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Abstract
Microstructures affect the properties of food products; accurate and relatively less complex 
microstructural representations are thus needed for modelling of transport phenomena dur-
ing food processing. Hence, the present study aimed at developing computational micro-
structures of steamed bread using descriptor-based approach. Relevant information was 
extracted from the scanning electron microscope (SEM) images of the steamed bread and 
evaluated using seven classifiers. For the automatic classification and using all descriptors, 
bagged trees ensembles (BTE) had the highest accuracy of 98.40%, while Gaussian Naïve 
Bayes was the least with 92.10% accuracy. In the “step forward” analysis, five descriptors 
had higher classification accuracy (98.80%) than all descriptors, implying that increase in 
descriptors might or might not increase classification accuracy. Microstructural validation 
revealed that the ellipse fitting method with a p value of 0.7984 for the area was found to be 
superior to the Voronoi method with a corresponding p value of 1.4554 ×  10−5, confirming 
that the ellipse developed microstructure was more suitable for microscale modelling of 
transport phenomena in steamed bread.
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1 Introduction

Microstructures or structural features at the cellular level such as cells, cellular spaces, 
gas cells, solid matrices and their organization contribute to the quality attributes of food 
products such as texture, sensory, rheological property and shelf-life (Houska et al. 2005; 
Drummond et  al. 2009; Abera et  al. 2014). On the other hand, microstructural elements 
strongly affect the transport properties of food especially porous food products as transport 
of bound and free water through the various microstructural features takes place at this 
scale (Aguilera et al. 2000; Aguilera 2005). In addition, food processing affects the stabil-
ity of the microstructure, which in turn affect food quality (Cheng and Sun 2007; Feng and 
Sun 2014).

Mathematical modelling is a valuable tool to understand and optimize food processes 
(Zhang and Sun 2005). In particular, modelling at the microstructural level is a key to 
comprehend the microscale chemical and physical phenomena, which are lumped together 
in macroscale modelling (Sun and Hu 2003; Wang and Sun 2003; Ajani et  al. 2019). 
Moreover, the multiscale modelling paradigm has been recently employed in food mate-
rial modelling (Rahman et  al. 2018a). For achieving reliable modelling results, accurate 
microstructural representations are needed, which in turn require adequate microstructural 
information.

Bread is one of the most common staple foods in the world, and steamed bread is a 
popular Chinese staple, which is mostly made from plain flour, water and yeast with or 
without stuffing (Kou et al. 2019). Steam bread is a typical porous food product. The trans-
port properties of bread significantly affect their freshness, colour, crispiness, water dif-
fusivity, microstructural stability, sensorial, textural, rheological properties and staling dur-
ing steaming and storage (Altamirano-fortoul et al. 2012; Drummond and Sun 2012). The 
structure of steam bread consists of an assemblage of microstructures with a large number 
of pores or gas cells heterogeneously distributed across the interconnected solid matrices 
(Aguilera 2005); therefore, steam bread is complex with multiscale fractal-like hierarchical 
structures (Ajani et al. 2020; Heertje 2014).

Both descriptor-based and correlation function-based approaches are reliable for the 
characterization, classification, reconstruction and modelling of food microstructures 
(Derossi et al. 2014, 2016; Sundararaghavan and Zabaras 2005; Xu et al. 2014a). Micro-
structural reconstruction generally involves two main steps: the extraction of representa-
tive information from the microstructural image, which can be either a descriptor-based 
approach or a correlation function-based approach and the generation of the virtual micro-
structure, which includes Voronoi tessellation algorithm, ellipse tessellation algorithm, etc.

Among the two approaches for information extraction, the descriptor-based approach 
shows its strengths including adequate microstructural representation with well-defined 
physical meaning, and lower reconstruction cost (Thomas et al. 2008; Xu et al. 2014a) and 
thus, plays an important role in reliable mathematical modelling and is often used as rep-
resentative element volume (REV) to model food transport phenomena during processing 
at the microscale (McDonald and Sun 2000; Rahman et al. 2018b). Geometry descriptors 
are computational methods used to analyse, quantify and represent an image in quantitative 
image analysis (Prakash et al. 2011; Xu et al. 2014a). These descriptors can be quantified 
by mean or higher-order moments such as variance, kurtosis depending on the availability 
of sufficient descriptor sets (Xu et al. 2014b).

For the generation of the virtual microstructure, some researchers used the Voro-
noi tessellation algorithm for developing microstructures of apples in different cultivars 
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(Mebatsion et  al. 2006a) and pome fruits (Abera et  al. 2014), while others used ellipse 
tessellation algorithm for constructing the virtual microstructures of apples, onions, and 
conference pear tissues (Mebatsion et  al. 2006b; Rahman et  al. 2018b), showing better 
accuracy than the former. Both algorithms are descriptor based; however, in most cases, 
the use of the extracted geometrical descriptors in classifying and differentiating between 
the cells and intercellular spaces was not carried out, and the cells and intercellular spaces 
were randomly chosen in the developed microstructures, leading to low accuracies in mod-
elling. Moreover, in some studies, only a single classifier was used in evaluating the suf-
ficiency and sensitivity of the geometrical descriptors and detailed statistical evaluation of 
the prediction errors between the classes was not considered, resulting in a limited under-
standing of the discriminative power of the classifier. On the other hand, the application 
of both algorithms was mostly limited to the development of fruit microstructures, and no 
application has been found for foods such as bread. Although the microstructures of fruits 
are heterogeneous, which consist of cells, cell walls and intercellular spaces, their struc-
tural features and organization are different from those of bread. The bread microstructures 
primarily consist of pore or gas cell, laminae and networks of solid matrices which could 
be continuous or discontinuous, depending on the gas cell stability during processing (Sun 
and Wang 2006; Wang et al. 2011).

Due to the heterogeneous nature of food microstructures at the microscale, it is hard 
to differentiate their relevant features. Hitherto, only linear discriminant analysis (LDA) 
combined with relevant geometrical descriptors has been used as an automatic classifier for 
food microstructural features (Decost and Holm 2015; Pieczywek and Zdunek 2012; Rah-
man et al. 2018c), while the use of other relevant classifiers such as bagged trees ensembles 
(BTE) and Rusboosted trees ensembles (RTE), which could achieve better discrimination 
such as in the case of class imbalance (Tharwat et  al. 2017), has not been investigated. 
Class imbalance exists when the samples in a class greatly outnumber those of the other 
classes in a dataset (Seiffert et al. 2010).

Although the connectivity of a 3D microstructure is greater than 2D counterpart, the 
latter is much easier to investigate, convenient to interpret, computationally economi-
cal, and has thus been mostly used for microscale and even multiscale modelling of food 
products with accurate predictions (Wang and Sun 2002a, b; Aregawi et  al. 2014; Rah-
man et al. 2018b). Moreover, for practical industrial applications, morphological features 
in 3D images are often analysed using 2D projections and the developed 2D microstruc-
tures can be easily extended to 3D (Abera et al. 2014; Su and Yan 2020). Specifically, the 
fractal method is often used for bread analysis, assuming that the shapes are self-similar 
across different hierarchies and cross sections, thus making a 2D analysis sufficient (Liu 
and Scanlon 2003; Gonzales-Barron and Butler 2008; Zhang et al. 2013). In addition, the 
2D microstructures developed in the current work could be used for microscale transport 
modelling and upscaled to 3D in the multiscale.

Presently, most microscale modelling of bakery products uses simplified homogenous 
or network models with no detailed geometrical features (Esveld et al. 2012). On the other 
hand, models with complex geometrical features often create singularity with results that 
are relatively hard to interpret (Rahman et al. 2018b), and there is thus a need to develop 
more accurate but simple REV for bread microstructures to modelling the microscale 
transport phenomena during processing. Therefore, in the current study, a descriptor-based 
approach for 2D reconstruction of steamed bread microstructures from microscopic images 
was developed. With the geometrical descriptors extracted from the microstructures, seven 
classifiers including LDA, BTE, Gaussian Naïve Bayes (GNB), fine tree (FT), quadra-
tive support vector machine (QSVM), fine k-nearest neighbour (FKNN) and RTE were 
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compared for automatic classification of the pores and solid matrices. Statistical informa-
tion from SEM images together with Voronoi and ellipse tessellation algorithms was uti-
lized for generating the virtual microstructures of the steamed bread, and the developed 
microstructural models were validated against the original SEM images by comparing vari-
ous geometrical features including perimeter, area, orientation, centroid, convex area, cir-
cularity, and eccentricity.

2  Experimental Methods

SEM imaging was used for the development of 2D microstructural computational geom-
etry in the current study. SEM images provide clear and detailed information on food 
microstructures even at microscale resolution with little or no chemical treatments (Pieczy-
wek and Zdunek 2012; Rahman et al. 2018c). For the morphological observation by SEM, 
freshly prepared whole steamed bread samples were randomly purchased from a local bak-
ery shop (Guangzhou, China), which were freeze-dried for about 24 h to remove the mois-
ture, and the dried samples were stored in a desiccator. To reveal the microstructures, two 
samples were cut into cubes of about 1 × 1 × 1 cm from different cross sections and regions 
using a sharp cutter. The cut samples were firmly mounted on metal stubs using a double-
sided tape, placed inside an automatic sputter coater and platinum-plated. The coated sam-
ples were then placed inside a high-resolution scanning electron microscope (Zeiss Merlin 
Field Emission SEM, Carl Zeiss NTS GmbH, Oberkochen, Germany). A total of 40 images 
were taken from different sections of the samples at an accelerating voltage of 5 kV and a 
magnification of 24. The 40 images with 400 × 400 pixels sizes (1 pixel = 4.686 μm) were 
identified by region of interest (ROI), and digitally analysed. The geometrical descriptors 
such as the area, circularity, eccentricity, orientation, and convex area, perimeter and cen-
troid were then extracted from the 40 images.

3  Statistical Estimation and Theoretical Formulation

The geometric shape analysis can be done using the area-based or/and the boundary-based 
approach, and the choices are mostly based on the organization of the shapes (Thomas 
et al. 2008).

3.1  Geometrical Properties Estimation

Although geometrical property estimation approaches based on set theory are well adapted 
for estimating geometrical features, especially in the 3D (Schröder-Turk et  al. 2013; 
McClure et  al. 2018), Green’s theorem is suitable for less complex 2D microstructural 
reconstruction with reasonable accuracy and was thus employed in the current work. The 
geometrical descriptors, which are the characteristics of pores or gas cells, were estimated 
using ellipse fitting based on Green’s theorem (Mebatsion et al. 2006a; Mulchrone and Roy 
2004). These geometric descriptors include surface area, circularity, eccentricity, convex 
area, perimeter, etc. Green’s theorem is one of the fundamental theorems of vector calcu-
lus, which defines the relationship between the macroscopic circulation of a curve and the 
sum of the microscopic circulation inside the curve (Chalifour et al. 2017). The theorem 
can also be used for calculating the amount of work done on a force field, the flux and flow 
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on a vector field, the area of conics with line integral, etc. (Mebatsion et al. 2006a; Chali-
four et al. 2017). Given a Cartesian plane with x and y representing the horizontal and ver-
tical values of the coordinate pair, respectively, let C be a simple closed curve in the plane 
and F be the region bounded by C, and given two functions D(x, y) and E(x, y), having a 
boundary F, the differentiable functions can be expressed using Green’s theorem as

The area A, also known as the zeroth moment of inertia, can be calculated as

The application of Green’s transformation to Eq. (2) in anticlockwise direction yields

where the number of points on the pores is taken as n. The first moment 
(
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)
 with 

x-direction preference, otherwise known as the centroid of a region, is calculated as

The application of Green’s transformation to Eq. (4) yields
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Similarly, the application of Green’s transformation to Eq. (6) yields
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The eccentricity (aspect ratio) and orientation were also calculated from the images using 
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�xx , �yy , �xy are the second moments of area calculated over x , y , and xy plane, respectively. 
The application of Green’s transformation to Eqs. (8)–(10) yields

The orientation and eccentricity of the pores were calculated from the estimated central 
area moments in the 2D spatial domain as

where � is the orientation, e is the eccentricity, the central moments �11 , �02 , and �20 were 
defined from their respective centroids and area moments of the pores, l1 and l2 are the 
major and minor length axes of the pores, respectively.

The summation of the distance among adjacent data set on the pore boundaries was 
used to calculate the perimeter. Circularity was calculated using the relationship below

The circularity (Eq. 16) index ranges from 1 to 0 with 1 representing the perfectly cir-
cular shape and 0 representing irregularly shaped objects, which departs from circularity.
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3.3  Identification of Key Descriptors for Classifying Pores and Solid Matrices

In previous works, most microstructural descriptors used for evaluating microstructural 
features are randomly chosen without providing any information on the significance of 
each descriptor to the microstructural features or properties of interest (Mebatsion et  al. 
2006a, b). Moreover, with the availability of a large number of microstructure descriptors, 
representing the microstructural features quantitatively using a descriptor set that is suffi-
cient and yet small enough to be tractable is challenging (Xu et al. 2014a). Hence, machine 
learning (ML) approaches can be used to automatically evaluate the descriptors-features 
relationship and for fast selection of most relevant descriptors (Xu et  al. 2014a, 2014b). 
Besides, the ML approach could be used to automatically classify the respective features 
in the reconstructed microstructures when imported as REV during microscale modelling 
especially in the case of large data set (Rahman et al. 2018c).

In the current study, the significance of each descriptor for classifying bread microstruc-
tural features (pores and solid matrices) was investigated. A dataset containing 6496 fea-
tures (pores and solid matrices) of the bread was extracted from all the 40 images, and 80% 
of the dataset was used for training and 20% for testing. Specifically, 6037 pores and 459 
solid matrices were identified from the images. The different types of pores that can be 
found in a porous food structure include open, closed, and blind pores (McDonald and Sun 
2001a, b; Halder et al. 2011); hence, for steamed bread microstructures, all the pores were 
classified as a class, and the solid matrices as another. Seven classifiers were used for the 
automatic classification of the two classes, and the geometrical descriptors were used for 
training in MATLAB. Detailed mathematical formulations of the classifiers, which include 
LDA, RTE, GNB, FT, QSVM, FKNN, and BTE can be found in the literature (Hastie et al. 
2008; Richards and Xiuping 2013). The classifiers used in this study were selected based 
on the class imbalance nature of the dataset (i.e. 6037 pores and 459 solid matrices), and 
their superior performance as demonstrated in similar works (Pérez-Ortiz et al. 2016; Rah-
man et al. 2018c; Seiffert, et al. 2010). The discriminative ability of the best classifier was 
further evaluated using confusion matrix since it shows the relationship between the clas-
sifier outputs and the true ones, which could not be revealed using Wilk’s ( � ) (Novako-
vic et al. 2017; Pieczywek and Zdunek 2012; Rahman et al. 2018c). Furthermore, a “step 
forward” analysis was used to identify key descriptors for classifying the pores and solid 
matrices (Pieczywek and Zdunek 2012). The classification accuracy of each classifier was 
calculated using the equation below:

where TN , TP , FN , and FP are the true negatives, true positives, false negatives, and false 
positives, respectively.

3.4  Voronoi Tessellation (VT)

Given a set of sites, S = {si, ..., sn} in the 2D Euclidean plane, Voronoi territory ( V(si) ) of 
the sites can be given as the partitioning of the plane having all points close to Si as to any 
other site, which can be mathematically defined as

(17)Accuracy =
TN + TP

TN + TP + FN + FP

(18)V
(
si
)
=

{||si − x|| ≤ |||sj − x
|||,∀j ≠ i

}
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The divisions into spaces by Voronoi tessellation are based on the number of points 
available. Also, the same number of points (centroids) in space in the actual cellular 
images was used for the random generation of the Voronoi diagrams. The Voronoi tessella-
tion was developed using a MATLAB function called Voronoi. The schematic diagram of 
the microstructural reconstruction methods including the Voronoi and ellipse tessellation is 
shown in Fig. 1.

3.5  Ellipse Tessellation (ET)

The ellipse-fitting algorithm (Mebatsion et al. 2006b) was used for ellipse tessellation as 
given below

where the ellipse coordinates and coefficients are denoted by (x, y), and a, b, c, d, e, f, 
respectively. The algebraic distance between the two-point function is expressed by F(x, y). 
Also, the constraint of the ellipse constraint is

Rewriting Eq. (19) yields

where a =
[
a, b, c, d, e, f ,

]T and x =
[
x2, xy, y2, x, y, 1

]T , respectively, with T representing 
the transposed vector.

Ellipse fitting of a general conic involves the minimization of algebraic distance over the 
set of data points in the least square sense. To fit the data point (x, y), the least square fitting 
can be used as follows (Rahman et al. 2018c)

(19)F(x,y) = ax2 + bxy + cy2 + dx + ey + f

(20)b2 − 4ac < 0

(21)F(a;x) = ax

Fig. 1  Schematic diagram of reconstruction methods



325Microstructural Classification and Reconstruction of the…

1 3

To ensure an ellipse-specificity of the solution, the vector a can be arbitrarily scaled, 
and the constraint equation given below is most appropriate

Equation (23) can be expressed in matrix form as

The pores centroid and area were numerically estimated using Eq. (22). The ellipse algo-
rithm used the centroid, length of the major and minor axis, and orientation for the micro-
structural reconstruction (“Appendix”). Unlike plant-based food microstructures develop-
ments with no overlapping of cell sites (Mebatsion et  al. 2006b; Rahman et  al. 2018a), 
the ellipses representing the pores were directly fitted with most overlapping, since most 
bread structures are predominantly open pores with few closed pores, which also allows 
for easy network flow during transport modelling (Wang et al. 2011; Esveld et al. 2012). In 
addition, an ellipse was developed from a centroid as long as the data points belong to it; 
otherwise, the data points were used for other pores. For steamed bread, the gluten–starch 
solid matrices are mostly connected with irregular shapes; hence, the residual points were 
used to develop them. The above algorithm was implemented using MATLAB codes and 
terminated after all the data points in the microscopic images were calculated.

3.6  Image Processing

The post-processing of the images acquired from SEM was carried out in MATLAB 
(2019b, MathWorks, Natick, USA). The flowchart of the image processing is outlined in 
Fig. 1, including watershed segmentation, binarization, geometrical descriptor extraction, 
etc. The images were first segmented involving the discretization of the acquired images 
into different parts. The image intensities were used for marking discrete parts or regions 
from the background, and for more accurate pore boundary extraction, the watershed algo-
rithm was used for segmentation (Brosnan and Sun  2002; Ng et al. 2006). Additionally, 
the points used for the watershed segmentation were obtained using the Pwdist function in 
MATLAB. From the grayscale images, the boundaries of the solid matrices and the pores 
were clearly distinct so that binarization based on a carefully selected threshold obtained 
by trial and error was sufficient enough to segment the pores from the solid matrices. How-
ever, the resulting image from the binarization process featured some noise, which was 
characterized by a typical salt and pepper noise. This noise was removed using the median 
filter. The extracted data were used for the reconstruction of the images with the ellipse and 
Voronoi algorithms. The reconstruction algorithms were selected due to their reputation 
for developing food microstructures with good accuracies (Abera et al. 2014; Rahman et al. 
2018c). Moreover, the reconstructed microstructures were imported as a computational 
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domain into COMSOL Multiphysics (v.5.5., COMSOL AB, Stockholm, Sweden) and 
meshed.

3.7  Statistical Validation and Analysis

The accuracy of the reconstructed microstructures was evaluated by comparison with the 
original microstructures using Kolmogorov–Smirnov (K–S) with a 5% level of signifi-
cance, and all statistical analysis was carried out using MATLAB.

4  Result and Discussion

4.1  Steamed Bread Microstructural Features

To show the distributions of the bread microstructural features (pore and solid matrix) ana-
lysed in this study, two samples were randomly selected from the 40 images (Fig. 2). Box-
plots were drawn to reveal the distributions of steamed bread microstructural features as 
shown in Fig. 3, and each plot consists of mean, minimum value, maximum value, upper 
and lower quartile and spacing between box lines. Generally, for the two samples pre-
sented, the solid matrices had higher mean values than the pores in terms of area, perimeter 
and convex area. For example, for sample 1, the mean areas of the pores and solid matrices 
were 1737 μm2 and 17,065 μm2, respectively, while for sample 2, those were 1031 μm2 
and 1138 μm2, respectively, as shown in Fig. 3a and b. The marked difference between the 
mean areas of the solid matrices for both samples was due to their distribution as shown 
in Fig. 2. For sample 1, the mean circularities of the pores and solid matrices were 0.6587 
and 0.2319, respectively, while for sample 2, those were 0.6233 and 0.5772, respectively, 
as shown in Fig. 3c and d. It can be inferred from the mean circularities and 2D pictorial 
images of the microstructures that the pores were more circular than solid matrices, as 
such, during reconstruction, only the pores were fitted while the residual data points were 
taken as solid matrices.

Orientation is also an important descriptor used to describe microstructural features 
(Pieczywek et al. 2011). For samples 1, the mean orientations of the pores and solid matri-
ces were 43.4173 and 30.9401, respectively, while for sample 2, those were 44.9162 and 
28.7213, respectively, as shown in Fig. 3e and f.

Therefore, descriptors such as areas, perimeter, convex area, circularity and orientation 
are important for classifying the pores and solid matrices, since there was consistent vari-
ation in the mean values between both classes, they could thus be used to automatically 
classify microstructural features, and to reconstruct steamed bread microstructures which 
serve as REV for microscale transport modelling. The mean eccentricities for both samples 
did not follow any trend; for example, the mean eccentricity of the pores was higher than 
that of the solid matrices for sample 1, and vice versa for sample 2 as shown in Fig. 3g and 
h, indicating that eccentricity might not be an important descriptor for classifying the pores 
and solid matrices.

4.2  Identification of Key Descriptors for Pores and Solid Matrix Classification

Although the descriptor’s mean value across bread microstructures provided some insights 
on potential descriptors for feature classification as discussed previously, it does not reveal 
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their significance. The classification accuracies of the seven classifiers using all and indi-
vidual geometrical descriptors are presented in Table 1. For all the descriptors, the most 
performed classifier was BTE with 98.40% accuracy, while the least performed was GNB 
with 92.10% accuracy. However, in some other studies involving the classification of fruit 
microstructures, LDA was adopted as the most suitable classifier (Pieczywek and Zdunek 
2012; Rahman et  al. 2018c). This might be attributed to the differences between bread 
and fruit microstructures, and specific ability of the respective classifiers in handling the 
microstructural features (Pérez-Ortiz et al. 2016). Furthermore, the average accuracy was 
94.61% for all classifiers, and the geometrical features used were thus sufficient to clas-
sify the pores and solid matrices (Decost and Holm 2015). In addition, the accuracies of 
most classifiers with all descriptors used were higher than those obtained using individual 

Fig. 2  a Raw SEM image for sample 1, b denoised, segmented and binary image for sample 1 c Voronoi 
generated microstructure for sample 1, d ellipse generated microstructure for sample 1, e raw SEM image 
for sample 2, f denoised, segmented and binary image for sample 2, g Voronoi generated microstructure for 
sample 2, h ellipse generated microstructure for sample 2

Fig. 3  Area distribution of pores and solid matrix for a sample 1 and b sample 2, circularity distribution of 
pores and solid matrix for c sample 1 and d sample 2, orientation distribution of pores and solid matrix for 
e sample 1 and f sample 2, eccentricity distribution of pores and solid matrix for g sample 1 and h sample 2
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descriptors as shown in Table 1, signifying that the use of more geometrical descriptors 
might increase the available information and classification accuracy.

In terms of the individual descriptors, the area with an average accuracy of 91.53% for 
all classifiers had the most significant effect on the microstructural feature description. In 
addition, circularity performed quite well with most classifiers and had the highest accu-
racy (98.60%) among individual descriptors with the BTE classifier. However, the least 
accuracy of 7.90% was observed when circularity was used with the QSVM classifier 
(Table 1), which led to a reduction in its average classification accuracy (80.05%). Gener-
ally, this indicates that the type of classifier used affects the classification accuracy of a 
given descriptor (Seiffert et al. 2010). Particularly, QSVM is an extension of support vector 
machine that is specifically designed to separate data nonlinearly (Dagher 2008; Mahesh-
wari et al. 2022). On the other hand, for a single descriptor, the solid matrix can be easily 
and effectively separated from the pore linearly, since the pore was more circular than the 
solid matrix (Sect. 4.1). However, QSVM separates the data of individual descriptors non-
linearly, which is hence the possible reason for the relatively lower performance observed 
with the QSVM classifier for most individual descriptors employed and especially for cir-
cularity. In addition, despite not following a specific trend, eccentricity with an average 
classification accuracy of 85.03% was quite significant. Moreover, other descriptors includ-
ing centroid, orientation, perimeter and convex area with average classification accuracies 
of 88.04%, 88.39%, 88.89% and 85.69%, respectively, had a significant effect on classify-
ing the pores and solid matrices (Table 1).

Since the classifiers using all descriptors had the highest average accuracy, a confusion 
matrix was used to have an in-depth understanding of their discriminative power as pre-
sented in Fig. 4. Figure 4a shows the description of the confusion matrix where negative 
(0) and positive (1) represent the pores and solid matrices, respectively. Although most 
of the classifiers provided high overall classification accuracy as shown in Table 1, their 
confusion matrices (Fig. 4b–h) show that most classifiers were biased as a large number of 
the solid matrices were misclassified due to class imbalance (Kumari and Kr. 2017; Pérez-
Ortiz et al. 2016). For FT classifier, false negatives (FN) and false positives (FP) of 18.70% 

Fig. 4  a Confusion matrix description, confusion matrix for b FT, c LDA, d GNB, e QSVM, f FKNN, g 
BTE, and h RTE
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and 1.70% were obtained, respectively, as shown in Fig. 4b, implying that 18.70% of all 
the solid matrices were classified wrongly as pores, while only 1.70% of all the pores were 
classified wrongly as solid matrices. For LDA classifier, FN of 92.30% was realized as 
shown in Fig. 4c, meaning that 92.30% of all the solid matrices were wrongly classified, 
while all the pores were accurately classified. Although with a high accuracy of 93.50% 
(Table 1), LDA had the highest FN for the solid matrices likely due to its inability to han-
dle the class imbalance between the pores and solid matrices in the bread microstructures 
(Pérez-Ortiz et al. 2016; Wang et al. 2011).

For GNB classifier, FN and FP of 90.10% and 1.70% were obtained, respectively, as 
shown in Fig. 4d, implying that 90.10% of all the solid matrices were classified wrongly 
as pores, while only 1.70% of the pores were classified wrongly as solid matrices. On the 
other hand, for QSVM classifier, FN and FP of 67.00% and 0.10% were obtained, respec-
tively, as shown in Fig.  4e, meaning that 67.00% of the solid matrices were classified 
wrongly as pores, while only 0.10% of the pores were classified wrongly as solid matrices. 
For FKNN classifier, FN and FP of 49.50% and 4.10% for solid matrices and pores were 
obtained, respectively, as shown in Fig. 4f, implying that 49.50% of all the solid matrices 
were classified wrongly as pores, while 4.10% of the pores were classified wrongly as solid 
matrices.

As the best performed classifier, BTE had FN and FP of 16.50% and 0.50% for solid 
matrices and pores, respectively, as shown in Fig. 4g, implying that 16.50% of all the solid 
matrices were classified wrongly as pores, while only 0.50% of the pores were classified 
wrongly as solid matrices. Besides having the highest accuracy (98.40%), BTE had the 
second least FN for solid matrices, and a very small FP (0.50%) for pores, hence, mak-
ing it the most suitable classifier for bread microstructural feature classification. For the 
RTE classifier, FN and FP of 2.20% and 7.00% for solid matrices and pores were obtained, 
respectively, as shown in Fig. 4h, implying that 2.20% of all the solid matrices were clas-
sified wrongly as pores, while 7.00% of pores were classified wrongly as solid matrices. 
Moreover, RTE had the least FN (2.20%) for solid matrices, and its FP for pores was min-
imal. Therefore, the ensembles (BTE and RTE) were the best classifiers for classifying 
between both classes, primarily due to their adaptiveness in handling the problem of class 
imbalance associated with bread microstructural features (Galar et al. 2012; Kumari and 
Kr. 2017). Lastly, an increase in the dataset might increase the available information and 
classification accuracy.

Since the BTE was the most accurate classifier, a “step forward” analysis was used 
for identifying key descriptors (Pieczywek and Zdunek 2012). In the first step, convex 
area was excluded and its exclusion had no significant effects on the classifier’s accuracy 
(Table 2). In the next step, the removal of eccentricity led to an increase in the accuracy 
(Tables 2), implying that it was less significant to the classifier’s accuracy. In the third step, 
the removal of perimeter led to a decrease in accuracy, thus showing that perimeter was 
significant. Moreover, the highest accuracy of 98.80% was realized using five descriptors 
(circularity, area, centroid, orientation, and perimeter) as shown in Table 2. Furthermore, 
these five descriptors had higher classification accuracy than using all descriptors, imply-
ing that the addition of more descriptors might not necessarily increase the classification 
accuracy.
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4.3  Validation of Reconstructed Microstructures

Validation using actual microstructure provides a platform for accurate and real com-
parison with the developed microstructure and is much better than using a standardised 
microstructure (Rahman et  al. 2018c). The randomly selected microstructures were used 
for validating the reconstructed counterpart. Figure  2 shows the images of the recon-
structed microstructures and visual comparison showed that ellipse-fitted microstructures 
were more similar to the original images than Voronoi-fitted microstructures. This could 
be attributed to the use of more descriptors for the ellipse reconstruction than for Voro-
noi reconstruction (Rahman et  al. 2018c). Specifically, the ellipse algorithm employed 
three descriptors (centroid, length of minor axis and major axis) (“Appendix”), while the 
Voronoi algorithm used only a single descriptor (centroid) for reconstruction. Moreover, 
in Voronoi-fitted microstructures, virtual equivalents of large pores bounded by small ones 
could not be generated (Pieczywek et  al. 2011). In addition, a statistical comparison of 

Table 2  Evaluation of key descriptors for feature classification using BTE

80% of the dataset (6037 pores and 459 solid matrices) was used for training and 20% for testing

Number of 
descriptors

Descriptors Accuracy (%)

7 Circularity, area, centroid, orientation, perimeter, eccentricity, and convex 
area

98.40

6 Circularity, area, centroid, orientation, perimeter, and eccentricity 98.30
5 Circularity, area, centroid, orientation, and perimeter 98.80
4 Circularity, area, centroid, and orientation 98.30
3 Circularity, area, and centroid 97.70
2 Circularity and area 98.50

Fig. 5  Comparison of normal distribution between microscopic images, Voronoi and ellipse generated 
microstructures for sample 1a area, b perimeter, c eccentricity, d circularity, e orientation
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the original and reconstructed microstructures was used to investigate the accuracy of the 
reconstructed microstructures. Figure 5a shows normal distributions of area for the SEM 
images, Voronoi and ellipse reconstructed microstructures for sample 1, and the distribu-
tions of ellipse reconstructed microstructure (p value = 0.7948 ) were in better agreement 
with those of SEM images than Voronoi reconstructed microstructures (p value = 1.4554 × 
 10−5). Trends similar to those of area distributions for sample 1 were also observed for the 
normal distributions of the perimeter, eccentricity, and orientation of sample 1 as shown in 
Fig. 5b, c, e, respectively, and for all relevant normal distributions for sample 2. However, 
for both samples, the p value of circularity for the Voronoi reconstructed microstructure 
was higher than that of the ellipse reconstructed microstructure (Fig.  5d). Furthermore, 
to reveal the pores/solid matrices connectivity and distribution, meshed computational 
domains for both samples are shown in Fig. 6, and ellipse generated microstructures pro-
vided a better representation of steamed bread microstructures as compared with Voronoi 
generated microstructure. In addition, pores in ellipse generated microstructures were more 
open and well connected as depicted by the greyish mesh portions (Fig. 6b,d), compared 
with those in the Voronoi generated microstructures (Fig. 6a and c), thus, making the for-
mer similar to the pores in steamed bread, which are mostly open and interconnected as 

Fig. 6  Sample 1a Voronoi generated microstructural mesh, b ellipse generated microstructural mesh, sam-
ple 2c Voronoi generated microstructural mesh, d ellipse generated microstructural mesh
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observed from micro-tomography experiment (Wang et al. 2011). In addition, the intercon-
nected pores in the ellipse generated microstructures could also allow for accurate predic-
tion of the transport properties during microscale and multiscale modelling. Finally, previ-
ous works on the development of fruit microstructures using both algorithms showed that 
the ellipse tessellation algorithm was superior to the Voronoi tessellation algorithm, which 
was in line with the current study (Mebatsion et al. 2006a, 2006b; Rahman et al. 2018c).

5  Conclusions

A descriptor-based approach was used for the classification and reconstruction of steamed 
bread microstructures, and information obtained from the geometrical descriptors was suf-
ficient for describing and reconstructing the pores and solid matrices. For the automatic 
classification using all descriptors, BTE with overall accuracy of 98.40% had the highest 
classification accuracy, while Gaussian Naïve Bayes was the least with 92.10% accuracy. 
In addition, the use of all geometrical descriptors provided better classifications as com-
pared with using a single descriptor. On the other hand, from the step forward analysis, 
five descriptors namely circularity, area, centroid, orientation, and perimeter had higher 
overall accuracy than using all descriptors, implying that increase in descriptors might or 
might not increase the classification accuracy. Moreover, the ensembles (BTE and RTE) 
were better for classifying bread microstructures since they can handle the problem of class 
imbalance associated with its microstructural features. In addition, with the automatic clas-
sification, large number of images can be processed within a relatively short period of time. 
Furthermore, evaluating more descriptors beyond those used in the current work could 
increase information availability and classification accuracy of the microstructural features. 
Statistical validation of the two approaches with SEM images revealed that the ellipse 
reconstruction method was more accurate compared to the Voronoi reconstruction method. 
Also, pictorial evaluation of the reconstructed microstructures in the computational domain 
showed that the ellipse reconstruction method was more superior in representing the bread 
microstructural features, the ellipse generated steamed bread microstructures could thus be 
used as REV for microscale and multiscale numerical modelling of transport phenomena 
during the processing of steamed bread.

Appendix

MATLAB Code for Ellipse Reconstruction Algorithm

function [X,Y] = Ellipse_Fit(s)

for k = 1: length(s) % where s is the total number of all the features of the microstructure 
(pores and solid matrices)

a = s(k).MajorAxisLength/2; % length of the major axis of a feature
b = s(k).MinorAxisLength/2; % length of the minor axis of a feature
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Xc = s(k).Centroid(1); % x coordinate of the ellipse centre
Yc = s(k).Centroid(2); % y coordinate of the ellipse centre
phi = deg2rad(-s(k).Orientation); % angle of rotation in radians with respect to the x-axis
x = Xc + a*cos(t)*cos(phi)—b*sin(t)*sin(phi); % vector representation of an ellipse in 
x plane
y = Yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi); % vector representation of an ellipse in y 
plane
plot(x,y,’black’,’Linewidth’,2);

end

end
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