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Abstract
We present a continuum (i.e., an effective) description of immiscible two-phase flow in 
porous media characterized by two fields, the pressure and the saturation. Gradients in 
these two fields are the driving forces that move the immiscible fluids around. The flu-
ids are characterized by two seepage velocity fields, one for each fluid. Following Hansen 
et al. (Transport in Porous Media, 125, 565 (2018)), we construct a two-way transformation 
between the velocity couple consisting of the seepage velocity of each fluid, to a velocity 
couple consisting of the average seepage velocity of both fluids and a new velocity parame-
ter, the co-moving velocity. The co-moving velocity is related but not equal to velocity dif-
ference between the two immiscible fluids. The two-way mapping, the mass conservation 
equation and the constitutive equations for the average seepage velocity and the co-moving 
velocity form a closed set of equations that determine the flow. There is growing experi-
mental, computational and theoretical evidence that constitutive equation for the average 
seepage velocity has the form of a power law in the pressure gradient over a wide range 
of capillary numbers. Through the transformation between the two velocity couples, this 
constitutive equation may be taken directly into account in the equations describing the 
flow of each fluid. This is, e.g., not possible using relative permeability theory. By reverse 
engineering relative permeability data from the literature, we construct the constitutive 
equation for the co-moving velocity. We also calculate the co-moving constitutive equa-
tion using a dynamic pore network model over a wide range of parameters, from where 
the flow is viscosity dominated to where the capillary and viscous forces compete. Both 
the relative permeability data from the literature and the dynamic pore network model give 
the same very simple functional form for the constitutive equation over the whole range of 
parameters.
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1 Introduction

When two immiscible fluids compete for the same pore space, we are dealing with immis-
cible two-phase flow in porous media (Bear 1988). A holy grail in porous media research 
is to find a proper description of immiscible two-phase flow at the continuum level, i.e., 
at scales where the porous medium may be treated as a continuum. Our understanding of 
immiscible two-phase flow at the pore level is increasing at a very high rate due to advances 
in experimental techniques combined with an explosive growth in computer power (Blunt 
2017). Still, the gap in scales between the physics at the pore level and a continuum 
description remains huge and the bridges that have been built so far across this gap are 
either complicated to cross or rather rickety. To the latter class, we find the still dominating 
theory, first proposed by Wyckoff and Botset in 1936 (Wyckoff and Botset 1936) and with 
an essential amendment by Leverett in 1940 (Leverett 1940), namely relative permeability 
theory. The basic idea behind this theory is the following: Put yourself in the place of one 
of the two immiscible fluids. What does this fluid see? It sees a space in which it can flow 
limited by the solid matrix of the porous medium, but also by the other fluid. This reduces 
its mobility in the porous medium by a factor known as the relative permeability for that 
fluid. And here is the rickety part: this reduction of available space — expressed through 
the saturation — is assumed to be the only parameter affecting the reduction factor or rela-
tive permeability. This is a very strong statement and clearly does not take into account 
that the distribution and shape of the immiscible fluid clusters will depend on how fast the 
fluids are flowing, and that these two factors affect the reduction of the permeability. Still, 
in the range of flow rates relevant for many industrial applications, this assumption works 
pretty well. It therefore remains the essential work horse for practical applications.

Thermodynamically Constrained Averaging Theory (TCAT) (Hassanizadeh and Gray 
1990, 1993a, b; Niessner et al. 2011; Gray and Miller 2014) is a very different approach to 
immiscible two-phase flow problem. The TCAT approach is generic and not particular to 
two-fluid flow problems. It is based on thermodynamically consistent definitions made at 
the macro-scale based on volume averages of pore-scale thermodynamic quantities. Clo-
sure relations are then formulated at the macro-scale along the lines of the homogenization 
approach of Whitaker (1986). A key advantage of TCAT is that all quantities are explicitly 
defined in terms of pore-scale quantities. For example, the pressure that appears in Darcy’s 
law would be formally defined as a volume average of the pore-scale pressure field. A key 
disadvantage of TCAT is that very many averaged variables are produced, and many com-
plicated assumptions are needed to derive useful results.

Another development somewhat along the same lines, based on non-equilibrium ther-
modynamics uses Euler homogeneity to define the up-scaled pressure. From this, Kjelstrup 
et al. derive constitutive equations for the flow (Kjelstrup et al. 2018, 2019).

Another class of theories is based on detailed and specific assumptions concerning the 
physics involved. An example is Local Porosity Theory (Hilfer and Besserer 2000; Hil-
fer 2006a, b, c; Hilfer and Döster 2010; Döster et  al. 2012). A very different approach 
is DeProf (Decomposition in Prototype Flow) theory which is a fluid mechanical model 
combined with non-equilibrium statistical mechanics based on a classification scheme of 
fluid configurations at the pore level (Valavanides et al. 1998; Valavanides 2012, 2018).

Recent work (Hansen et al. 2018; Roy et al. 2020) has explored a new approach to 
immiscible two-phase flow in porous media based on Euler homogeneity. It provides 
a transformation from the seepage velocity of each fluid to another pair of fluid veloci-
ties, the average seepage velocity and the co-moving velocity. The co-moving velocity, 
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as we shall see, is a velocity parameter that appears as a result of the Euler scaling 
assumption, which is not associated with any material transport. The transformation is 
reversible: knowing the average seepage velocity and the co-moving velocity, one can 
determine the seepage velocity of each fluid. It is the aim of the present work to develop 
this approach further, especially with respect to the co-moving velocity.

A little more than a decade ago, Tallakstad et al. (2009a, b) injected simultaneously 
air and a glycerol-water mixture into a glass-bead filled Hele–Shaw cell measuring the 
pressure drop across it as a function of the combined flow rate of the two fluids, finding 
a power law relation between them. Aursjø et al. (2014) repeated the Tallakstad et al. 
experiment, but this time with two incompressible fluids, finding the same power law 
dependency, but with a somewhat different power law exponent. The power law rela-
tion between pressure difference and flow rate, which corresponds to the local average 
seepage velocity depending on the local pressure gradient to a power when gradients in 
the saturation are negligible, has since been reported by other groups (Sinha et al. 2017; 
Gao et  al. 2020; Zhang et  al. 2021). This includes finding that the power law regime 
exists only in a finite range of pressure gradients; at smaller or larger gradients the rela-
tion is linear. Computational and theoretical approaches to understanding this behavior 
have followed the experimental findings, see (Sinha and Hansen 2012; Sinha et al. 2013; 
Xu and Wang 2014; Yiotis et al. 2019; Roy et al. 2019; Lanza et al. 2021; Fyhn et al. 
2021).

This nonlinear constitutive law for the average seepage velocity is a reflection of the 
behavior of each of the two immiscible fluids. The Euler approach of Hansen et al. (2018); 
Roy et al. (2020) makes it possible to transform this constitutive law describing the local 
average seepage velocity as a function of the local driving forces into constitutive laws 
for each of the two fluids. However, this hinges on providing a constitutive law for the co-
moving velocity.

We will in this paper develop a constitutive equation for the co-moving velocity under 
the assumption that gradients in the saturation may be neglected. Together with the consti-
tutive equation for the average velocity, we then have a complete description of the flow as 
long as there are no saturation gradients.

Generalizing our results to when there are saturation gradients will be the subject of 
future investigations.

We investigate the constitutive equation for the co-moving velocity using two 
approaches. The first one is to use experimental relative permeability data from the lit-
erature to construct the constitutive equation for the co-moving velocity. Since the relative 
permeability approach obeys the Euler homogeneity assumption, it is possible to express 
the co-moving velocity in terms of the relative permeabilities. This opens up for reverse 
engineering the experimental data which have been cast in terms of relative permeability 
curves in order to construct the co-moving velocity.

It should be noted here that this reverse engineering of the data does not rely on the rela-
tive permeability constitutive equations being accurate or even correct. It simply consists 
of translating the data that have been cast in the form of relative permeability data into 
seepage velocity data that in turn allow us to construct the co-moving velocity.

The second approach is based on a dynamic pore network model (Joekar-Niasar and 
Hassanizadeh 2012) first introduced by Aker et  al. (1998) and then later refined (Gjen-
nestad et  al. 2018, 2020). A review of the model was recently published by Sinha et  al. 
(2020). It allows us to emulate closely the experiments of Tallakstad et al. (2009a, b), e.g., 
reproducing the power law dependence of the flow rate on the pressure drop (Sinha and 
Hansen 2012).
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The constitutive law for the co-moving velocity turns out to be surprisingly simple, 
see Eq. (52). The reason for this remains an open question.

The main body of the paper is divided into three sections. The first one, Sect.  2, 
reviews the Euler homogeneity approach to immiscible two-phase flow in porous 
media (Hansen et al. 2018; Roy et al. 2020). The section starts by laying the ground-
work for the theory by defining central variables.

In Sect. 2.1, we address central questions concerning these variables: Are they at all 
possible to define or will they be swamped by fluctuations? Is it possible to see them as 
state variables, that is, variables that describe the flow there and then without depend-
ing on the history of the system? Can we still deal with these variables when there is 
hysteresis? After this discussion, we go on to describe in Sect. 2.2 the consequences of 
the volumetric flow rate being an Euler homogeneous function in the area over which 
the volume is measured. We then go on in Sect. 2.3 describe how the equations of the 
previous subsection together with constitutive equations for the local average seepage 
velocity and the local co-moving velocity form a closed set of equations that determine 
the local seepage velocities of the fluids, the local saturation and the local pressure 
field. In Sect. 2.4 we give a physical interpretation of the meaning of the co-moving 
velocity. In Sect.  3, we turn to analyzing experimental data from the literature that 
allow us to reconstruct the co-moving velocity. We start this section by describing 
(Sect. 3.1) how relative permeability theory may be cast in the language of the Euler 
scaling approach of Sect.  2. In this way, we relate the relative permeabilities to the 
co-moving velocity. We emphasize yet again that this does not imply that relative per-
meability theory is correct. Rather, the assumption is: If we assume the central equa-
tions of relative permeability theory, then the co-moving velocity could be expressed 
in terms of relative permeability curves, see Eqs. (45) or (46). Section 3.2 present our 
analysis of different relative permeability data sets including the reconstructed co-
moving velocity, see Eq. (52). This is the main result in this paper. Section 4 focuses 
on using a dynamic pore network model to calculate the co-moving velocity. Sect. 4.1 
details how we extract the average seepage velocity and then the co-moving veloc-
ity from the numerical data generated by the model. We then fit the data to the form 
(52) in Sect. 4.2, finding excellent agreement. Hansen et al. (2018) presented the co-
moving velocity gotten by the dynamic pore network model, but using a different set 
of variables than we use here. Section 4.3 discusses the relation between the functional 
form we find for the co-moving velocity here and the one found in Hansen et al. We 
have earlier in this introduction described the work of Tallakstad et al. (2009a, b) and 
subsequent workers, where a nonlinear relation between average seepage velocity and 
pressure gradient was uncovered. In Sect.  4.4, we report on what happens to the co-
moving velocity when the flow is in the regime. The interesting answer is it does not 
change character. We then go on to investigate in Sect.  4.5 what happens to the co-
moving velocity when the wetting saturation or the non-wetting saturation falls below 
the threshold for two-phase flow. We see a change in the coefficients describing the co-
moving velocity, but not its functional form when the wetting saturation falls below the 
two-phase flow threshold. However, no such jump is seen at the other threshold. We 
note that there is hysteresis associated with the low wetting saturation threshold but 
not with the low non-wetting saturation threshold (Knudsen and Hansen 2006). Lastly 
in this section, we discuss the effect of changing the viscosity ratio of the two immis-
cible fluids on the co-moving velocity, see Sect. 4.6. Finally, we draw our conclusions 
in Sect. 5.



73The Co‑Moving Velocity in Immiscible Two‑Phase Flow in Porous…

1 3

2  Euler scaling approach

We consider in the following two incompressible and immiscible fluids, one of which more 
wetting with respect to the pore matrix than the other. We will refer to the first fluid as the wet-
ting fluid and the second one the non-wetting fluid. The viscosity of the wetting fluid is �w and 
of the non-wetting fluid �n.

We consider a porous medium at a scale where it may be viewed as a continuum. This is a 
scale that is much larger than the pore scale. Whereas at the pore scale concepts such as fluid 
clusters, interfaces and wetting are central, they are not useful at the continuum scale. Rather, 
different concepts, and hence variables, should be—and to some degree are—used. This is the 
viewpoint will retain throughout this section.

This viewpoint has consequences. In this continuum limit, the pores are essentially infi-
nitely small, and so are the fluid interfaces in the pores. Hence, it is no longer fruitful to view 
the problem as the flow of two immiscible fluids since the key notions that belong to such a 
description all are closely related to pore-scale concepts. Rather, the two immiscible fluids 
may be seen acting as a single fluid whose rheological properties—for example the effective 
viscosity—is controlled by two variables, the pressure P and the wetting saturation Sw.

There are two driving forces in the continuum limit description that get this single fluid 
to move: spatial gradients in the pressure, ∇P and the saturation, ∇Sw . The latter driving 
force has its origin at the pore level in capillary forces. We may express this driving force in 
terms of a field with the dimensions of pressure, Pc , which depends on the saturation, so that 
∇Pc(Sw) = (dP∕dSw)∇Sw . In relative permeability theory, we would call Pc the dynamic cap-
illary pressure field.

It is necessary to describe the single fluid using two velocity fields. This is a reflection of 
the saturation not being transported at the same velocity as the fluid itself. We name the veloc-
ity field that transports the fluid �p and the velocity field that transports the wetting saturation 
�w,

where � is the porosity field and t is time.
We define the porosity field as follows: We may associate with each point in the porous 

medium a Representative Elementary Volume (REV) which is very large compared to the 
pore scale, but small compared to continuum scale. The porosity of a given point is then the 
pore volume of REV divided by the volume of the REV. We note that there might be structure 
in the porous medium at the continuum scale, so that the porosity field may vary spatially, 
generating a nonzero gradient ∇�.

We also define a Representative Elementary Area (REA) (Bear and Bachmat 2012). We 
pick a point in the porous medium. There will be a stream line associated with the velocity 
field �p at that point. We place a plane of area A orthogonal to the stream line centered at the 
point. We assume that the plane is small enough so that the other stream lines passing through 
the plane all are essentially parallel to the first one. We also assume that the plane is small 
enough for the porous medium to be homogeneous over the size of the plane with respect to 
porosity and permeability. This is the REA.

This allows us to define a transverse pore area

The transverse pore area is the area of the REA that cuts through the pores.

(1)�
�Sw

�t
= −∇ ⋅ �w�Sw ,

(2)Ap = �A .
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The transverse pore area Ap may be split into a transverse wetting fluid area Aw and 
a transverse non-wetting fluid area An . We mean by Aw the area of the plane covered by 
the wetting fluid and An the area covered by the non-wetting fluid. We have that

The wetting and non-wetting saturations Sw and Sn may be expressed as

and

so that

There is a volumetric flow rate Qp passing through the plane which may be decomposed 
into a volumetric flow rate for the wetting fluid, Qw , and a volumetric flow rate for the non-
wetting fluid Qn . We have that

This allows us to define three velocities,

and

and

These are the seepage velocities. We will refer to vp as the average seepage velocity in the 
following.

We may note here that since we are assuming the fluids to be incompressible, it 
makes no difference whether we define the seepage velocities of each fluid with respect 
to volume flow or mass flow. However, the average seepage velocity vp , defined in 
Eq. (10) will be different if averaged with respect to mass rather than volume. The for-
malism we are about to develop in Sect. 2.2 and onwards, could have been done using 
this averaging instead. We have, however, decided to stick with volume averaging.

(3)Ap = Aw + An .

(4)Sw =
Aw

Ap

,

(5)Sn =
An

Ap

,

(6)Sw + Sn = 1 .

(7)Qp = Qw + Qn .

(8)vw =
Qw

Aw

,

(9)vn =
Qn

An

,

(10)vp =
Qp

Ap

=
Aw

Ap

Qw

Aw

+
An

Ap

Qn

An

= Swvw + Snvn .
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2.1  Fluctuations, State Variables and Hysteresis

We will in the following sections treat the variables we have just defined as functions 
of each other, even to the point of taking derivatives. In this section, we pose the ques-
tion of whether this is at all possible. There are three aspects we need to address in 
this context: The first one concerns fluctuations. If the variables we consider fluctuate 
strongly, it is not possible to find functional relations between them. The second aspect 
is the question of whether the variables we measure depend only on the flow there and 
then or whether they in addition depend on the history of the flow. If the former is true, 
we are dealing with state variables. The third aspect concerns the possibility of these 
variables being multi-valued. That is, there is hysteresis. Is the analysis we present still 
valid when there is hysteresis?

Fluctuations: Self-averaging is an important property of fluctuating systems. A self-
averaging system is one where the relative strength of the fluctuations shrinks with 
increasing size of the system. If this is so, the variables attain well-defined values and 
functional relations between them may be sought.

To give an example, this is precisely the situation when thermodynamics is used to 
describe a gas. The more molecules it consists of, the more well defined the macro-
scopic thermodynamic variables and their relations are. We note, however, that in such 
systems there is one exception: At critical points, the fluctuations dominate and self-
averaging is lost (Aharony and Harris 1996).

An important feature of flooding processes, slow or fast, is that they typically generate 
fractal injection patterns (Feder et al. 2022). These patterns, like the fluctuations near criti-
cal points, are typically not self-averaging. However, there will always be a largest length 
scale above which the process does not produce fractals. Here, self-averaging sets in. In the 
continuum limit—which is what we consider here—we are surely above this scale.

It should be noted that there is not a one-to-one correspondence between the fluid 
configurations and the values of the macroscopic variables. Rather, typically there are 
many fluid configurations giving rise to the same values for the macroscopic variables. 
This is not a problem as it is the macroscopic variables that are measured, not the under-
lying fluid configurations.

One may then ask oneself, does this mean that the theory being developed here is 
untestable on small systems such as those that can be modeled using computational 
method such as the lattice Boltzmann method or dynamic pore network models since 
we can never reach sufficient system sizes for the fluctuations to be small enough? The 
answer is no as one may use time averaging to emulate size. In fact, Kjelstrup et  al. 
(2018) report that around 100 links are enough to define a REV in the dynamic pore 
network model (Sinha et al. 2020) we explore further on in this paper.

State variables: Steady-state flow of immiscible fluids in a porous medium needs 
to be carefully defined. We have settled on the following: It is a flow where the macro-
scopic variables have values (measured in practice as gliding averages over time) that 
do not drift in any direction. This does not preclude fluid clusters moving, merging and 
breaking up. In three-dimensional flow, one may have that both fluid phases percolate. 
If the flow then is not too fast, the fluid interfaces will not move. However, when there 
is no percolation of either phase, which is typically easier to obtain in two-dimensional 
systems, the clusters will exhibit a rich dynamics.

Erpelding et  al. (2013) studied experimentally and computationally such a two-
dimensional system. Their experimental setup consisted of a two-dimensional (42 cm 
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× 85 cm) Hele–Shaw cell filled with immobilized 1-mm glass beads. Along one of the 
short edge, two immiscible fluids (a water-glycerol mixture and air) were injected simul-
taneously through 15 alternating injection points at constant rates. The opposite edge 
of the Hele–Shaw cell was left open, and the two orthogonal sides were both sealed. 
Hence, there would be a flow across the cell from the injection points in the direction of 
the open edge. Some distance from the injection points in the flow direction, the fluids 
would mix sufficiently to create a mixture of fluid clusters that when averaged over time 
would be homogeneous.

This system would be set up at a given flow rate and a number of variables were meas-
ured. The flow rate would then be raised and new values for the variables would be meas-
ured. Then, the flow rate would revert to the original value and the variables measured 
anew. The variables would attain the values they had before the flow rate was raised. The 
flow is history independent in the language of Erpelding et al. (2013), and the macroscopic 
variables describing it would then be state variables. They would characterize the flow 
there and then, and not depend on the history of the flow.

Hysteresis: There is the hysteresis caused by the difference between first and second-
ary flooding (Blunt 2017). Typically at low injection rates, the system will remember its 
history and the values for the macroscopic variables will be different when the first and 
second time one floods the system.

There is, however, also another kind of hysteresis which is related to the study of 
Erpelding et  al. (2013). Modeling the Hele–Shaw system, Knudsen and Hansen (2006) 
studied the wetting fractional flow as a function of wetting saturation under steady-state 
conditions using a dynamic pore network model. They found that there are two transitions 
between two-phase flow and single-phase flow when the saturation is the control param-
eter. The transition between only the non-wetting fluid moving at low saturation to both 
fluids moving at higher saturation does not show any hysteresis with respect to which way 
one passes through the transition. However, the other transition between only the wetting 
fluid moving at high saturation and both fluids moving at lower saturation does show a 
strong hysteresis. This is depicted in Fig. 2 in Reference (Knudsen and Hansen 2006). This 
hysteresis, we believe, is caused by this transition being related to a first-order (or spinodal) 
phase transition.

Hysteretic behavior is a signal that the macroscopic state variables are multi-valued, 
signaling—of course—that the underlying microscopic physics has more than one stable 
mode. Hysteresis is far from uncommon in physics. In fact, it is a defining property of 
first-order phase transitions. There are no principal problems manipulating multi-valued 
functions, for example taking their derivatives as long as one does not mix up the branches. 
Staying on a given branch requires small changes of the independent variables, watching 
for jumps in the dependent variables (Poston and Steward 1978).

2.2  Homogeneity of Qp and Consequences Thereof

In the following, we review the central arguments in Hansen et al. (2018).
The volumetric flow rate Qp is a homogeneous function of order one in the areas Aw and 

An . This implies that Aw and An are independent variables. What this independence means 
is that we may change the area A of the REA by changing Aw , while keeping An fixed 
or changing An while keeping Aw fixed. This makes Ap , defined in Eq.  (3), a dependent 
variable.
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Suppose we scale the two areas Aw → �Aw and An → �An . This corresponds to enlarg-
ing the area A of the REA to �A . The scaling Aw → �Aw and An → �An affects the volumet-
ric flow rate as follows:

making Qp a homogeneous function of order one. Since Aw and An are independent vari-
ables, we may take the derivative of this expression and then setting � = 1 , finding1

Dividing Qp in this equation by the transverse pore area Ap , we get

where

and

are the thermodynamic velocities. They differ from the seepage velocities (8) and (9) as we 
shall see, this in spite of vp being given by both (10) and (13).

We may express the two thermodynamic velocities v̂w and v̂n in terms of the average 
seepage velocity vp . In order to do so, we change our control variables from (Aw,An) to 
(Ap, Sw) . We use Eqs. (4) and (5) and the chain rule to derive

and

We now combine these two equations with the definitions (14) and (15), and use Qp = Apvp , 
i.e. Eq. (10), to find

(11)Qp(�Aw, �An) = �Qp(Aw,An) ,

(12)Qp(Aw,An) = Aw

(
�Qp

�Aw

)

An

+ An

(
�Qp

�An

)

Aw

.

(13)vp = Sw

(
𝜕Qp

𝜕Aw

)

An

+ Sn

(
𝜕Qp

𝜕An

)

Aw

= Swv̂w + Snv̂n .

(14)v̂w =

(
𝜕Qp

𝜕Aw

)

An

,

(15)v̂n =

(
𝜕Qp

𝜕An

)

Aw

,

(16)

(
�

�Aw

)

An

=
Sn

Ap

(
�

�Sw

)

Ap

+

(
�

�Ap

)

Sw

,

(17)

(
�

�An

)

Aw

= −
Sw

Ap

(
�

�Sw

)

Ap

+

(
�

�Ap

)

Sw

.

(18)v̂w = vp + Sn

dvp

dSw
,

1 We refer to Sect. 7.2 in Hansen et al. (2018) for a step-by-step demonstration of how these derivatives are 
done for a capillary fiber bundle model.
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and

This is a remarkable result in that v̂w and v̂n are fully determined by vp and its derivative 
with respect to Sw . In other words, it is enough to know vp(Sw) to determine both v̂w and v̂n.

From Eqs. (10) and (13), we have that

The most general relation between between (v̂w, v̂n) and (vw, vn) is given by the pair of 
equations

and

where a new velocity function vm has been introduced. This is the co-moving velocity.
Equations (21) and (22) define the co-moving velocity. The co-moving velocity provides 

the link between the seepage velocities and the thermodynamic velocities.
We combine the two Eqs. (21) and (22) with Eqs. (18) and (19), to find

and

Thus, we have expressed the seepage velocity for each fluid vw and vn in terms of the aver-
age seepage velocity vp and the co-moving velocity vm . This is in contrast to the thermo-
dynamic velocities v̂w and v̂n where only the average seepage velocity vp was needed, see 
Eqs. (18) and (19).

We may see Eqs.  (18) and (19) as a mapping (vp, vm) → (vw, vn) . The couple (vp, vm) 
contains the same information as the couple (vw, vn).

The co-moving velocity was defined in Eqs. (21) and (22). We may express it explicitly 
by solving (23) and (24) with respect to vm , finding

If we now take the derivative of Eqs.  (10) with respect to Sw and combine the resulting 
equation with Eqs. (25), we find

We may take either of Eqs.  (25) and (26) as alternative definitions of the co-moving 
velocity.

(19)v̂n = vp − Sw

dvp

dSw
.

(20)Swvw + Snvn = Swv̂w + Snv̂n .

(21)v̂w = vw + Snvm ,

(22)v̂n = vn − Swvm ,

(23)vw = vp + Sn

(
dvp

dSw
− vm

)
,

(24)vn = vp − Sw

(
dvp

dSw
− vm

)
.

(25)vm =
dvp

dSw
+
(
vn − vw

)
.

(26)vm = Sw
dvw

dSw
+ Sn

dvn

dSw
.
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For clarity, we now display Eqs. (10) and (26) together as follows:

where we have used the notation v�
w
= dvw∕dSw and v�

n
= dvn∕dSw . These two Eqs. (10) and 

(26), give us the reverse transformation (vw, vn) → (vp, vm).

2.3  Closed Set of Equations

We defined the Representative Elementary Area in Sect. 2. Its size was determined by the 
largest transverse area over which the streamlines could be regarded as parallel. On larger 
scales, the stream lines form patterns that reflect the structure and boundaries of the porous 
medium; e.g., a reservoir. In this section, we construct a closed set of equations that deter-
mine the flow at these scales based on the formalism constructed in the previous Section, 
conservation laws and constitute equations.

The plane with area A we introduced in the preceding subsection was oriented orthogo-
nally to the stream line for vp at the point it sits. We may orient it differently generating the 
same equations, but with the velocities now being components relative to the axis of the 
new plane. This makes it possible to express the equations in terms of vectors.

The fluids are incompressive so that

We have here assumed that the porosity may not be spatially uniform. The continuity equa-
tion for the wetting saturation, Sw , Eq.  (1), may be combined with the vector version of 
Eq. (23) to give

These two continuity equations must be supplied with two constitutive equations

and

to produce a closed set of equations that together with the proper boundary and initial val-
ues solve the immiscible two-phase flow problem in the continuum limit.

We note that the nonlinear constitutive equation that can be constructed for �p from the 
observations in Tallakstad et al. (2009a, b), Aursjø et al. (2014), Sinha et al. (2017), Gao 
et al. (2020), Zhang et al. (2021) is easily combined with this approach.

2.4  Interpreting the Co‑moving Velocity vm

Let us now pose the question: is �m transporting anything? Eqs. (8), (9) and (10) show that 
there is volumetric transport associated with the velocities �w , �n and �p . We will in the fol-
lowing show that there is no such transport associated with �m.

vp = Swvw + Snvn ,

vm = Swv
�w + Snv

�
n
,

(27)∇ ⋅ ��p = 0 .

(28)�
�Sw

�t
= ∇ ⋅

[
�p + Sn

(
d�p

dSw
− �m

)]
�Sw .

(29)�p = �p(Sw,∇Sw,∇P) ,

(30)�m = �m(Sw,∇Sw,∇P) ,
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We base the discussion that now follows on Roy et al. (2020). We will consider compo-
nents rather than vectors. We introduce the differential transverse area distributions ap , aw and 
an . Their meaning is as follows: ap(v)dv is the area covered by fluid, wetting or non-wetting, 
that has a velocity in the interval [v, v + dv] . Likewise, aw(v)dv is the area covered by wetting 
fluid that has a velocity in the interval [v, v + dv] and an(v)dv is the area covered by non-wet-
ting fluid that has a velocity in the interval [v, v + dv] . Hence, we have that

and

The velocities defined in Eqs. (8), (9) and (10) are then given by

and

The differential transverse areas are essentially velocity histograms, thus making a connec-
tion between the continuum scale and the flow at small scales.

We may now combine these three Eqs. (34), (35) and (36), with Eq. (25) to give

from which we infer

This is the co-moving differential transverse area. We now integrate this over all velocities 
to find the total co-moving transverse area Am,

(31)Ap = ∫
∞

−∞

dv ap ,

(32)Aw = ∫
∞

−∞

dv aw ,

(33)An = ∫
∞

−∞

dv an .

(34)vp =
1

Ap
∫

∞

−∞

vdv ap ,

(35)vw =
1

Aw
∫

∞

−∞

vdv aw ,

(36)vn =
1

An
∫

∞

−∞

vdv an .

(37)vm =
dvp

dSw
− vw + vn =

1

Ap
∫

∞

−∞

vdv

[
�ap

�Sw
−

aw

Sw
+

an

Sn

]
=

1

Ap
∫

∞

−∞

vdv am ,

(38)am(v) =
�ap(v)

�Sw
−

aw(v)

Sw
+

an(v)

Sn
.

(39)
Am =∫

∞

−∞

dv am =
d

dSw ∫
∞

−∞

dv ap −
1

Sw ∫
∞

−∞

dv aw +
1

Sn ∫
∞

−∞

dv an

=
dAp

dSw
−

Aw

Sw
+

An

Sn
= 0 .
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There is no area associated with the co-moving velocity. As a consequence, there is no 
volumetric flux associated with it as

nor is the co-moving velocity associated with any particular exchange of conserved quan-
tities. Both of these results make sense, since Aw + An = Ap (Eq.  (3)) and Qw + Qn = Qp 
(Eq. (7)): There is no room for vm being associated with any transverse area or with vol-
umetric transport. We may see the transformation (vw, vn) → (vp, vm) as a way of parti-
tioning the flow. (Aw,An) and (Qw,Qn) constitute one partitioning, (Ap,Am) = (Ap, 0) and 
(Qp,Qm) = (Qp, 0) another.

Equation (25) shows that vm is related to the relative velocity of the two fluids, vn − vw . 
However, the difference velocity, vn − vw cannot be given an interpretation as being part of 
a partitioning of the flow.

Before we now switch to the structure of the co-moving velocity vm , it is now appropri-
ate to remind the reader of why the mapping (vw, vn) ⇄ (vp, vm) , that is Eqs. (10) and (26) 
for the transformation (vw, vn) → (vp, vm) , and Eqs.  (23) and (24) for the transformation 
(vw, vn) ← (vp, vm) , is important. With the nonlinear constitute law for vp being uncovered 
experimentally, computationally and theoretically (Tallakstad et al. 2009a, b; Aursjø et al. 
2014; Sinha et al. 2017; Gao et al. 2020; Zhang et al. 2021; Sinha and Hansen 2012; Sinha 
et al. 2013; Xu and Wang 2014; Yiotis et al. 2019; Roy et al. 2019; Lanza et al. 2021; Fyhn 
et al. 2021), a theory that can relate this constitutive law to the flow properties of each of 
the immiscible fluids is necessary. It is precisely such a theory that we are presenting here.

3  Reverse Engineering Relative Permeability Data

Our aim is now to reverse engineer experimental data from the literature that have been 
presented as relative permeability curves to reconstruct a constitutive equation for the co-
moving velocity.

In order to do so, we begin this section by placing relative permeability theory within 
the framework of the Euler homogeneity approach. This allows us to express the co-mov-
ing velocity vm in terms of the relative permeabilities.

It is important to note here that this approach does not hinge on whether the relative per-
meability approach is correct or not. Rather, we are simply translating the data back to their 
origin and from there we construct vm.

Which relative permeability data sets to choose? Since we have no preconceived ideas 
of the form of vm or what controls it, we have more or less randomly picked relative perme-
ability data sets. Any other way of picking them would bias the results.

We note that the relative permeability data are hysteretic. There is, however, no problem 
in taking the derivatives of these curves in order to extract the co-moving velocities. It 
might be that the co-moving velocities also are hysteretic. At this point, we do not know.

3.1  Relative Permeability Theory in Light of Euler Homogeneity

Relative permeability theory (Wyckoff and Botset 1936) is based on the two constitutive 
equations,

(40)Qm = Amvm = 0 ,
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and

when we assume that there are no saturation gradients so that ∇Pc = 0 (Valavanides 2018). 
Here K is the absolute permeability. The factors k

rw
= k

rw
(S

w
) and krn = krn(Sw) are the 

wetting and non-wetting relative permeabilities.
We introduce the plate of area A as in Sect.  2.2 and form the volumetric flow rate 

through it, Qp . From this we get vp by using Eq. (10). Combining this equation with the the 
relative permeability constitutive equations, also named the generalized Darcy Eqs.  (41) 
and (42), gives

where we have introduced a velocity scale which is independent of Sw,

We see that this is an Euler homogeneous function of order zero in Aw and An implying that 
Qp = (Aw + An)vp trivially fulfills Eq.  (11). Hence, relative permeability theory obeys all 
the relations we derive in Sect. 2.2.

We now combine the generalized Darcy Eqs.  (41) and (42) with Eq.  (26) for the co-
moving velocity vm . We find

We may also write vm as

using Eq. (25).

3.2  Analysis of Relative Permeability Curves from the Literature

We analyze in the following relative permeability curves from References (Bennion and 
Bachu 2005; Fulcher et al. 1985; Oak et al. 1990; Virnovsky et al. 1998; Reynolds and Kre-
vor 2015; Leverett 1939) in light of the discussion in Sect. 3.1. Our aim is to determine vp 
and vm as a function of the wetting saturation Sw.

The wetting and non-wetting relative permeabilities krw(Sw) and krn(Sw) data together 
with the wetting and non-wetting viscosities �w and �n as supplied by the authors are the 
essential data we use in our analysis. Other parameters such as the surface tension � , poros-
ity � and absolute permeability K we use to set the velocity scale v0 and to determine a 
scale for the pressure gradient.

(41)�w = −
Kkrw

�Sw�w

∇P ,

(42)�n = −
Kkrn

�Sn�n

∇P ,

(43)vp = −�wv0

[
krw

�w

+
krn

�n

]
,

(44)v0 = −
K

�w�
|∇P| .

(45)vm = �wv0

[
Sw

�w

d

dSw

(
krw

Sw

)
+

Sn

�n

d

dSw

(
krn

Sn

)]
.

(46)vm =
dvp

dSw
+ �wv0

[
krn

�n

−
krw

�w

]
,
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The data points for krn , krw and Sw were obtained explicitly from tables when available 
in the cited works. If explicit values were not given, the values were extracted graphically 
from the plots using the software Webplotdigitizer (Rohatgi 2020).

In all of the experiments, the measurements were performed when the flow reached 
steady state i.e. when the variation in pressure and saturation attained values within some 
acceptable threshold interval. The sources have different definitions of when steady state 
has been reached, but this threshold is usually taken to be fluctuations within 1 − 2% over 
the span of minutes to hours depending on the experiment, see (Oak et al. 1990).

The data we use were obtained either during drainage or imbibition processes.
We plot the velocities vp in Eq. (43) and vm in Eq. (45) in dimensionless units by divid-

ing by a velocity scale v0 and �w . We do this in the following way: We define

and

We then define

leading to

and

It is the right-hand side of these two equations that we plot.
The first and second columns of figures where we present our data analysis 1–7 show 

plots of vp(Sw)∕v0 and vm(Sw)∕v0 , while the third column shows vm∕v0 plotted against 
d(vp∕v0)∕dSw . We have used both Eqs. (45) and (46) to determine vm . They are of course 
in principle equivalent, but they demand different numerical differentiations. Both gave the 
same result. It is the values of vm calculated from Eq. (46) that are shown in the plots.

The experimental data shown in the plots in this section have not been picked based on 
any special criteria. However, we have prioritized data sets with a larger number of data 
points for the plots.

We now turn to the results of our analysis. The third column of Figs. 1–7 shows vm∕v0 
as a function of v�

p
∕v0 where v�

p
= dvp∕dSw . The surprising result is that the relation

where a and b are constants with respect to v′
p
 , fits the data excellently. This is our main 

result.

(47)ṽp(Sw) =

[
krw(Sw)

𝜇w

+
krn(Sw)

𝜇n

]
,

(48)ṽm(Sw) =

[
Sw

𝜇w

d

dSw

(
krw(Sw)

Sw

)
+

Sn

𝜇n

d

dSw

(
krn(Sw)

Sn

)]
.

(49)ṽ0 = ṽp(Sw = 1) ,

(50)
vp(Sw)

v0
=

ṽp(Sw)

ṽ0
,

(51)
vm(Sw)

v0
=

ṽm(Sw)

ṽ0
.

(52)vm = av0 + b
dvp

dSw
,
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The parameters a and b in (52) have been determined by finding the visually best 
straight line for each data set. These best lines are shown in the figures. The quality of 
the fits vary. The data in Fig. 1 fit the best to a straight line, whereas the data that fit to a 
straight line the least are found in Fig. 5. This is reflected in the uncertainty of the coef-
ficients a and b. The uncertainty is in general larger in a than in b. Note that the a and b 
coefficients for drainage and imbibition in Figs. 2 and 3 are slightly different.

In the first two columns of Figs. 1, 2, 3, 4, 5, 6 7 where we have plotted vp and vm 
against Sw , we have fitted the data to polynomials; for vp we have used fourth-order pol-
ynomials for the numerical fits, and for vm we have used third-order polynomials. The 
reason for this lies in Eq. (52) which indicates that vm should be modeled with a polyno-
mial of one less order than that of vp . The vp-polynomial is numerically fitted directly to 
the data. For the vm fit, one can either I: fit a third-order polynomial directly to the data, 
or II: calculate the coefficients for the vm fit using those found for vp using Eq. (52). In 
principle, these two methods should give the same results. However, method II is highly 
sensitive to noise in the data series. Method II was used for all the data set, and the cor-
respondence is good between the fit and the data for the sets with the lowest amount 
of deviation, Fig.  1 in particular. Here, method II showed only small deviations from 
method I in the initial and final values of the data series. Method I was used in all of the 
plots, as the method of fit for vp and vm does not affect the rest of the results.

We plot in Fig.  8 the values of the coefficients a and b as a function of the pressure 
gradient for all the data series. The pressure �P is rendered dimensionless by dividing it 
by �wv0∕K , �P� = �PK∕�wv0.

Fig. 1  Experimental data from Table 3 in Bennion and Bachu (2005). Upper row: Basal Cambrian sand-
stone, drainage with brine as non-wetting fluid and CO2 as wetting fluid, � = 0.177 , K = 5.43 × 10−16 
m2 . Lower row: Wabamum carbonate, drainage with CO2 as non-wetting fluid and brine as wetting fluid, 
� = 0.177 , K = 2.07 × 10−16 m2
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Fig. 2  Experimental data from Fig.  4 in Oak et  al. (1990). The process is primary drainage (upper row) 
and imbibition (lower row) of a single experimental run. Both rows: Berea sandstone, natural gas as non-
wetting fluid and water as wetting fluid, � = 0.193 , K = 2072.49 × 10−16 m2 . � and � were not supplied by 
the authors

Fig. 3  Experimental data from Fig. 3 in Oak et al. (1990) The process is primary drainage (upper row) and 
imbibition (lower row) of a single experimental run. Both rows: Berea sandstone, water as non-wetting fluid 
and oil as wetting fluid, � = 0.193 , K = 1973.8 × 10−16 m2 . � and � were not supplied by the authors
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Fig. 4  Experimental data from runs no. 4 and 5 in Reynolds and Krevor (2015). Upper row: Ben-
theimer sandstone, drainage with CO2 as non-wetting fluid and water as wetting fluid, � = 0.222 , 
K = 17862.89 × 10−16 m2 . Lower row: Bentheimer sandstone, drainage with CO2 as non-wetting fluid and 
brine as wetting fluid, � = 0.222 , K = 17862.89 × 10−16 m2

Fig. 5  Experimental data extracted graphically using Webplotdigitizer (Rohatgi 2020) from runs no. 18 and 
19 in Fulcher et al. (1985). Both rows: Berea sandstone, drainage with oil as non-wetting fluid and water as 
wetting fluid, � = 0.224 . Upper row has K = 4109.45 × 10−16 m2 , and lower row K = 3794.63 × 10−16 m2
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Fig. 6  Experimental data extracted graphically from Virnovsky et  al. (1998), Figs.  4 and 5. Both 
rows: Berea sandstone, drainage with oil as non-wetting fluid and H2 O as wetting fluid, � = 0.561 , 
K = 2131.7 × 10−16 m 2

Fig. 7  Experimental data extracted graphically using Webplotdigitizer (Rohatgi 2020) from Fig. 9 (sand II) 
in Leverett (1939). Upper row: drainage in sand, with oil as the non-wetting fluid and water as the wetting 
fluid, � = 0.35 , K = 17270.75 × 10−16 m2 . Lower row: sand with oil as the non-wetting fluid and water as 
the wetting fluid, � = 0.45 , K = 10263.76 × 10−16 m2
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4  The Average Seepage Velocity vp and the Co‑moving Velocity vm 
in a Dynamic Pore Network Model

The porous medium is represented by a network of nodes and links in dynamic pore 
network modeling (Joekar-Niasar and Hassanizadeh 2012). The immiscible fluids are 
transported through the links which are connected at the nodes. The dynamic pore net-
work model we consider here was introduced by Aker et  al. (1998). A recent review 
describe it in detail, see (Sinha et al. 2020).

The nodes do not contain fluid, only the links do. The nodes only represent the points 
where the links meet. The flow rate qj inside any link j of the network at any instant of 
time is obtained by Sinha et al. (2013), Washburn (1921),

where lj is the link length, gj is the link permeability which depends on the cross section of 
the link and �pj is the pressure drop across link. The viscosity term �av is the saturation-
weighted viscosity of the fluids inside the link given by �av = sj,w�w + sj,n�n where sj,w and 
sj,n are the wetting and non-wetting fluid saturations inside the link. The term 

∑
pc,j is the 

total interfacial pressure from the fluid interfaces in the link j. A pore typically consists of 
two wider pore bodies connected by a narrow pore throat. We model this by using hour-
glass shaped links. The variation of the interfacial pressure with the interface position for 
such a link is modeled by Sinha et al. (2013)

where rj is the average radius of the link and x ∈ [0, lj] is the position of the interface inside 
the link. Here, � is the contact angle between the interface and the pore wall and � is the 
surface tension between the fluids.

(53)qj = −
gj

lj�av

[
�pj −

∑
pc,j

]
,

(54)|pc(x)| =
2� cos �

rj

[
1 − cos

(
2�x

lj

)]
,

Fig. 8  Calculated coefficients a and b from all experimental data as a function of the scaled pressure gradi-
ent �P� . In the left plot, the only data point not shown is a = −58 ± 20 from the Oak et al. data set (Oak 
et al. 1990). In the right plot, the single data point above b = 1 is obtained from a data set with few data 
points, see Fig. 5. Values for more data sets than have been plotted in Figs. 1–7 are included: the rest of the 
data series in Table 3 in Bennion and Bachu (2005), an additional water/oil data series from Fig. 3 in Oak 
et al. (1990), runs no. 2, 3 and 6 from Reynolds and Krevor (2015), and the two lower flow-rate data series 
from Figs. 4 and 5 in Virnovsky et al. (1998)
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These two Eqs. (54) and (53), together with the Kirchhoff relations, i.e., the sum of the 
net volume flux at every node at each time step will be zero, provide a set of linear equa-
tions. In order to calculate the local flow rates, we solve these equations with a conjugate 
gradient solver (Batrouni and Hansen 1988). All the interfaces are then advanced accord-
ingly using small time steps.

In order to achieve steady-state flow, we apply periodic boundary conditions in the 
direction of flow.

We use a two-dimensional square lattice with 64 × 64 links with link lengths lj = 1mm . 
Disorder is introduced by choosing the link radii rj randomly from a uniform distribution 
in the range 0.1mm to 0.4mm . We use 100 different realizations of such networks for our 
simulations.

Assuming Poiseuille flow in the links, the average link permeability r2
j
∕8 will be 

7.8 × 10−7 m2 . As it is a square lattice, the length of it compensates for its width, making its 
permeability equal to the link permeability times 

√
2 to account for its 45◦ tilt. This gives 

an estimate for the average permeability of the lattice around 5.5 × 10−7 m2.
We will in the following explore vp and vm as a function of the wetting saturation Sw 

defined as the total volume of wetting fluid in the links divided by their total pore volume, 
and the average pressure gradient defined as �P∕L where �P is the pressure difference 
across the network. The viscosity ratio M is defined as the ratio of the viscosity �n of non-
wetting fluid to the viscosity �w of the wetting fluid ( M = �n∕�w).

4.1  Fitting the Average Seepage Velocity vp and the Co‑moving Velocity vm 
to Polynomials

We discuss here vp and vm as a function of the wetting saturation Sw for fixed pressure gra-
dient �P∕L . The average seepage velocity vp is measured directly from the model. The co-
moving velocity is inferred from the velocity difference vn − vw and the derivative dvp∕dSw 
according to Eq. (25). We fit the data to the polynomials

and

We find that the three or fourth-order polynomials form an adequate compromise between 
accuracy and the wish to keep the number of fitting parameters down.

Figure 9 shows how the seepage velocity vp behaves as a function of the wetting satura-
tion Sw for four different pressure gradients: �P∕L = 0.22, 0.5, 0.71 and 1.0 MPa/m. The 
results are obtained for 0.05 ≤ Sw ≤ 0.95 with intervals of 0.05, totaling 20 data points. 
For now, we use �w = 0.03 Pa s and �n = 0.01 Pa s, i.e., M = �n∕�w = 1∕3 . The effect of a 
varying viscosity ratio will be explored later in this paper. We observe the quality of the fits 
to improve with increasing pressure gradient.

We use the data in Fig. 9 to approximate v′
p
 by central differencing, which then is used 

to determine vm from Eq. (25). We show the result in Fig. 9 where we plot vm as a function 
of Sw.

(55)vp =

4∑

k=0

CkS
k
w
,

(56)vm =

3∑

k=0

DkS
k
w
.
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We plot vm against v′
p
 in Fig.  11 for fixed �P∕L = 0.22, 0.50, 0.71, 1.0, 1.4 and 

2.1 MPa/m. We introduce a velocity scale v0 = vp(Sw = 1,�P∕L) to make the fits com-
parable to the relative permeability-based fits we discussed in Sect. 3. As is evident, 
Eq. (52) fits the data well. We note that both a and b vary with the pressure gradient 
�P∕L . Hence, we write Eq. (52) as

We have in this equation written explicitly what parameters each variable depends upon. 
This will become important in the next section.

4.2  The Co‑moving Velocity when dvp∕dSw is Treated as an Independent Variable

The co-moving velocity vm has been calculated using the dynamic network model in 
both References Hansen et al. (2018) and Sinha et al. (2020). In contrast to our approach 
here, the derivative v′

p
 was treated as an independent variable in those papers. That is, vm 

was plotted against (Sw, v�p) producing a plane. In Hansen et al. (2018), a variant of the 
dynamic pore network model we use here was used (Gjennestad et al. 2018), resulting 
in the relation

(57)vm

(
Sw,

�P

L

)
= a

(
�P

L

)
v0

(
�P

L

)
+ b

(
�P

L

) dvp

dSw

(
Sw,

�P

L

)
.

(a) (b)

(d)(c)

Fig. 9  Fitting of the numerical results for vp vs Sw with Eq.  (55) with �w = 0.03 Pa s and �n = 0.01 Pa s 
(i.e., M = 1∕3 ), and for four different pressure gradients, �P∕L = 0.22, 0.50, 0.71 and 1.0 MPa/m. The fit-
ting parameters are shown in the legends in each figure. The rate of change of vp ( v�p = dvp∕dSw ) will be 
calculated from this figure and will be used to express vm in terms of v′

p
 in Fig. 10
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where c ≈ −0.095 , d ≈ −0.15 and e ≈ 0.79 for data averaged over both square and hex-
agonal lattices. Sinha et al. considered both a square lattice and a lattice based on a recon-
structed Berea sandstone, giving c = 5.00 ± 0.13 , d = −6.36 ± 0.25 and e = 0.94 ± 0.01 
for the square lattice and c = 10.10 ± 0.32 , d = −12.94 ± 0.62 and e = 0.88 ± 0.01 for the 
reconstructed Berea sandstone.

Equation (57) constitutes a cut through the plane (Sw, v�p) given by �P∕L constant. It 
is an open question as to why the explicit Sw dependence disappears in Eq. (57) when 
making this cut.

4.3  Dependence of Coefficients a and b on the Pressure Gradient

Figure 12 shows the variation of av0 and b defined in Eq. (57), as a function of the pres-
sure gradient �P∕L . We observe two different regions as the fluid velocities increase 
with increasing pressure gradient. We name these regions I and II.

Region I — This is the low pressure gradient region. We find a good fit to the data 
with the line av0 = 0.7m∕s − 1.1(�P∕L)m2∕MPas . The coefficient b has a value around 
0.76. Due to low flow velocity, the av0 and b found in this region can be compared with 
the relative permeability data in Sect. 3.

(58)vm

(
Sw,

dvp

dSw

)
= c + d Sw + e

dvp

dSw
,

(a) (b)

(d)(c)

Fig. 10  Fitting of the numerical results for vm vs. Sw using Eq. (56). The parameters M and �P∕L are as in 
Fig. 9
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Region II — This is the high pressure gradient region. Here av0 saturates to a value 
near −0.1 m/s, whereas b approaches the value 1 asymptotically. This is outside the 
region where the relative permeability data would be relevant.

The crossover of av0 from positive to negative value and the onset of increment in b is 
observed to take place around the same pressure gradient.

4.4  vp as a Function of Sw and �P∕L

We now turn to the average seepage velocity vp . As described in Introduction, there is a 
regime over an interval of pressure gradients where the flow rate is proportional to the 
pressure gradient to a power (Tallakstad et  al. 2009a, b; Aursjø et  al. 2014; Sinha et  al. 

(a) (b)

(d)(c)

(e) (f)

Fig. 11  The co-moving velocity as a function of dvp∕dSw from Eq. (25) for �w = 0.03 Pa s and �n = 0.01 Pa 
s, and �P∕L = 0.22, 0.5, 0.71, 1.0, 1.4 and 2.1 MPa/m
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2017; Gao et al. 2020; Zhang et al. 2021). This regime is clearly visible in our dynamic 
pore network model (Sinha and Hansen 2012; Fyhn et al. 2021). Our aim in this section is 
to map out the vp over a wide range of saturations Sw and pressure gradients �P∕L.

Figure 13a shows how the flow rate Q increases as the pressure gradient �P∕L increases. 
We observe the following behavior:

where Ps is a threshold pressure below which there is no flow. This threshold is a finite-size 
effect, see (Roy et  al. xxxx). Above a pressure difference |𝛥P| ≫ Pt , the exponent � = 1 
and we observe Darcy-like linear flow. Below this pressure difference, Ps < |𝛥P| < Pt , the 
exponent 𝛽 > 1.

(59)Q ∝

{
0 , |𝛥P| ≤ Ps ,(|||

𝛥P

L

||| −
Ps

L

)𝛽

, |𝛥P| > Ps ,

(a) (b)

Fig. 12  a and b, respectively, shows av0 and b defined in Eq. (57) as a function of the pressure gra-
dient �P∕L . The viscosities of the fluids were �w = 0.03 Pa s and �n = 0.01 Pa s, so that M = 1∕3 . 
We have marked two regions, I and II in both (a) and (b). The straight line in region I in a is 
0.7m∕s − 1.1(�P∕L)m2∕MPas

(a) (b)

(c)

Fig. 13  a shows Q vs. �P for wetting saturations Sw = 0.1, 0.3, 0.5, 0.7 and 0.9. The viscosities of the fluids 
were �w = 0.03 Pa s and �n = 0.01 Pa s. The inset shows the fitting error between the data and Eq. (59) as a 
function of � for the different wetting saturations. b and (c) show the dependence of Pt and � on Sw
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The inset in Figure 13a demonstrates how the threshold pressure Ps and � were calcu-
lated: For a constant Sw , we first set a particular � value and fit the numerical results to 
Eq. (59), finding Ps as well as the error associated with the fit. In this way we get a Ps value 
and an error value as a function of � . The curves in the inset show the error as a function of 
� for different saturations. We identify the minimum of the error vs. � curve. The value of 
� giving the error minimum and the corresponding Ps value are the values we assign to the 
system for that saturation Sw.

Figure 13b and c shows the variation of exponent � and the transition point Pt as func-
tions of the wetting saturation Sw . Both � and Pt are observed to have a maximum at 
Sw = 0.5 to decrease on both sides of it. We have that � = 1 for Sw = 0 and Sw = 1 as we are 
then dealing with single fluid flow.

Figure 14 shows the flow rate Q = vpAp (Eq. (10)) as a function of the wetting saturation 
Sw for four different pressure gradients, �P∕L = 0.22 , 0.40, 0.50 and 0.71 MPa/m. The data 
points shown as red squares indicate that the flow is in the nonlinear regime where 𝛽 > 1 , 
i.e., Ps < |𝛥P| < Pt . The data points shown as blue circles indicate that the flow is in the 
linear regime, i.e., |𝛥P| > Pt . Hence, we see that for a range of pressure gradients, e.g., 
�P∕L = 0.4 MPa/m, vp visits both the linear and nonlinear regimes over the range of wet-
ting saturations Sw . For pressure gradients larger than 0.5 MPa/m, vp is always in the linear 
regime over the entire range of Sw.

We now compare Figs. 13 and 14. We note that the transition between the linear and 
nonlinear regimes in Fig. 14 appears at essentially the same pressure gradient that sepa-
rates regimes I and II in Fig. 13. This points towards a connection. However, such a con-
nection is yet to be found.

4.5  Limits

The irreducible wetting saturation Sw,irr is the minimum wetting saturation possible irre-
spective of the pressure gradient. The residual non-wetting saturation Sn,r is the minimum 
non-wetting saturation possible irrespective of the pressure gradient. At any finite pressure 
gradient �P∕L there will be a minimum wetting saturation Sw,min(�P∕L) which approaches 
Sw,irr as the pressure gradient is increased. Likewise, there will be for any finite pressure 
gradient a minimum non-wetting saturation Sn,min(�P∕L) which approaches Sn,r as the 
pressure gradient in increased. Let us define Sw,max(�P∕L) = 1 − Sn,min(�P∕L) . When Sw 

Fig. 14  vp as a function of saturation Sw for �P∕L = 0.22 , 0.40, 0.50 and 0.71 MPa/m, respectively. The vis-
cosities of the fluids were �w = 0.03 Pa s and �n = 0.01 Pa s. A red square indicates that the flow is in the 
nonlinear region for the set of parameters, �P∕L and Sw , that produce this data point. A blue circle indicates 
that the flow is in the linear region
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reaches Sw,min(�P∕L) or Sw,max(�P∕L) , either the wetting or the non-wetting fluid stops 
moving.

Knudsen and Hansen (2006) demonstrated that there is hysteresis at Sw,min(�P∕L) based 
on a dynamic pore network model closely related to the one we use here, see their Fig. 2. 
The way Knudsen and Hansen did this was to increase or decrease the saturation step by 
step, building on the steady-state configurations that already were established at the previ-
ous saturation.

In the numerical work we present here based on the dynamic pore network model, we 
re-initiate the model every time we change the saturation. This means that the system 
for each value of the saturation chooses the most stable branch, masking the hysteresis. 
It is in this spirit we present our results in the following.

Using Eq. (10), we have that either

or

Hence, we have

or

Combining these two equations with Eq. (25), we find that

We show in Fig. 15a and b the wetting and non-wetting seepage velocities as a function of 
Sw for pressure gradients �P∕L = 0.22 , 0.30, 0.40 and 0.50 MPa/m. The viscosities were 
�w = 0.03 Pa s and �n = 0.01 Pa s. Both of the seepage velocities vw and vn signal a nonzero 
Sw,min(�P∕L) . However, we find that Sw,max(�P∕L) = 1.

We denote vn = v∗
n
 the non-wetting seepage velocity we find for Sw < Sw,min(𝛥P∕L) . It 

is possible to reach such saturations by initiating the network with a saturation Sw and a 
pressure difference �Pi∕L making Sw > Sw,min(𝛥Pi∕L) , and then reduce the pressure dif-
ference to �P∕L such that Sw < Sw,min(𝛥P∕L).

We show in Fig. 15c vp∕vn as a function of Sw . The straight line is the function 1 − Sw . 
By comparing with Fig. 15b that as soon as Sw < Sw,min(𝛥P∕L) , the data for vp∕vn fol-
lows the line 1 − Sw . This is in accordance with Eq. (60).

This teaches us the following: For vp = (1 − Sw)v
∗
n
 , i.e., when Sw < Sw,min(𝛥P∕L) , we 

have dvp∕dSw = −v∗
n
 and vm = 0 , see Eq. (64). If we now compare with Fig.  11, we see 

that the fits to Eq. (57) do not pass through this point, (dvp∕dSw, vm) = (−v∗
n
, 0) . The dif-

ference is too large to be attributed to the uncertainty of the fits. We note that we are 
here dealing with single phase flow. If the constitutive law for vm in Eq. (57) is the result 
of correlations appearing in two-phase flow, there is no reason for the single fluid case 
to fall on this curve.

(60)vp = vn(1 − Sw) , for Sw → (Sw,min)
+ ,

(61)vp = vwSw for Sw → (Sw,max)
− ,

(62)
dvp

dSw
= −vn for Sw → (Sw,min)

+ ,

(63)
dvp

dSw
= vw for Sw → (Sw,max)

− ,

(64)vm = 0 for Sw → (Sw,min)
+ or Sw → (Sw,max)

− .
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We will in the future present an full analysis of this problem, taking hysteresis fully 
into account.

We now turn to the limit where the capillary number is so high that the capillary 
forces are negligible compared to the viscous forces. We achieve this limit in the 
dynamic pore network model by setting the surface tension � in Eq. (54) to zero. If the 
viscosities of the two fluids are equal, there will be no difference between the fluids 

(a) (b)

(c)

Fig. 15  a vw a function of the wetting saturation Sw for �P = 0.22, 0.30, 0.40 and 0.50 MPa/m. The vertical 
dotted line shows the value of Sw,min(�P) below which vw ≈ 0 . b vn as a function of the wetting saturation 
Sw . The horizontal dotted lines show v∗

n
 when Sw < Sw,min . c shows the comparison of the numerical results 

with Eq. (60) (see the dotted line) for all 4 pressure gradients. The viscosities of the fluids were �w = 0.03 
Pa s and �n = 0.01 Pa s

Fig. 16  The figure shows how vm 
varies with v�

p
(= dvp∕dSw) in the 

limit of large capillary numbers 
when the capillary forces are 
vanishingly small compared to 
the viscous forces. We have set 
the surface tension � = 0 in the 
dynamic pore network model, 
while keeping �w = 0.03 Pa s and 
�n = 0.01 Pa s. For reference, the 
red solid line represents the equa-
tion: vm = dvp∕dSw
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and vw = vn . Furthermore, we will have that vp is independent of the wetting satura-
tion Sw , so that dvp∕dSw = 0 . From Eq. (25) we then have that the co-moving velocity 
vm = 0.

We show in Fig. 16, vm as a function of dvp∕dSw in the limit of � = 0 but with the 
fluid viscosities being �w = 0.03 Pa s and �n = 0.01 Pa s, respectively. We find that vm 
follows Eq. (57) with av0 = −0.06 and b = 0.99 . From Eqs. (10), (23) and (24), we then 
have that vn = vw = vp.

4.6  Viscosity Ratio M

We will here discuss how the viscosity of the two fluids will affect the relation between 
vp and vm . We will also discuss how the parameters av0 and b depend on the fluid vis-
cosities �w and �n.

Figure 17 shows how co-moving velocity behaves as a function of dvp∕dSw(Sw,�P∕L) 
for different values of saturation, see Eq.  (57) when the fluid viscosities are changed. 
We compare vm as a function of dvp∕dSw for viscosity ratio M = 3 ( �w = 0.03 Pa s and 
�n = 0.01 Pa s) with viscosity ratio M = 1∕3 ( �w = 0.01 Pa s and �n = 0.03 Pa s). Fig-
ure 17a, b, c and d, respectively, is based on pressure gradients �P∕L = 0.22, 0.5, 1.0 
and 1.4 MPa/m. We find that both coefficients av0 and b change considerably when the 
viscosity ratio is inverted. For both M values, the co-moving velocity follows Eq. (57). 
For M = 1∕3 , av0 decreases with increasing pressure gradient. The coefficient b remains 

(a) (b)

(c) (d)

Fig. 17  Variation of vm with dvp∕dSw for four different pressure gradient: a 0.22, b 0.50, c 1.0 and d 1.4   
MPa/m. Results are shown for two different viscosity ratios: M = 3 ( �w = 0.03 Pa s and �n = 0.01 Pa s) 
shown as blue squares and M = 1∕3 ( �w = 0.01 Pa s and �n = 0.03 Pa s) as red circles
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at value around 0.76 until the pressure gradient exceeds a value around 𝛥P∕L > 0.5 
MPa/m. On the other hand, for M = 3 , av0 and b remain constant around 1.5 and 0.94, 
respectively, irrespective of the pressure gradients we have considered.

We plot in Fig. 18 the coefficients av0 and b as functions of the viscosity ratio M for 
different values of the pressure gradient �P∕L . For the chosen span of parameters, we 
observe three distinct regions:

Region A (M ≤ 1 ) - In this region, both av0 and b seem independent of M. Moreo-
ver, b remains constant around 0.77 for 𝛥P∕L < 0.5 MPa/m and increases for larger val-
ues of the pressure gradient. av0 decreases with increasing pressure gradient as long as 
𝛥P∕L < 0.5 MPa/m. Beyond this limit, av0 saturates at a value close to zero.

Region B (1 ≤ M ≤ 2 ) - In this region av0 and b are both increasing functions of M.
Region C (M ≥ 2 ) - In this region, av0 and b neither changes with viscosity ratio M 

nor with the pressure gradient �P∕L.

5  Discussion

The aim of this paper has been to expand on the theory based on Euler homogeneity that 
was first presented in Hansen et al. (2018). It provides a number of relations between 
the seepage velocities of each fluid involved which together with constitutive equations 
for the average fluid velocity and the co-moving velocity form a closed set of equations.

It has recently been discovered that the constitutive equation for the average seepage 
velocity of the fluids follows a power law in the pressure gradient for a range of param-
eter values (Tallakstad et al. 2009a, b; Aursjø et al. 2014; Sinha et al. 2017; Gao et al. 
2020; Zhang et al. 2021). Relative permeability theory offers the mapping (vw, vn) → vp . 
However, the nonlinear constitutive equation for vp requires the opposite mapping 
vp → (vw, vn) , which is indeterminate within relative permeability theory. Euler homo-
geneity theory, on the other hand, offers the two-way mapping (vw, vn) ⇆ (vp, vm) , which 
is readily combined with the nonlinear constitutive equation for vp . It is an additional 
bonus that the constitutive equation for vm , Eq. (52), is as simple as it is.

(a) (b)

Fig. 18  Variation of av0 and b with viscosity ratio M for a constant pressure gradient �P∕L . The numerical 
results are repeated for four different pressure gradients, �P∕L = 0.5 , 1.0, 2.0 and 3.0 MPa/m. For M = 1.0 , 
we set �n = 0.01 Pa s and �w = 0.01 Pa s. For M > 1 , we keep �w = 0.01 Pa s while �n has a value M�w Pa 
s. On the other hand, for M < 1 , we keep �n = 0.01 Pa s while �w has a value �n∕M Pa s
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The co-moving velocity which together with the average seepage velocity of the flu-
ids closes the equation set as described in Sect. 2.3, is related to the seepage velocity 
difference vn − vw , but it is not the same, see Eqs. (25) and (26). We discuss in Sect. 2.4 
the interpretation of vm . It should be noted that the co-moving velocity is not associated 
volume transport, see Eq. (40).

We determine the constitutive equation for the co-moving velocity from relative per-
meability data found in the literature in Sect. 3. We do this by reverse engineer the data 
which have been cast in the form of relative permeability curves.

Our main result is Eq.  (52), which shows that the co-moving velocity is linear in the 
derivative of the average seepage velocity with respect to the saturation when the pressure 
gradient is kept fixed, see Figs. 1 to 7. It is an open question as to why this is so.

Since we do not have theory as to why the co-moving velocity takes the simple form it 
does, we have not applied any particular criterion for which data sets to investigate. Any 
attempt at this would taint the results by our preconception on what causes the functional 
form (52). In particular, we have not taken the possibility for hysteresis into account. We 
discuss why it is still permissible to treat hysteretic data as representatives of analytic func-
tions in Sect. 2.1.

We continue in Sect. 4 to consider the constitutive equation for the co-moving velocity. 
We find the same constitutive equation as in Eq. (52), see Fig. 11. It is remarkable that this 
remains true also when the constitutive equation for the average seepage velocity moves 
into the power-law region, see Sect. 4.4.

We have in this paper only considered systems without a saturation gradient. This has 
allowed us to ignore capillary pressure effects. A next step is to incorporate such a satura-
tion gradient into the system to observe how the constitutive Eq.  (52) for the co-moving 
velocity changes.
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