂ = F
−T
�
∇�,

��̂

�t
=

��

�t
− F

−T
�
∇� ⋅

�S�
�t

,

�J�
�t

= J�tr

(
F
−1
�

�F�

�t

)
,

∫Ωs
�(t)

�̂dx̂ = ∫Ωs
�

�J�dx,

∫�Ωs
�(t)

�̂ ⋅ n̂d�̂ = ∫�Ωs
�

J�� ⋅ F
−T
�
nd�.

(2.4a)
�

�t

(
J�c�

)
− ∇ ⋅

(
D�∇c�

)
= J�f

diff in (0, T) × Ωs
�
,

(2.4b)−D�∇c� ⋅ n = 0 on (0,T) × (Γ� ∪ Γdiff
�,N

(0)),

(2.4c)c� = g on (0, T) × Γdiff
�,D

(0),

(2.4d)c�(0, x) = c0(x) in Ωs
�
(0),

c�(t, x) ∶= ĉ�(t,S�(t, x)),

f diff(t, x) ∶= f̂ diff(t, S�(t, x))),

g(t, x) ∶= ĝ(t,S�(t, x))

c0(x) ∶= ĉ0(S�(t, x))

D�(t, x) ∶= [J�F
−1
�
D̂F

−T
�
](t, x).
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and the characteristic cell size l = 5 ⋅ 10−6m . This results in the characteristic size of heteroge-
neities 𝜀 = l∕x̄ = 10−3.

Next, let us replace the dependent and independent variables by scaled versions:

Here, quantities marked by a dagger ⋅† are dimensionless variables and they carry a char-
acteristic reference value which is marked by a bar ⋅̄ . Note that, in the definition of D� , 
the quantities J� and F� do not carry a unit and therefore it is sufficient to associate the 
non-dimensional diffusion tensor D† with a reference value D̄ . Then, with the definition 
D

†
�
∶= J�F

−1
�
D

†
F
−T
�

 , we can write D𝜀 = D
†
𝜀
⋅ D̄ . The introduction of the non-dimensional 

spatial variables implies that the equations are now posed on the non-dimensional domain 
Ωs

�
† of unit size. Realistic values for the reference quantities according to the application 

we have in mind can be found in Table 1.
Using the relations in (2.3) and dropping the daggers for the sake of an easier notation we 

obtain

According to Table 1, we compute (since 𝜀 = l∕x̄ = 10−3)

x = x† ⋅ x̄, t = t† ⋅ t̄, u𝜀 = u
†
𝜀
⋅ ū, A = A

†
⋅ Ā, felast = f

elast†
⋅ f̄e,

h = h
†
⋅ h̄, c𝜀 = c†

𝜀
⋅ c̄, D𝜀 = J𝜀F

−1
𝜀
D

†
⋅ D̄F−T

𝜀
= D

†
𝜀
⋅ D̄,

f diff = f diff
†
⋅ f̄d, g = g† ⋅ c̄, c0 = c0

†
⋅ c̄.

𝜌sx̄
2

t̄2Ā

𝜕2u𝜀
𝜕t2

− ∇ ⋅

(
Ae(u𝜀)

)
=

f̄ex̄
2

Āū
f
elast,

𝜕

𝜕t

(
J𝜀c𝜀

)
−

D̄t̄

x̄2
∇ ⋅

(
D𝜀∇c𝜀

)
=

f̄d t̄

c̄
f diff.

𝜌sx̄
2

t̄2Ā
≈ O(𝜀2),

f̄ex̄
2

Āū
≈ O(1),

D̄t̄

x̄2
≈ O(1),

f̄d t̄

c̄
≈ O(1).

Table 1  Characteristic reference quantities as they are used for the non-dimensionalisation of system 
(2.1a)–(2.1e), (2.4a)–(2.4d). Note that the value for f̄e is chosen in such a way that the right-hand side of the 
elasticity equation is of order 1 and a non-zero force-term in the macroscopic equation occurs. The value 
might not be realistic for the application we have in mind but is chosen nonetheless to sustain generality 
of the model. For more realistic (smaller) values of f̄e , the force term would not occur in the macroscopic 
model

Quantity Value Units Comment

� 10−3 – Proportion of microstructure and macro-domain
x̄ 5 ⋅ 10−3 m Characteristic domain size
t̄ 1 s Characteristic time for one breath
ū , h̄ 5 ⋅ 10−4 m Characteristic displacement
Ā 1 ⋅ 104 Pa Characteristic elastic modulus
f̄e 2 ⋅ 105

N

m3

Characteristic body force density

c̄ , ḡ 1 mol

m3

Characteristic concentration

D̄ 10−4 − 10−11 m2

s

Range for characteristic diffusion coefficient

f̄d 1 mol

m3s

Characteristic reaction rate of source/sink term
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and therefore obtain the non-dimensionalised elasticity-diffusion system on the non-dimen-
sional reference domain: 

Remark 1 The existence of a weak solution for the elasticity Eqs.   (2.5a)–(2.5d) is quite 
standard. The crucial point is the existence for the reaction-diffusion equation (2.5e)–
(2.5h), since the coefficients depend on the microscopic displacement u� and may degener-
ate in space and time for vanishing J� . To overcome this problem higher regularity for the 
displacement is necessary, to guarantee the positivity of J� as well as the injectivity of u� , 
at least locally in time. However, this local existence interval may depend on � and could 
vanish for � → 0 . Even for finite � strong assumptions and compatibility conditions on the 
data (and especially the microscopic domain) are necessary to obtain enough regularity 
for the displacement. Hence, the rigorous analytical treatment of this problem is an open 
question.

2.4  Upscaling in the Reference Domain

Although the domain for the elasticity-diffusion system is now fixed in time, we still 
have to deal with its heterogeneous microstructure. This issue is addressed by applica-
tion of the formal two-scale asymptotic expansion method with the aim of deriving 
effective equations on the spatially homogeneous macroscopic domain Ω . The effective 
parameters in these equations are computed by means of solutions to cell problems 
which account for the heterogeneous nature of the microscopic problem.

(2.5a)�2
�2u�
�t2

− ∇ ⋅

(
Ae(u�)

)
= f

elast in (0, T) × Ωs
�
,

(2.5b)−Ae(u�) ⋅ n = 0 on (0,T) × (Γ� ∪ Γelast
�,N

),

(2.5c)u� = h on (0, T) × Γelast
�,D

,

(2.5d)u�(0, x) =
�u�
�t

(0, x) = 0 in Ωs
�
,

(2.5e)
�

�t

(
J�c�

)
− ∇ ⋅

(
D�∇c�

)
= J�f

diff in (0, T) × Ωs
�
,

(2.5f)−D�∇c� ⋅ n = 0 on (0, T) × (Γ� ∪ Γdiff
�,N

),

(2.5g)c� = g on (0,T) × Γdiff
�,D

,

(2.5h)c�(0, x) = c0(x) in Ωs
�
.
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2.4.1  Upscaling of the Elasticity Problem

Following the standard approach of two-scale asymptotic expansion, we postulate for the 
microscopic displacement u� and concentration c� expansions of the form

with functions ui(t, x, y) and ci(t, x, y) depending on the the macroscopic variable x ∈ Ω , 
and the microscopic variable y ∈ Ys and being Y-periodic with respect to y. For derivatives 
of such functions, we have by the chain rule

and analogous rules hold for the divergence operator. We will see that the expansion for u� 
induces a two-scale asymptotic expansion of type

where Ψ� and Ψi, i = 1, 2, ..., can be scalar- or vector-valued, also for the coefficients J� and 
D� . We start with the derivation of a macroscopic equation for the displacement, and iden-
tify the zeroth order term u0 and the first order term u1 in the expansion (2.6) for the micro-
scopic displacement u� . We emphasize that these results are well known in the literature, 
even for rigorous homogenization, see for example (Oleinik et al. 1992). However, for the 
sake of completeness and since we need the explicit representations for u1 , we give some 
details for the upscaling process. Hence, let us plug in the expansion for u� from (2.6) into 
Eqs.  (2.5a)–(2.5d). We obtain

and for the boundary conditions

and

(2.6)u�(t, x) =

∞∑
i=0

�iui

(
t, x,

x

�

)
, c�(t, x) =

∞∑
i=0

�ici

(
t, x,

x

�

)
,

∇ = ∇x +
1

�
∇y, e = ex +

1

�
ey,

(2.7)Ψ�(t, x) =

∞∑
i=0

�iΨi

(
t, x,

x

�

)
,

(2.8)

�2
�2

�t2

(
u0(t, x, y) + �u1(t, x, y) + ...

)

− �−2
[
∇y ⋅

(
Aey(u0)

)]
(t, x, y)

− �−1
[
∇y ⋅

(
A(ey(u1) + ex(u0))

)
+ ∇x ⋅

(
Aey(u0)

)]
(t, x, y)

− �0
[
∇y ⋅

(
A(ey(u2) + ex(u1))

)
+ ∇x ⋅

(
A(ey(u1) + ex(u0))

)]
(t, x, y)

− ...

= f
elast(t, x), for x ∈ Ω and y ∈ Ys

− �−1
[
Aey(u0) ⋅ nΓ

]
(t, x, y)

− �0
[
A
(
ey(u1) + ex(u0)

)
⋅ nΓ

]
(t, x, y)

− �1
[
A
(
ey(u2) + ex(u1)

)
⋅ nΓ

]
(t, x, y)

− ... = 0, for x ∈ Ω and y ∈ Γ,
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where we denote by nΓ(y) the normal to the boundary Γ and by n�Ω(x) the normal to the 
boundary �Ω and

as well as for the initial condition

By comparing the coefficients in Eq. (2.8), we obtain from the terms of order �−2 together 
with the boundary condition of order �−1 the following cell problem for u0:

Since A is positive on the space of symmetric matrices we obtain ey(u0) = 0 and therefore, 
since Ys is connected, u0 is a rigid displacement with respect to y. However, the only peri-
odic rigid displacements are constant functions and therefore we set

Since ey(u) = 0 , the term of order �−1 in (2.8) yields the problem

i.e. u1 can be determined in terms of u and due to the linearity of the equation we have the 
representation (unique up to a constant depending on t and x, which we choose equal to 
zero by assuming mean value zero for u1)

where � ij , for i, j = 1, ..., n are the solutions to the cell problems 

− �−1
[
Aey(u0) ⋅ n�Ω

]
(t, x, y)

− �0
[
A
(
ey(u1) + ex(u0)

)
⋅ n�Ω

]
(t, x, y)

− �1
[
A
(
ey(u2) + ex(u1)

)
⋅ n�Ω

]
(t, x, y)

− ... = 0, for x ∈ Γelast
N

and y ∈ Ys,

[
u0 + �u1 + �2u2 + ...

]
(t, x, y) = h(t, x), for x ∈ Γelast

D
and y ∈ Ys,

[
u0 + �u1 + �2u2 + ...

]
(0, x, y)

=
�

�t

[
u0 + �u1 + �2u2 + ...

]
(0, x, y) = 0, for x ∈ Ω and y ∈ Ys.

−∇y ⋅

(
Aey(u0)

)
= 0 in Ys,

−Aey(u0) ⋅ nΓ = 0 on Γ,

u0 is Y
s-periodic in y.

(2.9)u0(t, x, y) = u(t, x).

−∇y ⋅

[
A
(
ey(u1) + ex(u)

)]
= 0 in Ys,

−A
(
ey(u1) + ex(u)

)
⋅ nΓ = 0 on Γ,

u1 is Y
s-periodic in y,

(2.10)u1(t, x, y) =

n∑
i,j=1

ex(u)ij(t, x)� ij(y),

(2.11a)−∇y ⋅

[
A

(
ei ⊗ ej + ej ⊗ ei

2
+ ey(� ij)

)]
= 0 in Ys,
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 Here, ei is the i-th canonical unit basis vector in ℝn and (a⊗ b)ij = aibj is the dyadic prod-
uct of two vectors a, b ∈ ℝ

n . Finally, the term of order �0 , together with boundary condi-
tions, gives an equation for u2 in terms of u and u1:

Integration over Ys and integration by parts with respect to y gives the macroscopic 
problem:

which is actually an equation for u . In fact, exploiting now the representation (2.10) of u1 , 
we see that u solves the quasi-static problem 

 where the effective elasticity tensor A∗ is given by means of the solutions to the cell 
problems:

2.4.2  Upscaling of the Diffusion Problem

For the upscaling of the transport problem (2.5e)–(2.5h), we first expand the coefficients J� 
and D� with respect to � according to (2.7) by using the expansion of u� and the Taylor expan-
sion resp. Neumann series. We start with the expansion for S� , which is given by

and therefore, using also representation (2.10) for u1 , we get

(2.11b)−A

(
ei ⊗ ej + ej ⊗ ei

2
+ ey(� ij)

)
⋅ nΓ = 0 on Γ,

(2.11c)� ij is Y-periodic in y, ∫Ys

� ijdy = 0.

−∇y ⋅

(
A(ey(u2) + ex(u1))

)
= ∇x ⋅

(
A(ey(u1) + ex(u))

)
+ f

elast in Ys,

−A
(
ey(u2) + ex(u1)

)
⋅ nΓ = 0 on Γ,

u2 is Y
s-periodic in y.

−∇x ⋅ ∫Ys

A(ey(u1) + ex(u))dy = |Ys|felast in (0, T) × Ω,

(2.12a)−∇ ⋅

(
A

∗e(u)
)
= |Ys|felast in (0,T) × Ω,

(2.12b)−A∗e(u) ⋅ n�Ω = 0 in (0,T) × Γelast
N

,

(2.12c)u = h on (0, T) × Γelast
D

,

(2.13)A
∗
ijrs

=

n∑
k,l=1

∫Ys

Aijkl

(
�kr�ls + ey(� rs)kl

)
dy for i, j, r, s = 1, ..., n.

S�(t, x) = x + u(t, x) + �u1

(
t, x,

x

�

)
+ �2u2

(
t, x,

x

�

)
+ ...,
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with En the unit matrix in ℝn×n . This is also an expansion F�(t, x) = F0(t, x, y) + O(�) of the 
form (2.7) with

Since we use a formal upscaling approach, we can assume that F0(t, x, y) is invertible. 
However, we emphasize that for a rigorous homogenization process this would be a critical 
point. As the determinant and the inverse are nonlinear operations, we employ the follow-
ing linearizations: For general matrices A,B ∈ ℝ

n×n with A non-singular and 𝜀 > 0 small 
enough, one has with the Taylor expansion for the determinant and the Neumann series for 
the inverse

Consequently, we obtain for the determinant J� and the diffusion tensor D�

In the following we will see that for the macroscopic model for the transport equation it 
will be only necessary to consider in detail the leading order terms 

 of the expansions for J� , D� , as the higher order terms will not play a role in the homog-
enized equation. Since J0 is bounded from below by a positive constant, we obtain that 
D0 is positive. Now we are equipped to plug the expansions for c� (2.6), J� and D� into 
Eqs.  (2.5e)–(2.5h). Analogously to the asymptotic expansion for the elasticity subproblem 
(2.5a)–(2.5d) before, we obtain

F�(t, x) = ∇S�(t, x) = En + ∇xu(t, x) +

n∑
i,j=1

ex(u)ij(t, x)∇y� ij

(
x

�

)

+ �
(
∇xu1 + ∇yu2

)(
t, x,

x

�

)
+ �2

(
∇xu2 + ∇yu3

)(
t, x,

x

�

)
+ ...,

F0(t, x, y) = En + ∇xu(t, x) +

n∑
i,j=1

ex(u)ij(t, x)∇y� ij(y).

det(A + �B) = det(A) + O(�),

(A + �B)−1 = A
−1 + O(�).

J�(t, x) = det(F�(t, x)) = det
(
F0

(
t, x,

x

�

))
+ O(�),

D�(t, x) =
[
J�F

−1
�
D̂F

−T
�

]
(t, x) =

[
J0F

−1
0
D̂F

−T
0

](
t, x,

x

�

)
+ O(�).

(2.14a)J0(t, x, y) = det
(
F0(t, x, y)

)
,

(2.14b)D0(t, x, y) =
[
J0F

−1
0
D̂F

−T
0

]
(t, x, y),
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together with the boundary conditions

and

and

as well as the initial condition

In the same spirit as for the elasticity problem, we obtain for order �−2 from equation (2.15) 
the problem

The positivity of D0 implies that

Therefore the problem for c� of order �−1 reduces to

(2.15)

�

�t
[(J0 + �J1 + �2J2 + ...)(c0 + �c1 + �2c2 + ...)](t, x, y)

− �−2
[
∇y ⋅

(
D0∇yc0

)]
(t, x, y)

− �−1
[
∇y ⋅

(
D0(∇yc1 + ∇xc0)) + D1∇yc0

)
+ ∇x ⋅

(
D0∇yc0

)]
(t, x, y)

− �0[∇y ⋅

(
D0(∇yc2 + ∇xc1) + D1(∇yc1 + ∇xc0) + D2∇yc0

)

+ ∇x ⋅

(
D0(∇yc1 + ∇xc0) + D1∇yc0

)
](t, x, y)

− ...

= (J0 + �J1 + �2J2 + ...)f diff(t, x), for x ∈ Ω and y ∈ Ys,

− �−1
[
D0∇yc0 ⋅ nΓ

]
(t, x, y)

− �0
[(
D0(∇yc1 + ∇xc0) + D1∇yc0

)
⋅ nΓ

]
(t, x, y)

− �1
[(
D0(∇yc2 + ∇xc1) + D1(∇yc1 + ∇xc0) + D2∇yc0

)
⋅ nΓ

]
(t, x, y)

− ... = 0, for x ∈ Ω and y ∈ Γ,

− �−1
[
D0∇yc0 ⋅ n�Ω

]
(t, x, y)

− �0
[(
D0(∇yc1 + ∇xc0) + D1∇yc0

)
⋅ n�Ω

]
(t, x, y)

− �1
[(
D0(∇yc2 + ∇xc1) + D1(∇yc1 + ∇xc0) + D2∇yc0

)
⋅ n�Ω

]
(t, x, y)

− ... = 0, for x ∈ Γdiff
N

and y ∈ Ys,

[c0 + �c1 + �2c2 + ...](t, x, y) = g(t, x), for x ∈ Γdiff
D

and y ∈ Ys,

[c0 + �c1 + �2c2 + ...](0, x, y) = c0(x), for x ∈ Ω and y ∈ Ys.

∇y ⋅

(
D0∇yc0

)
= 0 in (0, T) × Ω × Ys,

−D0∇yc0 ⋅ nΓ = 0 on (0, T) × Ω × Γ,

c0 is Y
s-periodic in y.

c0(t, x, y) = c(t, x).
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Linearity of this equations implies again that we can write down a representation of c1 in 
terms of the gradient of c and the solution of diffusion cell problems �i,

where the n cell problems for �i are given by 

 for i = 1, ..., n . Eventually, we obtain an equation for c2 in terms of c and c1 from the term 
of order �0 in (2.15):

Integrating again over Ys we obtain the compatibility condition

Let us define the effective coefficients J∗ and D∗ via 

 By using representation (2.16) for c1 we obtain after an elemental calculation that c solves 
the following macroscopic problem: 

−∇y ⋅

[
D0(∇yc1 + ∇xc)

]
= 0 in (0,T) × Ω × Ys,

−D0(∇yc1 + ∇xc) ⋅ nΓ = 0 on (0,T) × Ω × Γ,

c1 is Y
s-periodic in y.

(2.16)c1(t, x, y) =

n∑
i=1

�ic(t, x)�i(t, x, y),

(2.17a)−∇y ⋅

[
D0(t, x, y)(ei + ∇y�i(t, x, y))

]
= 0 in (0, T) × Ω × Ys,

(2.17b)−D0(t, x, y)[ei + ∇y�i(t, x, y)] ⋅ nΓ = 0 on (0, T) × Ω × Γ,

(2.17c)�i is Y
s − periodic in y, ∫Ys

�i(t, x, y)dy = 0,

−∇y ⋅

[
D0(∇yc2 + ∇xc1) + D1(∇yc1 + ∇xc)

]

= −
�

�t
(J0c) + ∇x ⋅

[
D0(∇yc1 + ∇xc)

]
+ J0f

diff in (0, T) × Ω × Ys,

−
(
D0(∇yc2 + ∇xc1) + D1(∇yc1 + ∇xc)

)
⋅ nΓ = 0 on (0, T) × Ω × Γ,

c2 is Y
s-periodic in y.

�

�t

(
∫Ys

J0dy c

)
− ∇x ⋅ ∫Ys

D0(∇yc1 + ∇xc)dy = ∫Ys

J0dy f
diff in (0, T) × Ω.

(2.18a)J∗(t, x) = ∫Ys

J0(t, x, y)dy,

(2.18b)D
∗
ij
(t, x) =

n∑
k=1

∫Ys

D0,ik(t, x, y)

(
�kj +

�

�yk
�j(t, x, y)

)
dy for i, j = 1, ..., n.

(2.19a)
�

�t
(J∗c) − ∇ ⋅ (D∗∇c) = J∗f diff in (0, T) × Ω,
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 Note that, even under the assumption that D̂ in the initial problem (2.1e) is constant, we 
obtain now time- and space-dependent homogenized coefficients J∗,D∗ for the diffusion 
problem, since they carry the information on the deformation of the domain after the trans-
formation into the reference domain.

2.5  The Upscaled Equations on the Reference Domain

We now summarize the upscaled equations which we have derived previously. They 
consist of coupled, effective problems for the displacement and the concentration, and 
are complemented by cells problems for the elasticity problem and for the diffusion 
problem, respectively. Thus, the macroscopic problem is given by

The elasticity cell solutions � ij , for i, j = 1, ..., n are obtained by solving

and the solutions to the diffusion cell problems �i , i = 1, ..., n are obtained from

From the cell problems, the following effective quantities are computed:

(2.19b)−D∗∇c ⋅ n�Ω = 0 on (0, T) × Γdiff
N

,

(2.19c)c(t, x) = g on (0, T) × Γdiff
D

,

(2.19d)c(0, x) = c0(x) in Ω.

−∇ ⋅

(
A

∗e(u)
)
= |Ys|felast in (0, T) × Ω,

−A∗e(u) ⋅ n�Ω = 0 in (0, T) × Γelast
N

,

u = h on (0, T) × Γelast
D

,

�

�t
(J∗c) − ∇ ⋅ (D∗∇c) = J∗f diff in (0, T) × Ω,

−D∗∇c ⋅ n�Ω = 0 on (0, T) × Γdiff
N

,

c = g on (0, T) × Γdiff
D

,

c(0) = c0(x) in Ω.

−∇y ⋅

[
A

(
ei ⊗ ej + ej ⊗ ei

2
+ ey(� ij(y))

)]
= 0 in Ys,

−A

(
ei ⊗ ej + ej ⊗ ei

2
+ ey(� ij(y))

)
⋅ nΓ = 0 on Γ,

� ij is Y
s-periodic in y, ∫Ys

� ij(y)dy = 0,

−∇y ⋅

[
�0(t, x, y)(�i + ∇y�i(t, x, y))

]
= 0 in (0,T) × Ω × Ys,

−�0(t, x, y)[�i + ∇y�i(t, x, y)] ⋅ �Γ = 0 on (0, T) × Ω × Γ,

�i is Y
s − periodic in y, ∫

Ys �i(t, x, y)dy = 0.
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3  Numerical Simulation of the Upscaled Model

In the following, we focus on the simulation of the upscaled model summarized in 
Sect. 2.5. Due to the multi-scale character of the problem, computations are performed on 
two distinct domains: Ω for the macroscopic elasticity-diffusion system and Ys for the cell 
problems for elasticity and diffusion (see Fig. 2).

We avoid having to solve a nonlinear problem by organizing the scheme according to 
the special structure of the system. In each time step, we solve first the quasi-static mac-
roscopic elasticity problem independently from the diffusion problem due to the coupling 
being only one-sided. Next, the effective coefficients for the diffusion equation, J∗ and D∗ , 
are computed from the solution of the macroscopic elasticity problem and the diffusion cell 
solutions. Finally, with the new homogenized coefficients, the macroscopic solution in the 
current time step is computed.

The scheme is also organized in a way that takes advantage of the specific properties 
of the cell problems. To this end, the treatment of the elasticity cell problems differs 
from the treatment of the diffusion cell problems due to the latter depending on time 
and location of the cell within the macroscopic domain. It is in fact sufficient to only 
solve the elasticity cell problems once for each i, j = 1, 2 at the beginning of the simula-
tion. The resulting effective elasticity tensor A∗ is constant in time and space during the 
subsequent simulation. In contrast, the diffusion cell problems depend on the solution of 
the macroscopic elasticity problem through the coefficient D0 (see (2.14b) and (2.17a)). 

A
∗
ijrs

=

n∑
k,l=1

∫Ys

Aijkl

(
�kr�ls + ey(� rs(y))kl

)
dy for i, j, r, s = 1, ..., n,

J∗(t, x) = ∫Ys

J0(t, x, y)dy,

D
∗
ij
(t, x) =

n∑
k=1

∫Ys

D0,ik(t, x, y)

(
�kj +

�

�yk
�j(t, x, y)

)
dy for i, j = 1, ..., n.

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

a 1-a 1

b

1-b

1

Fig. 2  Non-dimensionalized domains Ω = (−
1

2
,
1

2
)2 for the effective, macroscopic elasticity-diffusion prob-

lem and Ys = ((a, 1 − a) × (0, 1)) ∪ ((0, 1) × (b, 1 − b)) , with a, b ∈ (0, 0.5) for the elasticity and diffusion 
cell problems
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Therefore, different diffusion cell problems are solved for each quadrature point in the 
macroscopic grid and for each time step as the effective quantities J∗ and D∗ change 
with time and space in the macroscopic diffusion equation. Let us underline again that 
this effect is introduced when the initial diffusion problem on the moving domain is 
transformed into an equation on a reference domain in Sect. 2.2 and independent of the 
initial diffusion tensor D̂ (cf. (2.1e)) being time- and/or space-dependent or not.

The coupled two-scale system was implemented within the C ++ finite element 
library deal.II (Arndt et al. 2020). All computations are performed on uniformly refined 
grids based on quadrilateral elements in two space dimensions. Spatial discretization 
for both, the macroscopic equations and the cell problems, is achieved using (bi-)linear 
Lagrange finite elements. For temporal discretization of the effective, macroscopic dif-
fusion Eqs.  (2.19a)–(2.19d), the Crank-Nicolson method is employed. The process of 
solving all the diffusion cell problems consumes most of the computation time during 
the simulation. Optimization of this step in terms of parallelization or some adaptive 
scheme is an interesting and promising task to save computation time but not within the 
scope of this paper.

3.1  The Model Problem

We fix now data for further investigations of the upscaled problem from Sect.  2.5. Let 
Ω =

(
−

1

2
,
1

2

)2

 be a quadratic domain and Ys =
((

1

3
,
2

3

)
× (0, 1)

)
∪
(
(0, 1) ×

(
1

3
,
2

3

))
 a 

cross-shaped domain (cf. Fig.  2). For Γelast
D

 , we chose the lateral parts of �Ω and set 
Γelast
N

∶= �Ω⧵Γelast
D

 . We do not consider a body force acting on the material and therefore 
set felast ≡ 0 . The deformation of the domain is solely induced by the time-periodic Dir-
ichlet boundary condition

with a = 0.25 , the maximal displacement at the boundary, and f = 1 , the frequency. For 
an intuition about this boundary condition, see Fig. 7b and c. We further assume that the 
material is isotropic, i.e. its elastic properties can be described by two Lamé-constants �,� 
and the entries of the elasticity tensor are given by

For the non-dimensionalised elasticity tensor in the elasticity cell problems (2.11a), we 
set �,� = 1 . In Table  2, we list the non-zero entries of A opposed to their counterparts 
in the effective elasticity tensor A∗ and see that the isotropy of A is not conserved during 
the upscaling process, i.e. we cannot find �∗, �∗ ∈ ℝ such that A∗ has a representation as 
in (3.2). For the diffusion problem, we set Γdiff

D
 to be the upper part of the boundary of Ω 

and Γdiff
N

= �Ω⧵Γdiff
D

 . We do not consider a sink/source, i.e. we set f diff ≡ 0 and prescribe a 
constant concentration g ≡ 1 at the Dirichlet boundary as well as no-flux conditions on the 
Neumann boundary together with initial condition c0 ≡ 0 . The non-dimensionalized and 
constant initial diffusion tensor in (2.14b) is set to be

(3.1)h(t, x) =

⎧⎪⎨⎪⎩

�
a
1−cos(2�ft)

2
, 0
�T

if x ∈ Γelast
D

∩ {x1 =
1

2
}�

−a
1−cos(2�ft)

2
, 0
�T

if x ∈ Γelast
D

∩ {x1 = −
1

2
},

(3.2)Aijkl = �(�ik�jl + �il�jk) + ��ij�kl for i, j, k, l = 1, 2.
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As mentioned before, the effective quantity D∗ is not constant in time or space in gen-
eral, but depends on the displacement via the deformation gradient. Nonetheless, for t = 0 , 
it is constant across the whole domain Ω since it is initially in the non-deformed state. 
Therefore, the difference between D̂ and D∗(t = 0, ⋅) is only due to the heterogeneity of the 
domain and not due to deformation, when we compare the non-zero entries of these quanti-
ties in Table 2.

For a more comprehensive study of the properties of the effective coefficients in depend-
ence of the micro-geometry, see Fig. 3. There, we have computed and visualized the non-
zero entries of A∗ and of D∗ for t = 0 as a function of the widths of the intersecting bars of 
the cross Ys . One can directly deduce that increasing the widths increases also the entries 
of the effective coefficients. In particular, it can be observed that the effective coefficients 
approach the values of the coefficients A, D̂ of the underlying microscopic problem (cf. 
Table 2) when the widths of the bars approach 1, i.e. when the cross is close to occupying 
the whole unit cube [0, 1]2 . We note that, in general, although two distinct crosses might 
occupy the same volume fraction of Y, they do not lead to the same effective coefficients, 
as asymmetries are also reflected in A∗ and D∗.

3.2  Numerical Convergence Studies

Before we proceed with a more detailed view on the solutions of the proposed model 
problem, let us first investigate the convergence of the finite element scheme. Due to the 
two-scale character of the problem, there are two distinct computational domains, repre-
senting Ω and Ys , respectively. In the following, we restrict ourselves to the analysis of 
the macroscopic solutions u and c with respect to the discretization parameter h of the 
grid for Ω , where h is the diameter of the largest quadrilateral in the triangulation. For the 
simulations, we use the model problem presented in the previous Sect. 3.1. To quantify its 

(3.3)D̂ =

(
0.5 0

0 0.5

)
.

Table 2  Comparison of the 
non-zero entries of the initial 
elasticity and diffusion tensors 
A and D̂ with their effective 
counterparts A∗ and D∗

As D∗ is in general a function of time and space, we display it here 
only for t = 0 . D∗ is then constant in the space variable since the 
domain is initially not deformed at all. A∗ , D∗ are computed for 
Ys =

((
1

3
,
2

3

)
× (0, 1)

)
∪
(
(0, 1) ×

(
1

3
,
2

3

))

i j k l A A
∗

1 1 1 1 3 0.952656
1 1 2 2 1 0.131924
1 2 1 2 1 0.070373
1 2 2 1 1 0.070373
2 1 1 2 1 0.070373
2 1 2 1 1 0.070373
2 2 1 1 1 0.131924
2 2 2 2 3 0.952656

D̂ D
∗

1 1 – – 0.5 0.184577
2 2 – – 0.5 0.184577
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Fig. 3  Non-zero entries of the effective coefficients A∗ and D∗ for t = 0 in dependence of the geometry of 
Ys . The x- and y-axis indicate the width of the horizontal and the vertical bar that forms the cross-shaped 
domain Ys (with the notation defined in the caption of Fig. 2, we have w1 = 1 − 2a,w2 = 1 − 2b)
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convergence properties, we compute the error between solutions at the fixed time t = 1.5 
on subsequently refined grids, using an uniform refinement strategy to obtain finer meshes. 
Additionally, we compute the estimated order of convergence (EOC) according to the fol-
lowing formulas:

where i = 1, 2, ... indicates the refinement cycle, ◻ ∈ {u, c}(t = 1.5, ⋅) , and 
∗∈ {L2(Ω),H1(Ω)} . The so-obtained data is listed in the upper part of Table 3. Note that 
the EOCs for the most part lie below the convergence orders known from theory for the 
implemented finite element method of linear Lagrangian elements (order two for L2-norm 
and order one for H1-norm). This suboptimal behavior might be attributed to the mixed 
boundary conditions in our model problem, which are known to be a potential source 
of decreased regularity of solutions. In fact, we are able to recover the expected conver-
gence rates, if we simulate instead a related problem with pure Dirichlet boundary con-
dition and matching initial condition for the diffusion problem. Let Γelast

D
= Γdiff

D
= �Ω , 

Γelast
N

= Γdiff
N

= � and set g ≡ 1 on Γdiff
D

 , c0 ≡ 1 and

with, as above, a = 0.25 , the maximal displacement at the boundary and f = 1 , the fre-
quency. This boundary condition for the elasticity problem results in a parabola-shaped 
extension of the domain at the lateral parts of the boundary while the upper and lower 
parts of the boundary is clamped, see Fig. 4. Analogously to the study of the problem with 
mixed boundary conditions, we gather convergence data for simulations of this problem in 
the lower part of Table 3. Comparison clearly indicates that the loss of convergence speed 
can be attributed to the mixed boundary conditions. However, the actual error between sub-
sequent solutions appears to be smaller in the case of mixed boundary conditions, at least 
for courser meshes, when compared to the case of pure Dirichlet boundary conditions, see 
Fig. 5.

3.3  The Solution of the Elasticity Subproblem

Let us now give a more detailed analysis of the numerical solution to the effective elas-
ticity subproblem using the aforementioned data. As stated earlier, it suffices to solve the 
elasticity cell problems (2.11) once at the beginning of the simulation since the coefficient 
A is constant. Note that the symmetry properties of A imply the symmetry �12 = �21 . The 
resulting cell solutions � ij , i, j = 1, 2 , contain the information needed for the computation 
of the effective elasticity tensor A∗ in (2.13). For a visualization of the elasticity cell solu-
tion, see Fig. 6. The non-zero entries of A∗ are given in Table 2. The cell solutions are also 
contained in the representation of the first order term u1 , see (2.10), in the expansion (2.6) 
for u� . In fact, we are now equipped to give an approximation of u� in terms of the asymp-
totic expansion up to terms of order O(�2) and higher. To this end, let us investigate the m-
th component, m = 1, 2 , of u� = (u1

�
, u2

�
)T . For a fixed point x ∈ Ωs

�
 , we write x = x∗ + �y 

(3.4)errori = ‖◻i−1 −◻
i‖∗, EOCi = log2

�
errori−1

errori

�
,

h(t, x) =

⎧⎪⎨⎪⎩

�
±a

1−cos(2�ft)

2

0.25−x2
2

0.25
, 0
�T

, x ∈ Γelast
D

∩ {x1 = ±
1

2
}

(0, 0)T , x ∈ Γelast
D

∩ {x2 = ±
1

2
},
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with x∗ = �k , k ∈ ℤ
2 , y ∈ Ys , and obtain by using Taylor expansion and the symmetry 

�12 = �21

um
�
(t, x) = um(t, x∗ + �y) + �

2∑
i,j=1

e(u)ij(t, x∗ + �y)�m
ij
(y) + O(�2)

= um(t, x∗) + �

(
2∑
j=1

�um(t, x∗)

�xj
yj +

2∑
i,j=1

�ui(t, x∗)

�xj
�m
ij
(y)

)
+ O(�2)

= um(t, x∗) + �

(
2∑

i,j=1

�ui(t, x∗)

�xj

(
yj�im + �m

ij
(y)

))
+ O(�2).

Fig. 4  The displacement for the modified model problem with pure Dirichlet boundary condition. The 
problem is used for the investigations concerning the convergence properties of solutions
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Fig. 5  Convergence plots for the data given in Table 3. We compare convergence properties of the model 
problem with mixed boundary conditions described in Sect. 3.1 and the model problem with pure Dirichlet 
boundary condition described in Sect. 3.2 with respect to the discretization parameter h of the grid for the 
macroscopic domain Ω
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In Fig.  7a, we give a visualization of the �-term in the above computation for y ∈ Ys at 
t = 0.5 , i.e. when the material is maximally extended, to illustrate how the deformation 
acts on individual cells. Additionally, the effective displacement u(t = 0.5, ⋅) is displayed 
in Fig.  7b. There, the displacement u , defined on Ω , is represented by arrows with size 
proportional to their magnitude. We can also use u to visualize the deformed domain 
Ω0(t) ∶= {x̂ ∈ ℝ

2 ∣ x̂ = x + u(t, x), x ∈ Ω} as can be seen in Fig. 7c for time t = 0.5 . This 
gives us also a clear intuition for the effect of the boundary conditions of the elasticity 
problem stated earlier: Within one unit of time, the domain is stretched in lateral direction 
to attain the shape depicted in 7c. Then, the displacement at the boundary is relaxed until 
the domain is again in the reference configuration.

Fig. 6  Cell solutions of the elasticity cell problems (2.11). Note that the symmetry of A implies �12 = �21

Fig. 7  Visualizations associated to the solution of the elasticity subproblem. In a and b, the magnitude of 
the displacement is encoded as color of the domain. In b the arrow size is proportional to the magnitude of 
the displacement
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3.4  The Solution of the Diffusion Subproblem

Finally, we investigate the solution of the diffusion equation for the model problem from 
Sect. 3.1. As mentioned before, the diffusion problem depends on the elasticity problem 
through its coefficients, but not vice versa. Therefore, in each time step, we solve first for 
the displacement, compute from this the effective coefficients D∗ , J∗ for the diffusion prob-
lem and then solve the diffusion problem. The effective coefficients for the diffusion prob-
lem are defined by means of the diffusion cell solutions �i and the coefficient D0 for the 
diffusion cell problems is given in terms of F0 , i.e. the lowest order term in the expansion 
of the deformation gradient F� . Concerning the numerical scheme, this amounts to dim × 
number of time steps × number of elements × number of quadrature points per element dif-
fusion cell problems that have to be solved numerically during the simulation. For illustra-
tion, numerical approximations of the functions �i(t = 0.5, x = (0, 0)T , y) , i = 1, 2 , y ∈ Ys , 
are plotted in Fig. 8. Unsurprisingly, the computation of the diffusion cell solutions takes 
up most of the computation time, but there is some potential for optimization: The dif-
fusion cell problems are independent from each other, so their treatment can be parallel-
ized. Additionally, adaptive schemes such as clustering "similar" cell problems and solving 
only one representative cell problem per cluster are conceivable and have been successfully 
applied in the context of multi-scale models, see e.g. Bastidas et al. (2020); Gärttner et al. 
(2020).

Due to the transformation of the diffusion problem onto a reference domain in Sect. 2.2, 
the concentration c, defined on Ω , does not have a direct physical interpretation, as concen-
trations in the real world would be associated with points in the current deformed domain. 
Nonetheless, the concentration ĉ , defined on the current deformed domain, can be obtained 
from the concentration c using the following transformation

ĉ(t, x̂) ∶= c(t,S−1
0
(t, x̂)) for x̂ ∈ Ω0(t) with S0(t, x) ∶= x + u(t, x),

and Ω0(t) ∶= {x̂ ∈ ℝ
n, x̂ = S0(t, x), x ∈ Ω}.

Fig. 8  Cell solutions of the diffusion cell problems (2.17) for fixed t = 0 and x = (0, 0)T
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The concentration ĉ from the simulations to the model problem from Sect. 3.1 is depicted 
for different time points in Fig. 9. There, one can also spot an interesting effect of the time-
periodic deformation of the domain on the accumulation of particles in the domain: When 
the domain is expanded, the area increases and the concentration shrinks. Consequently, a 
larger concentration difference develops between the constant Dirichlet boundary condition 
at the top of the domain and the adjacent interior of the domain. This leads to an increased 
flux of particles into the domain. When the displacement is relaxed, the concentration rises 
again. After some time (see Fig. 9 at t = 25 ), the concentration can even increase to values 
that are higher than the Dirichlet boundary condition ĉ = 1 . This would not be possible in 
the case of a non-deforming domain.

4  Sensitivity of Transport Processes with Respect to Changes 
in the Deformation

Finally, we analyze the system’s sensitivity with respect to experimental parameters which 
we can modulate by manipulating the boundary conditions of the elasticity problem. 
We adopt again the setup from the model problem in Sect.  3.1, i.e. the deformation of 
the domain is driven by the time-periodic Dirichlet boundary condition h (cf. Eq. (3.1)), 
while a diffusing substance spreads into the domain, originating from the Dirichlet bound-
ary condition of the diffusion problem at the upper part of the boundary of Ω . Since we 
are concerned with the effect of the deformation on transport processes, we monitor the 
quantity

over the course of each of the following computer experiments. M(t) is the approximation 
of the mass or the number of particles that resides at time t in the domain Ω . Different 
experimental scenarios arise from varying the frequency f or the amplitude a in (3.1). By 
comparing M(t) for different simulations we gain insights on the sensitivity of the transport 
of the diffusing substance with respect to the deformation parameters.

M(t) ∶= ∫Ω

c(t, x)J∗(t, x) dx

Fig. 9  The macroscopic con-
centration ĉ , visualized on the 
current deformed domain Ω0(t) 
during simulations of the model 
problem from Sect. 3.1
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Fig. 10a shows how the mass of the diffusing substance accumulates in the domain 
for different frequencies of the lateral displacement. The curves indicate no significant 
qualitative difference at first glance. Only a closer look reveals slight deviations in the 
small mass fluctuations. The question may arise why the mass in the domain can tem-
porarily decrease during the advanced stage of the simulations. The answer is already 
partly given in Sect. 3.4: when the domain is released back into the relaxed configura-
tion, the concentration inside the domain may reach values that are greater than the 
prescribed Dirichlet boundary condition, consequently leading to an outflow of particles 
across that very boundary.

The system clearly exhibits a higher sensitivity with respect to the amplitude of the 
lateral displacement, as can be seen from Fig. 10b. There, the mass M(t) is plotted for 
varying amplitudes of the lateral displacement. The percentage in the legend encodes 
the maximal length of the domain Ω0(t) in lateral direction during each experiment 
in relation to the edge length of Ω . Positive percentages indicate cyclic extension and 
relaxation into the initial state whereas negative percentages indicate cyclic compression 
and subsequent relaxation. From the numerical experiments it is obvious that deforming 
the domain with increasing amplitude leads to the accumulation of more mass in the 
domain. This effect can be attributed to the increased area of the extended configura-
tion: During expansion, the concentration shrinks, hence leading to a greater concentra-
tion difference between the constant Dirichlet boundary condition and the concentration 
inside the domain, ultimately resulting in an increased flux into the domain across the 
respective boundary. Compression of the domain leads to the opposite effect.

Visualization of the homogenized quantities J∗ and D∗ in Ω for a fixed time point 
when the physical domain Ω0(t) is in the maximally deformed configuration, sheds 
more light into the properties of the diffusion process during the course of the sim-
ulations. In Fig.  11a–e, J∗ and the components of D∗ are plotted for the case where 
a = 0.25 , corresponding to 50% extension from Fig.  10b. Unsurprisingly, the homog-
enized determinant J∗ , which keeps track of volume changes of the domain, is increased 
everywhere (note that J∗ for the relaxed configuration is constant over space with 
J∗ = |Y| = 5∕9 due to the heterogeneity of the underlying microscopic problem). From 
Fig.  11b and e we deduce that lateral stretching of the domain facilitates diffusion in 
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Fig. 10  Sensitivity Experiments
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x2-direction while decelerating diffusion in x1-direction when compared to the values 
D

∗
11

= D
∗
22

= 0.184577 (cf. Table  2) in the non-deformed configuration. Additionally, 
we note that anisotropy effects are introduced due to non-zero off-diagonal entries D∗

21
 

and D∗
21

 . This can be attributed to the deformation of the domain, as we have seen (cf. 
Table 2) that the isotropy property of the initial diffusion coefficient D̂ (3.3) transfers to 

Fig. 11  Plots of homogenized quantities for maximal lateral displacement with amplitude a = 0.25 at 
t = 0.5
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the homogenized coefficient, when the domain is not transformed, due to the symmetry 
of Y.

5  Conclusion

In this work, an effective model for transport processes in elastically deformable, hetero-
geneous media has been derived and investigated. Starting from a microscopic descrip-
tion of an elasticity-diffusion problem, which contained the underlying heterogeneity of 
the modelled process explicitly in a mixed Lagrangian/Eulerian framework, an upscaled 
model, formulated on a fixed, homogeneous, reference domain on the macroscale, has been 
derived. The underlying heterogeneity is addressed via cell problems for the deformation 
and the diffusion process. Although the initial problem is posed with constant coefficient 
functions, a transformation of the diffusion problem onto the reference domain introduces 
a diffusion coefficient for the cell problems which depends not only on the microscopic 
space-variable, but also on time and on the macroscopic space-variable. Solving individual 
cell problems and computing effective coefficients in each time step and for each quad-
rature point for the effective diffusion problem are the most time consuming tasks when 
simulating the effective model. There is some potential for optimization by computing cell 
solutions in parallel or by solving fewer, representative cell problems which are chosen by 
an adaptive algorithm.

Investigations associated to the numerical solutions of the upscaled problem such as 
convergence tests and interpretation of solutions within the context of realistic experimen-
tal setups, inspired by applications, are used to verify the implemented model and give 
insight on the qualitative and quantitative behavior of the model. The simulations empha-
size, that the deformation can significantly influence the transport processes and therefore 
shows the necessity to consider e.g. the effect of respiratory movement when investigating 
transport processes on the cellular level in the lung or related problems.

The present model has to be understood as a starting point for further research in differ-
ent directions. As a first generalization, it is reasonable to expand the model by including 
also an influence of the diffusing substance on the elastic properties of the solid, leading 
to a fully coupled system. In the medical context, this may be especially interesting when 
the effect of fibrosis on the functionality of the lung has to be considered. Furthermore, 
until now, the effects of the perforations of the microscopic domain are only considered 
in the sense that they introduce the heterogeneity of the problem. From a biological per-
spective, the space that is not occupied by cells can be interpreted as the extracellular 
matrix, which, as a first approximation, can be modelled by a fluid. Starting from this, a 
more comprehensive model could be derived, governing also the effects of fluid–structure-
interaction in porous media. Here, due to the mixed Lagrangian/Eulerian framework, the 
effective model includes a nonlinear version of the Biot-equations for poro-elasticity. We 
remark that the homogenization of fluid–structure-interaction problems in porous media 
in Lagrangian/Lagrangian framework leads to linear Biot-equations where the effective 
elasticity coefficients are the same as the coefficients A∗ from (2.16) in our paper, see, e.g., 
(Jäger et al. 2011, (6.9)) or (Brun et al. 2018, (53)).
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Finally, as we state in the introduction, the model is inspired by the lung and a related 
biomimetic microdevice that shares common features with the lung. Although the struc-
tures of these examples are based on thin layers (e.g. air-blood-barrier, consisting only of 
two cellular layers and the basal lamina), we chose to formulate the model for a domain 
that spreads in all space dimensions for the sake of simplicity.For the homogenization of a 
model governing an elasticity-diffusion process in a thin perforated elastic layer, an addi-
tional limit process has to be performed by letting the thickness of the layer tend to zero. 
There multi-scale methods for simultaneous homogenization and dimension reduction are 
needed. For the case of elastic perforated layers without transport such methods have been 
developed in Gahn et al. (2021), see also (Griso et al. 2020).
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