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Abstract
X-ray micro-computed tomography (micro-CT) has been widely leveraged to characterise 
the pore-scale geometry of subsurface porous rocks. Recent developments in super-resolu-
tion (SR) methods using deep learning allow for the digital enhancement of low-resolution 
(LR) images over large spatial scales, creating SR images comparable to high-resolution 
(HR) ground truth images. This circumvents the common trade-off between resolution and 
field-of-view. An outstanding issue is the use of paired LR and HR data, which is often 
required in the training step of such methods but is difficult to obtain. In this work, we 
rigorously compare two state-of-the-art SR deep learning techniques, using both paired 
and unpaired data, with like-for-like ground truth data. The first approach requires paired 
images to train a convolutional neural network (CNN), while the second approach uses 
unpaired images to train a generative adversarial network (GAN). The two approaches are 
compared using a micro-CT carbonate rock sample with complicated micro-porous tex-
tures. We implemented various image-based and numerical verifications and experimental 
validation to quantitatively evaluate the physical accuracy and sensitivities of the two meth-
ods. Our quantitative results show that the unpaired GAN approach can reconstruct super-
resolution images as precise as the paired CNN method, with comparable training times 
and dataset requirements. This unlocks new applications for micro-CT image enhancement 
using unpaired deep learning methods; image registration is no longer needed during the 
data processing stage. Decoupled images from data storage platforms can be exploited to 
train networks for SR digital rock applications. This opens up a new pathway for various 
applications related to multi-scale flow simulations in heterogeneous porous media.
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1 Introduction

With the aid of X-ray micro-computed tomography (micro-CT), the pore-scale structure 
of subsurface rock can be accurately characterised to understand how fluids flow in porous 
rock for enhanced oil recovery (Armstrong and Wildenschild 2012), carbon dioxide seques-
tration (Juanes et al. 2006), multiphase flow in fuel cells (He et al. 2000; Tang et al. 2022a, 
b), and various other applications. Based on the standard workflow (Andrä et  al. 2013), 
digital rock grey-scale images are initially obtained from micro-CT and then segmented 
into two phases—pore and grain for direct numerical simulation or pore network modelling 
(Blunt et al. 2013). The achievements of those applications, however, are highly dependent 
on how accurate the pore-scale geometries are captured from the micro-CT images. Over-
all, there is a trade-off between image resolution and field-of-view (FOV); high-resolution 
images more accurately depict pore geometries at the cost of reducing the FOV. In contrast, 
low-resolution images have larger FOV but cannot represent the true structural details of 
the rock. This presents a critical challenge since high-resolution data can depict pore char-
acterisation precisely, while FOV needs to be large enough to represent the presence of 
heterogeneity (Li et al. 2017; Wang et al. 2021).

In the past few decades, super-resolution (SR) technology has been applied to circum-
vent the trade-off between resolution and FOV. SR aims to reconstruct a high-resolution 
(HR) counterpart of a degraded low-resolution (LR) image (Park et al. 2003). Traditional 
SR methods have been demonstrated to improve image resolution, such as stochastic 
approaches (Huang et al. 2008; Tian and Ma 2010), Bayesian method (Tipping and Bishop 
2002), neighbour embedding (Chang et al. 2004; Gao et al. 2012), sparse representation 
(Yang et  al. 2008, 2010), projection onto convex sets (POCS) approach (Stark and Osk-
oui 1989), and example-based approach (Freeman et al. 2002). These traditional methods, 
however, have their own drawbacks. For instance, neighbour embedding does not imple-
ment well on complicated images with textural regions (Gao et  al. 2012). POCSs and 
example-based methods need high computational time (Freeman et  al. 2002; Shen et  al. 
2014). Sparse representation has the challenge of balancing the relations between diction-
ary size and computational cost (Yang et al. 2010).

Recent advances in deep learning have exceeded traditional methods to solve the single 
image super-resolution task (SISR) using convolutional neural networks (CNN) or gen-
erative adversarial networks (GAN). Dong et  al. (2014) developed a deep convolutional 
network, called SRCNN, by learning the end-to-end mapping between bicubic LR and 
HR data. Thereafter, more advanced deep neural networks have been proposed for SISR 
inspired by SRCNN using various effective structures. Dong et al. (2016) first introduced a 
fast super-resolution convolutional neural network (FSRCNN) using normal deconvolution 
layers, which can reduce the computational time. However, the deconvolutional layer can 
cause redundancies during the upsampling procedure (Yang et al. 2019). Instead of using 
the deconvolution layer, an efficient sub-pixel convolutional neural network (ESPCNN) 
was proposed to learn the upscaling process for SISR by rearranging the feature maps of 
the low-resolution image to high-resolution image mapping (Shi et al. 2016). Thereafter, 
more neural network-oriented approaches were presented for SISR, such as VDSR (Kim 
et al. 2016a), DRCN (Kim et al. 2016b), EDSR (Lim et al. 2017), SRDenseNet (Tong et al. 
2017), MemNet (Tai et al. 2017), WDSR (Yu et al. 2018), and so forth. Most of the cur-
rent deep learning models need paired training data, which is not always available. There-
fore, researchers have applied various generative adversarial network (GAN) approaches 
to solve SR problems using unpaired training data, such as SRGAN (Ledig et al. 2017), 
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CinCGAN (Yuan et al. 2018), high-to-low GAN (Bulat et al. 2018), DSR/CSR (Lugmayr 
et al. 2019), and others. Peak signal-to-noise ratio (PSNR) and Structural Similarity Index 
Measure (SSIM) are the common metrics to examine image quality. Paired algorithms usu-
ally provide higher accuracy based on PSNR/SSIM, while unpaired algorithms are more 
flexible to leverage real-world data (Bulat et al. 2018; Yuan et al. 2018).

In digital rock physics, SR techniques can provide large-scale domains at high resolu-
tion for flow simulation where the large FOV can represent heterogeneous features (Jack-
son et al. 2021). Recent SR studies on digital rock images demonstrated that CNN-based 
SR models can generate high-quality images (Wang et al. 2019a, b; Wang et al. 2019a, b). 
These previous works evaluated SR performance based on grey-scale analyses, e.g., histo-
gram data, differential maps, as well as image quality metrics. These standards, however, 
cannot explicitly determine the physical accuracy of the SR images for petrophysical analy-
ses, such as porosity and absolute/relative permeability, which are critical parameters for 
digital rock physics. Wang et al. (2019a, b) demonstrated the permeability of SR images 
can be consistent with their HR ground truth (GT) counterparts with various segmentation 
thresholds using paired SRCNN and SRGAN methods. Niu et al. (2020) further illustrated 
that the physical accuracy of SR encompassing porosity, permeability, pore size distribu-
tion, and Euler characteristic was equivalent to its HR counterpart using an unpaired CinC-
GAN. Further validation work by Jackson et  al. (2021) demonstrated the reliability and 
efficiency of EDSR on the application of multiphase flow simulation on large-scale hetero-
geneous porous media. Results show that the physical accuracy of EDSR results is compa-
rable to the related GT data and experimental data.

The paired and unpaired SR deep learning methods raise an important question. Can 
an  unpaired method achieve equivalent physical accuracy when compared to a  paired 
method? In this paper, we examined two state-of-the-art SR paired/unpaired deep learn-
ing models—EDSR (paired) and CinCGAN (unpaired) to enhance the image resolution 
of an imaged carbonate sample, which includes resolved and sub-resolved pores that are 
challenging to characterise from a single resolution image. In general, both EDSR and 
CinCGAN are found to precisely capture the edge sharpness and high frequency texture of 
the SR grey-scale images, which cannot be resolved in LR images. Simulated petrophys-
ical properties using pore network modelling show that both EDSR and CinCGAN can 
accurately reconstruct SR images comparable to their HR counterpart. Our results suggest 
that unpaired deep learning models can become an alternative way to enhance digital rock 
image resolution when paired data are unavailable. Image registration can be skipped to 
accelerate the entire image processing workflow. In addition, images from data archives can 
be exploited in unprecedented ways by using unpaired approaches to provide SR solutions.

2  Materials and Methods

2.1  Materials

A 6-mm heterogeneous Middle Eastern carbonate (MEC) core cylindrical plug was ini-
tially scanned at LR (10.72 µm) and HR (2.68 µm) with scale factor of 4x. The imaging 
details are presented in Table 1. Basic settings, such as voltage, tube current, and exposure 
time, are the same for both scans, while the distance from the source determines the image 
resolution. The original 16-bit micro-CT images for this study can be found on digital rock 
portal. (https:// www. digit alroc kspor tal. org/ proje cts/ 362).

https://www.digitalrocksportal.org/projects/362
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The original 3D 16-bit micro-CT LR/HR images were paired as the position of the 
sample was fixed during the LR/HR scans. The images were cropped to 380 × 380 × 1025 
voxels for LR and 1520 × 1520 × 4100 voxels for the corresponding HR to remove the 
background. Afterwards, the 16-bit images were converted to 8 bits using standard image 
normalisation as

where p is the grey-scale value, while pmin and pmax are the maximum and minimum values 
by eliminating the extremums.

2.2  EDSR

EDSR was introduced by Lim et  al. (2017) as a 2D multi-scale CNN-based deep learn-
ing framework for SISR image enhancement. They utilised interpolated images as inputs, 
while GT images are the coupled HR images. EDSR encompasses two convolutional lay-
ers, a series of residual blocks and upsampling blocks for resolution enhancement (He et al. 
2016). In this paper, we extend the EDSR model to 3D, as shown in Fig. 1a. To alleviate 
the computational burden, we reduce the filter numbers in the convolutional layers from 64 
to 32. Instead of inputting interpolated LR images, we utilised natural LR/HR images as 
inputs/outputs to retain the original image information. We also apply a trilinear upsam-
pling method for resolution enhancement where the feature maps have the same scale as 
the output to replace the pixel shuffle upsampling method in the original EDSR. To train 
the EDSR model, the L1 loss function was applied to optimise the weights and biases.

where ygt is the ground truth data and ypredicted is the predicted data from the neural network. 
The detailed structure of the EDSR is shown in Figure S1 from Supplemental Material.

2.3  CinCGAN

GAN proposed by Goodfellow et al. (2014) has been broadly applied in computer vision 
tasks, e.g., image segmentation (Luc et al. 2016; Souly et al. 2017), SR (Niu et al. 2020), 
image denoising (Liu et al. 2020; Niu et al. 2021), and image synthesis and manipula-
tion (Nie et  al. 2017; Zhang et  al. 2017; Zha et  al. 2020). Among the applications of 

(1)p =
p − pmin

pmax − pmin

,

(2)L1 =

n∑

i=1

|||
ygt − ypredicted

|||
,

Table 1  The scan details on LR HR MEC sample implemented by HeliScan Micro-CT facility at University 
of New South Wales (Alqahtani et al. 2022)

Sample 
name

Voxel size
(μm)

Voltage
(kV)

Tube cur-
rent
(μA)

Distance 
from 
source
(mm)

Exposure 
time
(s)

Scan dura-
tion
(h)

No. of pro-
jection

HR MEC 2.68 80 85 5.8 0.64 10.5 2520
LR MEC 10.72 80 85 23.2 0.64 5.1 2520
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GANs, one is called cycle-consistent GAN (CycleGAN) that was initially designed for 
image-to-image translation (Zhu et al. 2017). Yuan et al.(2018) presented an unpaired 
CinCGAN SR model, which can generate high-quality SR images when compared with 
paired SR methods.

Figure  1b shows the architecture of CinCGAN where two CycleGANs are applied 
to construct CinCGAN. To train a CinCGAN, the three datasets shown in Fig.  1b are 
required: (1) a low-resolution image (X) , (2) a bicubic low-resolution image (Y) that is 
interpolated from (Z) , and (3) a high-resolution image (Z) . The first CycleGAN mapping 
is denoted as X → Y → X in the black box of Fig. 1b. G1 generates fake image Y ′ that is 
similar to the clean bicubic LR image ( Y) in order to confuse the Discriminator, D1 . G1 
acts as a deblurring filter to clean the LR image ( X) by regarding the bicubic LR ( Y) as 
a reference. This is because the bicubic LR image ( Y) is noise-free when compared with 
the input LR image (X) . Generator G2 maintains a reverse mapping Y → X to reinforce the 
under-constrained mapping of X → Y  . Discriminator D1 aims to distinguish the fake image 
Y ′ generated by G1 from the real image Y  . The second CycleGAN mapping is denoted as 
X → Z → X in the black dotted box of Fig. 1b. In this step, a pretrained 2D EDSR model is 
initially trained between the bicubic LR image ( Y) and HR image ( Z) . Then the trained G1 
from first CycleGAN and pretrained EDSR are regarded as a new generator 

(
G1 + EDSR

)
 

to generate a fake SR image Z′ similar to the real HR image (Z) . Similar to the first Cycle-
GAN, Generator G3 adds an inverse downscaling mapping Z → X to constrain the solution. 
Discriminator D2 aims to differentiate the fake SR image Z′ from the real HR image (Z) . 
The loss function to optimise the weights and biases is

Input LR image
(403 voxels)

Conv

ResBlock

Conv

Conv

HR Ground truth image (1603 voxels)
1603 voxels

Conv

ReLU

Conv

ResBlock

…

Conv

U
psam

pling (x4)

ResBlock x 16

CycleGAN

Network

Legend

Forward propaga�on of discriminator

CycleGAN

First CycleGAN

Second CycleGAN

Forward propaga�on of generator

)

(a)

(b)

Fig. 1  An overview of the architectures of the proposed deep learning models: a 3D EDSR, b CinCGAN
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where Ltotal
GAN

 is total generator-adversarial loss, LX−Y
cycle

∕LX−Z
cycle

 is cycle consistency loss, 
LX−Y
identity

∕LX−Z
identity

 is identity loss, LX−Y
TV

∕LX−Z
TV

 is total variation loss, �1 , �2 and �3 are the 
weights for the different losses in the first X → Y → X CycleGAN and �1 , �2 and �3 are the 
weights for the losses in second X → Z → X CycleGAN. The details for each loss function 
can be found in the Supplemental Material. In addition, a detailed structure of the CinC-
GAN is provided in Figure S2 of Supplemental Material.

2.4  Mercury Intrusion Capillary Pressure

To quantify the porosity of the macro- and micropores system of the tested carbonate 
sample, Mercury Intrusion Capillary Pressure (MICP) test was conducted. The test was 
run using POREMASTER® by Quantachrome instruments on another sample from the 
same block (Alqahtani et al. 2022). The results were analysed using a suite of Thomeer 
hyperbolas (Thomeer 1960). Thomeer hyperbolas can be used to decode different pore 
systems through type-curve matching and superposition in porous media (Clerke et al. 
2008; Buiting and Clerke 2013). A Thomeer hyperbola can be expressed as

where Bv is the volume of mercury injected, B∞ is the percentage of bulk volume intruded 
with mercury at infinite pressure, G is a pore geometrical factor, Pc is injection pressure 
(capillary pressure), and Pd is the displacement pressure required for mercury intrusion 
to the largest pore throat. The Thomeer hyperbola parameters are depicted in Fig. 2a. The 
related Thomeer hyperbolas matched to the experimental MICP data in Fig.  2b show a 
total porosity of 28.81% where macroporosity and microporosity account for 17.84% and 
10.97% of the sample bulk volume, respectively.

(3)L
LR
Total

= L
total
GAN

+ �1L
X−Y
cycle

+ �2L
X−Y
identity

+ �3L
X−Y
TV

+ �1L
X−Z
cycle

+ �2L
X−Z
identity

+ �3L
X−Z
TV

,

(4)
Bv

B∞
= exp

[
−G∕Log

(
Pc∕Pd

)]
,

(a)
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Fig. 2  a Thomeer hyperbola parameters used for characterising each pore system in the carbonate sample 
(Clerke et  al. 2008), b Thomeer hyperbolas matched with the experimental MICP data (Alqahtani et  al. 
2022)



831Paired and Unpaired Deep Learning Methods for Physically Accurate…

1 3

2.5  Training Process

EDSR training data were extracted using a sequence of image patches with  403 voxels 
for LR and  1603 voxels for the corresponding HR using a sliding window moving on 
the training/testing region with overlapping step sizes of 20 and 80 for LR and HR data, 
respectively. All LR data were coupled to the HR data. In total, there were 2080 and 
512 image patches for training and testing, respectively. The example image patches for 
LR/HR ground truth images are shown in Fig. 1a. The Adam optimisation method was 
applied to update weights/bias in the EDSR (Kingma and Ba 2014). The learning rate 
was initially set at  10–4 and decreased tenfold every twenty epochs. Batch size was 6 to 
reduce computational cost and 100 epochs were used for training.

The same number of image patches were generated for CinCGAN—402 voxels for 
LR,  1602 voxels for HR. The LR/ HR image patches were independently extracted from 
different FOVs with overlapping step sizes of 40 and 160 for LR and HR data. We ini-
tially trained the first X → Y → X CycleGAN for 100 epochs to restore the noisy input 
data to clean data. Then, a pretrained EDSR was trained as an upscaling model for the 
second X → Z → X CycleGAN training. The pretrained EDSR was trained using HR 
images and corresponding bicubic downsampled images. With the help of the pretrained 
EDSR, we loaded the trained G1 from the first CycleGAN along with the pretrained 
EDSR and trained the second X → Z → X CycleGAN for another 50 epochs. All train-
ing was implemented with Adam optimisation (Kingma and Ba 2014). Batch size was 
set to 8 and the initial learning rate was  10–4 and then halved every twenty epochs.

All training was conducted using a NVIDIA GeForce RTX 2080Ti GPU. All code 
was developed using the PyTorch platform.

2.6  Validation

Figure  3 depicts the workflow for validation of the reconstructed super-resolution 
images and quantitative petrophysical analyses. Steps 1 through 4 are explained in this 
section, while Steps 5 through 9 are covered in Sect. 3.

When the training procedure was completed, a validation 3D LR volume 
(380 × 380 × 512  voxels) that has never been seen by the EDSR nor CinCGAN was 
fed into the pre-trained models to provide a corresponding 4 × SR volume, i.e., 
1520 × 1520 × 2048  voxels. The 3D EDSR model cannot input such a large 3D vol-
ume directly due to GPU memory limitation. Herein, we split the validation volume 
into a series of sub-volumes (380 × 380 × 4  voxels) in the Z-axis direction. Each LR 
sub-volume was reconstructed and then stacked to form a full 3D SR validation image 
(1520 × 1520 × 2048  voxels). We indeed  visually observed some  inconsistent artefacts 
at the boundaries between sub volumes in z plane shown in Fig. S3(a)–(b) from Sup-
plemental Material. This was caused by padding of convolutional kernels since there is 
limited information at image boundaries. However, Fig. S3(c) from Supplemental Mate-
rial shows that the inconsistent artefacts at image boundaries do not result in segmenta-
tion errors.

Running a 3D CinCGAN directly is time-consuming and overloads the internal mem-
ory of the GPU. Therefore, we implemented a few simple steps as demonstrated by our 
previous work to reconstruct 3D image using the 2D CinCGAN (Niu et al. 2020).
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• We first input 512 2D LR images  (3802 voxels) in the X–Y plane to CinCGAN and 
reconstructed 512 2D SR images  (15202 voxels) in the X–Y plane.

• Then, the 512 2D SR images  (15202 voxels) in X–Y dimension are downsampled to 
1520 2D LR images (380 × 512 voxels) in the X–Z plane using bicubic interpolation.

• The 1520 2D LR images (380 × 512 voxels) in the X–Z plane are then fed into the pre-
trained EDSR model to generate the final 3D SR volume (1520 × 1520 × 2048 voxels).

The procedure does not cause any coupling problems caused by using the two differ-
ent networks (Niu et al. 2020). This is because both the CinCGAN and pretrained EDSR 
model are trained using the same training data. Figure S4(a), (b) in Supplemental Material 
demonstrates no visually apparent inconsistent artefacts at image boundaries in z plane by 
the bicubic interpolation method. The corresponding segmentation from S4(c) in Supple-
mental Material also demonstrates no boundary artefacts.

To ensure that the SR results can be fairly compared with the HR ground truth, a his-
togram match method was implemented on the SR validation images using ‘imhistmatch’ 
function in MATLAB. The ‘imhistmatch’ function adjusted the histogram of the SR image 
to the HR ground truth reference image.

2.7  Pore Network Modelling

We used the conventional PNM approach presented (and available online) in Raeini et al. 
(2017, 2018), which were updated versions of the original algorithms (Valvatne and Blunt 
2004; Dong and Blunt 2009). Full details of the approaches can be found from references 
therein. Further validations of the PNM are available in (Bultreys et  al. 2018; Zahasky 
et al. 2020; Jackson et al. 2021).

Trained
3D EDSR

Trained
CinCGAN

3D LR 
valida�on 

image

2D LR
valida�on

image

3D 
reconstruc�on 

process

Output
3D volume

Histogram 
match

Threshold 
determina�on

Pore network
modelling

Watershed
segmenta�on

Petrophysical 
analyses

Local porosity 
map

MICP data

Step 1

Step 2

Step 3
Step 4 Step 5

Step 6

Step 7

Step 8

Step 9

Fig. 3  The overall workflow for validation of the reconstructed super-resolution images and petrophysical 
analyses
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In summary, we use a maximal spheres algorithm to assign pore-bodies and throats to 
represent the pore space. The pore bodies and throats are then assigned shape-factors based 
on their geometry, and quasi-static capillary dominated drainage flow was simulated across 
the network, for a constant capillary pressure. At each capillary pressure equilibrium stage, 
single or multiphase transport (hydraulic or electric) can be simulated. Local conductivities 
are found either analytically or through empirical relationships, e.g., for corner-flow. Pore-
body potential was solved for the network by enforcing conservation of flux at each pore 
body. These potentials can be averaged at the inlet and outlet, which when combined with 
corresponding fluxes can be used to obtain macroscopic transport properties, e.g., perme-
ability, relative permeability, and formation factor. A water/decane system was utilised as 
fluid properties on our PNM simulation. The microporosity is not considered in the PNM.

3  Results and Discussion

In this section, we first visually observe the reconstructed grey-scale images, measure the 
resulting PSNR/SSIM, and report the computational performance of the SR algorithms. 
We then present an objective means for data segmentation for macroporosity and micr-
oporosity determination. Microporosity maps are generated and quantified in terms of void 
fraction and heterogeneity. Lastly, typical petrophysical properties are evaluated using pore 
network modelling. Overall, we provide a robust quantitative assessment of the resulting 
SR images in comparison to HR ground truth images and MICP data.

3.1  Reconstructed Images

Figure 4 shows the four validation volumes—LR, HR ground truth (HR-GT), EDSR vali-
dation with histogram match (EDSR-HM), and CinCGAN validation with histogram match 
(CinCGAN-HM). The images demonstrate the finer features that were captured in the HR 
and SR images. In addition, all images were within a similar grey-scale range, which will 
be important for image segmentation and subsequent evaluation of physical accuracy, 
which is qualitative evident in Fig. 4 but also observed in the image histograms that will be 
presented in Sect. 3.2.

Table  2 provides a performance comparison of the EDSR and CinCGAN networks. 
CinCGAN needed less time to train but more time for SR reconstruction than EDSR. Over-
all, the total computational time of 2D CinCGAN remained lower than EDSR. In addi-
tion, both PSNR and SSIM of EDSR were 15.93% and 35.04% higher than CinCGAN, 
respectively. This was because EDSR as a CNN-based method can immediately learn the 
mapping between LR and HR data using paired data, while unpaired CinCGAN as a GAN-
based approach causes more uncertainty when generating fake data from the learned distri-
bution. In this study, both PSNR and SSIM are lower than standard reported values (Lim 
et al. 2017), this was because reported SR models are commonly trained using HR images 
and corresponding LR images from interpolated HR images. Our training data, however, 
was directly obtained from LR and HR micro-CT images. The uncertainties during micro-
CT scanning and reconstruction processes will cause slight difference on the image pairs, 
which affects the PSNR and SSIM values.

Figure 5a–d shows 2D grey-scale images for the LR, HR-GT, EDSR-HM, and CinC-
GAN-HM images. From global visual inspection, EDSR-HM and CinCGAN-HM 
captured most of the texture details of the HR-GT image. When we look into the local 
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regions shown in Fig. 5e–h, we can see discrepancies between the images. The LR image 
displayed in Fig. 5e does not capture the grey-scale textures of the microporous regions 
well. Also, the edges between the grain and macropores lack sharpness. The blue boxes in 
Fig. 5f–h show detailed differences between the HR-GT, EDSR-HM, and CinCGAN-HM 
images. The EDSR-HM image shown in Fig. 5g restores the high-frequency information 

(a) (b)

(c) (d)

1400 µm

1400 µm1400 µm

1400 µm

Fig. 4  3D rendering of the related validation volume for petrophysical analyse. a LR (380 × 380 × 512 vox-
els), b HR-GT (1520 × 1520 × 2048 voxels), c EDSR-HM (1520 × 1520 × 2048 voxels), d CinCGAN-HM 
(1520 × 1520 × 2048 voxels)

Table 2  EDSR versus CinCGAN 
performance comparison—
computational cost, PSNR and 
SSIM versus HR

EDSR CinCGAN

Training data Paired Unparied
Total training time (mins) 358 267
Total reconstruction time (mins) 8.5 17.2
PSNR versus HR 16.81 14.50
SSIM versus HR 0.370 0.274
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when comparing with the HR-GT image in Fig. 5f. In contrast, CinCGAN-HM displayed 
in Fig.  5h creates what appears to be unrealistic grey-scale textures. Figure  5i displays 
the grey-scale intensities along the line segments for the HR-GT, EDSR-HM, and CinC-
GAN-HM images. The locations of the line segments are depicted as the dashed lines in 
Fig. 5b–d. From the line profiles, we observe that the variation of the grey-scale values for 
the EDSR-HM image was similar to what was observed from the CinCGAN-HM image. 
The gradients for the line profiles at the interfaces between the macropores and grain were 
also similar for all images. A slight lag can be observed in CinCGAN-HM from macropore 
phase to grain phase in Fig. 5i. This was because that GAN-based approach can increase 
brightness inconsistency (Gulrajani et  al. 2017). Thus, the histogram of CinCGAN-HM 
was slightly different with HR-GT after histogram match.

3.2  Image Segmentation

The watershed-based method was applied to segment the image volumes (Beucher 1979). 
To implement watershed segmentation, we initially defined two markers for macro-pore 
and solid phases. Then morphological watershed transformation algorithm (Beucher 1992) 
was applied for interphase region growing. In general, the micropores in carbonate rock 
are also called sub-resolution pores (Lin et al. 2016) which cannot be resolved from the 

(a) (b) (c) (d)

600 µm 600 µm 600 µm600 µm
(e)

200 µm 200 µm

(f)

200 µm

(g) (h)

200 µm
(i)

Fig. 5  2D Grey-scale images and related image line profiles. a LR, b HR-GT, c EDSR-HM, d CinCGAN-
HM, e amplified LR, f amplified HR-GT, g amplified EDSR-HM, h amplified CinCGAN-HM, i intensity 
cross sections along line segments located on grey-scale images for HR-GT, EDSR-HM and CinCGAN-HM
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micro-CT images due to resolution limitations. The micropores can be defined by image 
resolution. For example, the voxel size of our high-resolution carbonate data is 2.68 µm 
which means that any pore diameters less than 2.68 µm can be regarded as micropores. 
Two regions (macropores and grains) were segmented initially. The microporosity was then 
defined within the ‘grain’ phase as a subsequent step. The main challenge for segmentation 
is the threshold selection, which usually results in a user bias. To compare the histograms 
of the HR-GT, EDSR-HM, and CinCGAN-HM images with the LR image, we cropped 
a subvolume (380 × 380 × 512  voxels) from the HR-GT, EDSR-HM and CinCGAN-HM 
images that had the same number of voxels as the LR image. Figure 6a shows the intensity 
histograms of the LR, HR-GT, EDSR-HM, and CinCGAN-images. It is clear that the LR, 
HR-GT, EDSR-HM, and CinCGAN-HM images have similar histograms, which means 
they can share similar thresholds for segmentation. This provides a comparative way to 
quantitatively appraise the physical accuracy of the images.

The optimal segmentation thresholds, however, cannot be resolved directly from the his-
tograms provided in Fig. 6a due to the wide intensity range between the main two peaks 
with relative high frequency. Herein, we calculated the image gradient magnitude map ver-
sus voxel intensity for the HR-GT image, as shown in Fig. 6b, to determine the optimal 
thresholds. Regions of low gradient magnitude with high frequency indicate pure phases, 
which are macropores or grain, while regions with high gradient magnitude are interfacial 
regions. We calculated intensity gradient magnitudes for the HR-GT image from twenty 
random interfacial regions. Then, the minimum gradient magnitude of 10.75 (intensity var-
iation/voxel) was selected as the threshold of pure macropore phases. Regions with a gra-
dient magnitude less than 10.75 were considered as pure macropore phase. In Fig. 6c, we 
extract a histogram for only regions with gradient magnitudes between 0 and 10.75. The 

Fig. 6  Optimal threshold determination on validation images for watershed segmentation. a Image intensity 
histograms of LR and HR-GT, EDSR-HM, CinCGAN-HM sub volumes (380 × 380 × 512 voxels), b Image 
intensity versus gradient magnitude histogram of HR-GT, c Image intensity versus gradient magnitude his-
togram of HR-GT between 0 and 10.75 intensity variation per voxel
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extracted histogram displays a clear separation between the macropores and grains. There-
fore, we selected the optimal thresholds for watershed segmentation as 0–55 for macropore 
and 65–255 for grain, based on Fig.  6c. In addition, we also generated extra segmenta-
tions for the validation data by increasing/decreasing the optimal thresholds for sensitivity 
analyses.

Image segmentation provides a quantitative way to evaluate geometrical properties 
of an image. The differences between the EDSR-HM and CinCGAN-HM images can be 
observed in the segmented data (optimal thresholds). Figure 7a–d depicts the 2D segmenta-
tions over many pores. Both the EDSR-HM and CinCGAN-HM images captured the finer 
micropores that were also captured in the HR-GT image. Regions of interest (ROI) images 
are provided in Fig. 7e–h, which demonstrate that the EDSR-HM image can recover more 
representative pore structures than the CinCGAN-HM image, as noted by the blue box. 
Also, note that the segmented data presented in Fig. 7 are taken from the same region as 
the grey-scale images presented in Fig. 5.

3.3  3D Local Porosity Maps

To quantify the microporosity, we firstly multipled the grey-scale image by the correspond-
ing segmented image (Micro-pore: 0, Grain:1) to obtain grey-scale images with ‘grain’ 
phase only. A local porosity map for the grain phase region was generated by

where T(x,y,z) is the intensity of the local position (x, y, z) in the 3D image, Tpore is the thresh-
old of pure pore phase, Tgrain is the threshold of pure grain phase, and �micro is the range of 
micropore porosity between 0 and 1.

The generated local porosity maps for the HR-GT, EDSR-HM, and CinCGAN-HM 
images are depicted in Fig. 8. Firstly, in Fig. 8a–d, we observe that both EDSR-HM and 

(5)�micro =
T(x,y,z) − Tgrain

Tpore − Tgrain
,

(a) (b) (c) (d)

600 µm 600 µm 600 µm600 µm

200 µm

(e) (f)

200 µm

(g)

200 µm

(h)

200 µm

Fig. 7  2D optimal watershed segmentation with same FOV corresponding to Fig. 5 (White: macro-pores, 
Black: grains). a LR, b HR-GT, c EDSR-HM, d CinCGAN-HM, e amplified LR, f amplified HR-GT, g 
amplified EDSR-HM, h amplified CinCGAN-HM
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CinCGAN-HM images can accurately recognise the microporosity as recognised in the 
HR-GT image. However, when observing the ROIs in Fig.  8e–h, it is apparent that the 
EDSR-HM image in Fig. 8g restored most of the microporosity characteristics compared 
with the HR-GT image, while the CinCGAN-HM image showed a slightly larger fraction 
of microporosity.

Table 3 provides the macro-/microporosity values for the 3D validation volumes using 
the optimal segmentation thresholds. The porosity results show that both micro- and macr-
oporosities in the HR-GT image were representative of the MICP experimental data. The 
slight differences between MICP data and segmented data were caused by the segmenta-
tion error as well as the presence of heterogeneities since the validation images were not 
the same sample as used for MICP. In contrast, the LR image resulted in a large discrep-
ancy when compared to the MICP data. The HR-GT image and MICP results showed that 
our selected optimal thresholds were accurate enough to represent the geometrical infor-
mation of the related volume.

Overall, our SR models provided relatively consistent porosity results. Compared with 
the HR-GT image and MICP data, the EDSR-HM image slightly overestimated macro-/
microporosity, while the CinCGAN-HM image slightly underestimated them. Overall, the 
results from the EDSR-HM and CinCGAN-HM images were close to the corresponding 

(a)

(e) 680 µm

210 µm

(b)

680 µm(f)

210 µm

(c)

680 µm(g)

210 µm

(d)

680 µm(h)

210 µm

Fig. 8  2D local porosity map with same FOV corresponding to Figs. 6 and 7. a HR-HM grey-scale image 
with grain phase, b local porosity map of HR-GT, c local porosity map of EDSR-HM, d local porosity map 
of CinCGAN-HM, e amplified HR-HM grey-scale grain phase images, f amplified HR-GT grey-scale image 
with grain phase, g amplified local porosity map of EDSR-HM, h amplified local porosity map of CinC-
GAN-HM. The colour bars in a, e represent the intensity range of the 8-bit grey-scale image. The colour 
bars in the other sub-figures represent the range of the estimated micro-porosity related to Eq. 5

Table 3  Macro-/microporosity calculated on optimal segmentation of HR-GT, EDSR-HM, CinCGAN-HM, 
LR versus MICP experimental data (Alqahtani et al. 2022)

MICP HR-GT EDSR-HM CinCGAN-HM LR

Macroporosity 0.178 0.181 0.184 0.177 0.125
Macroporosity error (%) NA 1.57 3.03 − 0.84 − 30.0
Microporosity 0.110 0.111 0.106 0.112 0.147
Microporosity error (%) NA 1.37 -3.65 2.46 33.91
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HR-GT images based on bulk micro- and macroporosity. Additional porosity results on 
various segmentations can be found from S5–S6 in the Supplemental Material in order to 
consider the uncertainty on the threshold values.

In addition, we also investigated how the microporosity was distributed in the images. 
To quantify the microporosity distribution, we calculated the Dykstra–Parson coefficient 
curves to measure the degree of heterogeneity (Dykstra and Parsons 1950; Tiab and Don-
aldson 2015).

Figure  9 shows the Dykstra–Parson coefficient curves for HR-GT, EDSR-HM, CinC-
GAN-HM and LR. Results showed that the Dykstra–Parson coefficients of the CinCGAN-
HM image were closer to the HR image than the EDSR-HM image. This indicates that 
CinCGAN can recreate the features of SR images that are comparable to HR-GT level. In 
addition, the Dykstra–Parson coefficient of LR generally had larger bias than the HR-GT, 
EDSR-HM and CinCGAN-HM images.

3.4  PNM for Petrophysical Analyses

The previous results showed that both the EDSR-HM and CinCGAN-HM images can 
resolve the macro-/micropores accurately compared with the HR-GT results. We further 
implement a PNM on the validation images to measure permeability, formation factor, cap-
illary pressure, and relative permeability. The HR image was used as the ground truth data 
and the LR image was used as a baseline measure to assess the accuracy that was gained by 
using the SR algorithms.

Figure 10 shows the single phase/electrical flow PNM simulations for the LR/HR-GT/
EDSR-HM/CinCGAN-HM images. Each category contains seven segmentations with vari-
ous thresholds around the pre-determined optimal. The HR results are represented on the 
X-axis as the benchmark. With thresholds increasing, porosity and absolute permeability 
increase appropriately in Fig.  10a, b for the LR/EDSR-HM/CinCGAN images. In gen-
eral, the porosity results of both EDSR-HM and CinCGAN-HM were consistent with the 
HR-GT images within the tested threshold ranges. However, discrepancies could be found 
with the absolute permeability results where the CinCGAN-HM images had less devia-
tion from the HR-GT images than the EDSR-HM images. Conversely, the formation factor 
results in Fig. 10c showed that the EDSR-HM results were more precise than the CinC-
GAN-HM results. In addition, all simulation results for the LR images do not correspond 
to the HR image results and displayed high variability over the tested thresholds. This 
was because the LR data had ambiguous boundaries between the pore and grain phases, 

Fig. 9  Dykstra–Parson coef-
ficient for local microporosity 
variation on HR-GT, EDSR-HM, 
CinCGAN-HM and LR
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as demonstrated by the high number of voxels that exist between the two main histogram 
peaks, see Fig. 6a.

Figure 10d shows the pore size distribution measured based on the local distance max-
imum method (Shabro et  al. 2012; Chung et  al. 2020; Wang et  al. 2020).The pore size 
distributions of the EDSR-HM and CinCGAN-HM images were mostly equivalent to the 
HR-GT image with only a few smaller pores resolved in the HR-GT images. Whereas the 
LR image resolves only larger pores and provided a limited range of pore size compared to 
the pore size distributions of the HR-GT, EDSR-HM, and CinCGAN-HM images, the LR 
image also provided many more large pores than the SR and HR counterparts suggesting 
that the pore space was over segmented when using the optimal thresholds.

Figure  11 shows the multiphase flow PNM results for the LR/HR-GT/EDSR-HM/
CinCGAN-HM images. The relative permeability curves in Fig.  11a demonstrated that 
both the EDSR-HM and CinCGAN-HM images were aligned smoothly with the HR-GT 
image, while the LR image results were less correlated. Particularly in the specific range of 
0.6 < Sw < 0.8 , the LR results show more non-continuous ‘bounds’ or ‘step-like’ features. 
This effect was more prominent in the non-wetting relative permeability curves shown in 
Fig. 11b, while the EDSR-HM/CinCGAN-HM images were consistent with the HR results. 

  

(a) (b)

(c) (d)

Fig. 10  a–c Single phase/electrical flow PNM simulation of LR/HR-GT/EDSR-HM/CinCGAN-HM for 
absolute permeability, porosity and formation factor, d pore size distribution for LR/HR-GT/EDSR-HM/
CinCGAN-HM using local distance maximum method (Shabro et al. 2012; Chung et al. 2020; Wang et al. 
2020)
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As pore/throat sizes dominate how the relative permeability varies across the water satura-
tion range. These ‘step-like’ features indicated that there is a narrower variation of pore 
sizes in the LR images, which was consistent with the pore size distribution results shown 
in Fig. 10d. In contrast, the relative permeability curves of the EDSR-HM, CinCGAN-HM, 
and HR-GT showed smoother transitions across the entire saturation range. This indicated 
that EDSR-HM and CinCGAN-HM can resolve relatively small macropores comparable to 
the HR-GT PNM results, while LR images only resolved the larger macropores.

The capillary pressure curves are shown in Fig. 11c. The capillary pressure variations in 
the EDSR-HM and CinCGAN-HM images were more consistent with the HR-GT images 
than the LR images. The capillary pressure curves for the LR images generally meet the 
irreducible water saturation point earlier than the EDSR-HM, CinCGAN-HM, and HR-GT 
counterparts. This indicated that less of the smaller macropores were resolved in the LR 
image. At a given saturation point, capillary pressure for the LR image was lower than 
the EDSR-HM and CinCGAN-HM images as well as the HR-GT images. This means 
that the resolved average pore sizes of the LR images were larger than the EDSR-HM, 
CinCGAN-HM, and HR-GT images. Overall, the HR-GT, EDSR-HM and CinCGAN-HM 
images showed accurate correlations in the range of 0.5 < Sw < 1 , while the capillary pres-
sure from the HR-GT, EDSR-HM and CinCGAN images were underestimated in the range 
of Sw < 0.5 . This can be considered as a resolution restriction since MICP can detect more 

(a) (b)

(c)

Fig. 11  a PNM simulation for non-wetting relative permeability of LR/HR-GT/EDSR-HM/CinCGAN-HM, 
b PNM simulation for wetting relative permeability of LR/HR-GT/EDSR-HM/CinCGAN-HM, c PNM sim-
ulation for drainage capillary pressure of LR/HR-GT/EDSR-HM/CinCGAN-HM
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tiny micropores than the  micro-CT data. More non-wetting phase fluids move to those 
micropores in the MICP experiment at low Sw . Consequently, the capillary pressure of non-
wetting phase in MICP was greater than the capillary pressure estimated in the HR images. 
It should also be noted that MICP was conducted on another core plug of the sample and 
not the same core plug as used for imaging.

In addition, when observing the relative permeability and capillary pressure in Fig. 11, 
it becomes evident that both the EDSR-HM and CinCGAN-HM images were less sensi-
tive to the threshold variation than the HR-GT image. This effect actually reduced the user 
bias when determining the image segmentation settings. The effect occured because the SR 
deep learning models utilise a quantisation technique to reduce the model size and com-
putational cost (Hong et al. 2020). Consequently, the segmentation of the quantised grey-
scale images in EDSR-HM and CinCGAN-HM have less noise and less intermediate grey-
scale values, which subsequently reduced their sensitivity to threshold values.

4  Conclusion

A comparative study was conducted using paired and unpaired super-resolution deep 
learning models for physically accurate digital rock images. A carbonate rock sample was 
scanned at low resolution and 4 × high resolution for EDSR and CinCGAN training. We 
then reconstructed an unseen low-resolution validation volume (380 × 380 × 512 voxels) to 
its super-resolution counterpart (1520 × 1520 × 2048 voxels) by EDSR and CinCGAN. A 
gradient-based method was implemented to select the optimal thresholds for image seg-
mentation. Various segmentations were generated for macropores and grains around the 
optimal thresholds using a watershed-based method. The macroporosity and microporos-
ity results obtained from the watershed segmentations were consistent with the HR image 
results as well as MICP experimental data.

Furthermore, petrophysical properties were simulated using a PNM in a drainage water/
decane system. Compared EDSR versus CinCGAN images with the high-resolution ground 
truth images, petrophysical properties showed that both the paired EDSR and unpaired 
CinCGAN methods can precisely restore the sharpness of the pores structures that were not 
well resolved in the LR image. In addition, the petrophysical properties of the EDSR and 
CinCGAN images were equivalent to HR images through various segmentations, while the 
LR image could not represent the characteristics of the HR image.

Unlike EDSR which is a CNN-based approach by learning immediate mapping between 
LR and HR data, CinCGAN aims to recreate realistic spatial features close to the distri-
bution of real data. In other words, CinCGAN causes more uncertainty than EDSR since 
the realistic information was generated. Table 4 provides an overall performance compari-
son of EDSR and CinCGAN. The detailed methods of quantitative analyses can be found 
in Supplemental Material. Our results showed that CinCGAN can generate realistic SR 
images that have equivalent performance to EDSR but requires 22.5% less computational 
time than EDSR when considering both training and reconstruction times. This means that 
the  unpaired GAN-based method is more flexible and less time-consuming than paired 
CNN method for real applications in digital rock.

One critical challenge is on how the trained SR model can be inferred to other types of dig-
ital rock images with similar textures. Jackson et al. (2021) illustrated that deep learning SR 
model can precisely reconstruct SR images for those micro-CT rock images with similar tex-
tures by comparing the physical accuracy of the SR images with HR ground truth. In this way, 
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we may not need to train a new model every time for different rock samples. Other approaches 
using domain transfer techniques (Zhu et al. 2017; Tang et al. 2022a, b) are a possible means 
to integrate data sets into larger standard sets for image enhancement and quantification.

Overall, we introduced an integrated workflow to enhance digital rock image resolution by 
examining the physical accuracy of paired and unpaired deep learning methods. Our results 
showed that both paired EDSR and unpaired CinCGAN can reconstruct physically accurate 
SR images that were equivalent to the HR ground truth image. This unlocks new applications 
for using unpaired deep learning for digital rock image quality enhancement. The unpaired 
deep learning approach accelerates the application of SR methods since image registration is 
not required. Furthermore, decoupled digital rock data from retrieval platforms, such as the 
Digital Rock Portal (https:// www. digit alroc kspor tal. org/), can be exploited more efficiently to 
deal with a wide range of geological data for image upscaling in a physically accurate way. 
Further studies of unpaired methods can be conducted for image resolution improvement of 
multimineral rock images, or other types of images collected from other imaging modalities, 
such as transmission electron microscopy, scanning electron microscopy, and X-ray computed 
tomography.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s11242- 022- 01842-z.
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