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Abstract
Reliable quantitative analysis of digital rock images requires precise segmentation and 
identification of the macroporosity, sub-resolution porosity, and solid\mineral phases. This 
is highly emphasized in heterogeneous rocks with complex pore size distributions such as 
carbonates. Multi-label segmentation of carbonates using classic segmentation methods 
such as multi-thresholding is highly sensitive to user bias and often fails in identifying low-
contrast sub-resolution porosity. In recent years, deep learning has introduced efficient and 
automated algorithms that are capable of handling hard tasks with precision comparable to 
human performance, with application to digital rocks super-resolution and segmentation 
emerging. Here, we present a framework for using convolutional neural networks (CNNs) 
to produce super-resolved segmentations of carbonates rock images for the objective of 
identifying sub-resolution porosity. The volumes used for training and testing are based on 
two different carbonates rocks imaged in-house at low and high resolutions. We experiment 
with various implementations of CNNs architectures where super-resolved segmentation is 
obtained in an end-to-end scheme and using two networks (super-resolution and segmenta-
tion) separately. We show the capability of the trained model of producing accurate seg-
mentation by comparing multiple voxel-wise segmentation accuracy metrics, topological 
features, and measuring effective properties. The results underline the value of integrating 
deep learning frameworks in digital rock analysis.
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1  Introduction

Digital Rock Physics (DRP) has emerged as one of the superior technologies for studying 
porous media at the pore-scale (Andrä et al. 2013; Blunt et al. 2013; Bultreys et al. 2016a; 
Mostaghimi et al. 2017; Wildenschild and Sheppard 2013). DRP integrates high-resolution 
X-ray microtomographic imaging (micro-CT) with advanced computational methods for 
predicting geomaterial effective properties (Arns et al. 2004; Mostaghimi et al. 2013; Ram-
stad et al. 2010). DRP complements classic and slower laboratory investigations, namely 
Conventional Core Analysis (CCA) and Special Core Analysis (SCAL), through fast and 
reproducible modeling frameworks (Berg et  al. 2017; Raeini et  al. 2014). A standard 
‘image and model’ framework usually consists of multiple steps including image segmen-
tation. Image segmentation is paramount for accurate pore-scale modeling (Iassonov et al. 
2009; Sheppard et  al. 2004). Segmentation techniques commonly reported in the litera-
ture for DRP are global and adaptive thresholding (Andrä et al. 2013; Tuller et al. 2013), 
watershed algorithms (Garfi et al. 2020; Niu et al. 2020a), and converging active contours 
(Sheppard et al. 2004). Thorough reviews of segmentation methods have been presented 
and compared for DRP in the literature (Iassonov et al. 2009; Schlüter et al. 2014; Tuller 
et al. 2013). However, the downside of all these methods is that they require a certain level 
of user judgment and tuning. As a result, the segmentation outcome is highly susceptible to 
user bias and experience (Niu et al. 2020a).

Carbonate rocks host more than half of the world’s oil and gas reserves (Harbaugh 
1967). Carbonates often exhibit complex multimodal pore systems with sizes ranging from 
the nanoscale to the meter scale (cave systems scale) (Biswal et al. 2007). As a result, the 
characterization of such geomaterials is often challenging using micro-CT imaging, as the 
typical imaging resolution is often in the order of few micrometers (Andrä et  al. 2013; 
Blunt et al. 2013).

The term microporosity is often used in the literature for different purposes. For 
example, the International Union of Pure and Applied Chemistry (IUPAC) defines 
a micropore as a pore with a width not exceeding 2  nm. Choquette and Pray (1970) 
defined a micropore in carbonate rocks as a pore smaller than 62.5  µm in diameter. 
This is while Pittman (1971) described micropores as pores less than one micrometer 
in diameter. In recent micro-CT studies, the fraction of the pore space with structures 
smaller than the voxel size is termed microporosity or sub-resolution (Lin et al. 2016; 
Liu and Mostaghimi 2018; Soulaine et  al. 2016). In this study, the latter definition is 
used to define pores less than voxel size or pores smaller than 2.68 µm in size. Micr-
oporosity identification is important for flow and reactive transport modeling in porous 
media. The identification of sub-resolution porosity using dry images is subjective to 
the image quality in terms of the degree of noise and spatial resolution besides the 
segmentation algorithm used (Soulaine et al. 2016). Alternative non-invasive methods 
include combining micro-CT imaging with two-dimensional Scanning Electron Micros-
copy (SEM) (Othman et al. 2018; Peters 2009), and Differential Imaging (Boone et al. 
2014; Knackstedt et al. 2006; Lin et al. 2016; Long et al. 2013). While SEM images pro-
vide unprecedented details of the pore geometry, the framework is time-consuming and 
the nature of two-dimensional analysis introduces high uncertainty, especially when it 
comes to the three-dimensional connectivity/continuity of the phases. Differential imag-
ing frameworks involve taking X-ray scans of dry and contrast agent-saturated samples 
to identify microporosity. The process is perhaps one of the best options to resolve sub-
resolution experimentally, boosting the contrast between the phases and making the 



499Super‑Resolved Segmentation of X‑ray Images of Carbonate Rocks…

1 3

segmentation task less prone to error. However, the method does not entirely remove 
inherited user bias in the segmentation method of choice and requires time-consuming 
sample flooding with a contrast agent, image registration and processing.

Deep learning frameworks using Convolutional Neural Networks (CNNs) introduced 
fast and robust methods for automated image processing (Ronneberger et  al. 2015; Wan 
et al. 2014). If trained properly, these networks eliminate the user bias and achieve expert-
level annotations/processing (Niu et  al. 2020a). The interest in integrating deep learning 
in DRP frameworks is evident in recent years (Wang et  al. 2021a) with application to 
lithology classification (Alzubaidi et  al. 2021), image denoising (Chen et  al. 2020; Niu 
et al. 2020b), binary and multi-phase segmentation (Ar Rushood et al. 2020; Karimpouli 
and Tahmasebi 2019; Wang et  al. 2021b), super-resolution (Kamrava et  al. 2019; Wang 
et al. 2019a, b), and predictive modeling of rock properties (Alqahtani et al. 2020, 2021; 
Chung et al. 2020a; Rabbani and Babaei 2021; Rabbani et al. 2020b). Thorough reviews 
have been published showing the diverse applications of DL in geoscience and DRP (Tah-
masebi et al. 2020; Wang et al. 2021a). For segmentation problems in DRP, deep learn-
ing frameworks can be used to produce binary and multi-mineral segmentation accord-
ing to the modeling problem. Binary segmentation is suitable for easier problems such as 
single-phase non-reactive flow (Ar Rushood et al. 2020; Varfolomeev et al. 2019), while 
multi-minerals segmentation is used for more detailed simulations such as reactive trans-
port (Liu et  al. 2018). In general, deep learning showed promising results compared to 
classic methods such as thresholding. Niu et al. (2020a) investigated the use of LeNet-5, a 
CNN architecture, for segmenting 2D images of North Sea Sandstone. The results showed 
that CNN segmentation outperformed the classic Otsu thresholding and watershed method 
by comparing their physical properties. Karimpouli and Tahmasebi (2019) experimented 
the use of SegNet architecture to produce a multi-mineral segmentation of a limited num-
ber of Berea Sandstone images augmented through stochastic reconstruction. The average 
reported pixel-wise categorical accuracy for the best model is %96. For super-resolution, 
(Wang et al. 2019b) experimented the use of different super-resolution network variants for 
obtaining high-resolution 2D images. The study shows the superiority of the performance 
of networks to classic methods, such as bicubic interpolation, with a 50–70% reduction in 
relative error. Other efforts by (Wang et al. 2019a; Wang et al. 2020a) applied a similar 
scheme using 3D images for training to obtain super-resolved volumes. The results show 
a better refinement of edge sharpness and reduction of noise compared to other classic 
interpolation methods. Kamrava et al. (2019) used a hybrid method of stochastic and deep 
learning algorithms to generate super-resolved images of shale formations. The stochastic 
reconstruction algorithm is used as an augmentation method for generating many image 
realizations that can be used for training. The results show the superiority of the trained 
network when the porosity and other metrics are used for comparison with other methods. 
Janssens et al. (2020) used real multi-resolution carbonate paired images to obtain more 
accurate segmentation that can be used as ground truth (GT) training data. However, the 
high-resolution data is not used as-is but downsampled using voxel averaging to obtain 
a grid size of similar dimensions to low-resolution data. The results of the study reveal 
improvements when computing several physical properties of the medium. All the previ-
ous efforts directed toward super-resolution have used interpolation methods (such as bicu-
bic interpolation) to generate synthetic images pairs as a training dataset. This might not 
be ideal for practical applications because synthetically downsampled images do not pos-
sess the same features of real low-resolution images in terms of noise and partial volume 
effects. Several efforts have been directed toward reducing this limitation such as the use of 
unpaired data for training (Niu et al. 2020b; Zhu et al. 2017). In this work, multi-resolution 
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scans have been used as-is, where the data has only been cropped and segmented to reveal 
the true interpolation/translation improvement offered by deep learning.

Herein, we propose a framework for using CNNs to generate a super-resolved segmen-
tation of carbonates for better identifying sub-resolution porosity. We use a set of multi-
resolution micro-CT scans to create a unique high (HR) and low-resolution (LR) dataset. 
While acquiring multi-resolution images is common in super-resolution methods, the pre-
sented approach alleviates the known trade-off between the field of view and spatial reso-
lution. LR images capture a large field of view while HR images show more details and 
smaller features (i.e., identifying microporosity). By referring to the term ‘super-resolved’, 
we describe the process of translating ‘real’ LR micro-CT domains to grayscale or seg-
mented HR domains using CNNs. The settings of imaging spatial resolution are designed 
carefully to resolve sub-resolution in the samples considered as much as possible based on 
the laboratory experiment. We utilize high-resolution region of interest scanning to fully 
facilitate easy identification of sub-resolution porosity in the HR imaging characterized by 
a distinguishable range of intensity values. The LR spatial resolution resolves micropo-
rosity poorly, showing partial volume effects. The HR images are segmented and utilized 
as GT for the CNN training. The gray LR and the segmented HR images are utilized for 
different deep learning experiments where the main target is to identify sub-resolution 
porosity accurately using the LR as an input. We compare the segmentation accuracy using 
three metrics: voxel-wise accuracy, geometry-based metrics, and the physical flow charac-
teristics. This framework can be utilized to optimize current frameworks where the only 
requirement is to obtain a high-resolution region of interest and train the CNNs to interpo-
late the segmentation to a bigger field of view using the LR images.

2 � Materials and Methods

2.1 � Materials Description

Two carbonate Images shown in Fig. 1 were considered for training the CNNs. The first 
one is Indiana Limestone (ILS) which originates from the Salem formation near Bedford, 
Indiana, USA. ILS is mainly monomineralic rock with 98.8% calcite with the rare occur-
rences of quartz (< 1%) and clay minerals (< 1%). The main solid phases seen in ILS are 
Allochems, detrital skeletal of marine organisms (i.e., organic detritus), and authigenic cal-
cite cement. Different types of porosities can be distinguished clearly in the HR micro-
CT images including macroporosity (resolved and connected porosity between particles/
grains), microporosity on the outer shells of the ooliths/carbonate grains (Intercrystal 
porosity), vugs (isolated or poorly connected pores that are larger than 1/16 mm in diam-
eter), and intra-ooliths porosity (porosity within individual ooliths). The second carbon-
ate is a more heterogeneous Middle Eastern carbonate (MEC) characterized by a variety 
of microporous ooliths, skeletal and non-skeletal microporous grains. Calcite accounts for 
more than (99% >) with the existence of minerals like aragonite and micrite. Similar poros-
ity systems that can also be distinguished using the HR images are macroporosity, moldic 
intra-ooliths porosity (these are formed through selective processes i.e., local dissolution), 
vugs, and microporous equant cement. Features identifying porosity systems in carbonates 
have been further discussed in the literature (Arns et al. 2018; Cantrell and Hagerty 1999; 
Irajian et al. 2016; Ji et al. 2012).
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For the preliminary characterization of the samples, Brine permeability, Helium poros-
ity, and permeability measurement were obtained for a 1-inch in diameter by 2-inch core 
plug of each rock (see Fig. 1). Then, smaller 6-mm core plugs were drilled from the bigger 
cores for micro-CT imaging. Finally, Mercury Intrusion Capillary Pressure (MICP) tests 
were performed on the 6 mm plugs. These tests were performed to assess in (1) choosing 
the imaging spatial resolutions and (2) choosing safe thresholds for GT segmentation.

2.2 � Methods

2.2.1 � Image Acquisition and Processing

Image acquisition was carefully designed in a way that clearly distinguishes a high per-
centage of the microporosity at least with a different shade of gray in the HR images. The 
MICP analysis provided in the "Appendix" (Fig. 12) shows a range of micropores below 

Fig. 1   (Upper): 1-inch core plug photographs of the Indiana Limestone and the Middle Eastern Carbonate. 
(Lower): a showcase of a 2D slice of the Indiana Limestone (Left) showing a macroporosity, b microporos-
ity on the outer shells of the ooliths c vugs, d intra-oolith microporosity, e solid grain. Middle Eastern Car-
bonate (right) showing f macroporosity, g solid ooliths, h microporous equant cement, I intra-grain vugs, 
and k microporous ooliths
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the imaging resolution in Table 1 with a peak of around 1 µm. We categorize voxels into 
pore, solids and micropores. Similar approaches have been presented for identifying micr-
oporosity and characterizing carbonate rocks in the literature (Bultreys et al. 2016b; Ghous 
et al. 2007; Soulaine et al. 2016). This leads to the prediction of permeability that is com-
parable with experimental measurements on larger cores as will be discussed in the results 
sections. The LR images were obtained with a voxel size four times larger than the HR. 
Both carbonate rocks were imaged at the Tyree X-ray facilities at the University of New 
South Wales using HeliScan™ micro-CT (Mark I). The system has a Hamamatsu X-ray 
tube with a diamond window and a high-quality flatbed detector (3072 × 3072 pixels, 3.75 
fps readout rate). The machine has a tube current of 85 μA and a voltage of 80 kV. The 
samples were scanned in a double helix trajectory with 2880 projections per revolution and 
a filter length of 3 mm in the scanning conditions described in Table 1. The reconstruction 
was performed using QMango software (Kingston et al. 2011; Varslot et al. 2011) devel-
oped by the Australian National University. The imaging setup used to obtain the images 
with different resolutions is shown in Fig.  2. A rectangular central domain was cropped 
from each image and segmented into three phases (pore, solid, and micropores) using two 
methods: Otsu’s multi-thresholding algorithm (Otsu 1979) and Avizo Software ™ Seg-
mentation Editor (version 2020.3; FEI Visualization Sciences Group) that uses a combina-
tion of watershed and hysteresis algorithms. Otsu’s multi-thresholding and watershed-hys-
teresis based methods have been utilized in literature for segmenting carbonate into three 
phases (Arns et al. 2005; Bultreys et al. 2015; Ji et al. 2012). Due to the size of the data, the 
manual creation of segmentation masks is not feasible. So, the ground truth segmentation 
of HR data was obtained through Avizo. In the Avizo segmentation editor, a conservative 
approach for segmentation was followed by choosing a ‘Safe’ range of intensities for each 
phase for the watershed/hysteresis processes. The safe ranges involve first choosing two 
cutoff thresholds that are certainly pore space and certainly solid matter. All voxels with 
intensities below the lower threshold are pore, and all voxels higher than the upper thresh-
old are solid. Then, a third range for microporosity with upper and lower thresholds laying 
between the pore and solid threshold was defined where only obvious microporous textures 
were labeled. This was achieved based on a visual inspection of all slices of the volume. 
These regions were then initiated as seeds for watershed/hysteresis. The watershed trans-
forms floods unlabeled regions using the image gradient using the Canny method (Canny 
1986). The safe thresholding of GT resolved pore space was chosen to have a ‘macro’ pore 
space volume fraction equal to the one found in the MICP analysis for each sample (see 
"Appendix").

This method for identifying microporosity and other similar methods (Arns et al. 2005; 
Bultreys et al. 2015; Ji et al. 2012) can perhaps be plausible for mono-mineralic rocks. In 
mono-mineralic rocks, the lower grayscale levels in the solid matrix can be only associated 
with the existence of sub-resolution porosity (less dense materials). Also, it is important 

Table 1   Scanning conditions of the ILS and MEC samples

Sample name Voxel SIZE (μm) Distance from 
source (mm)

Exposure 
time (sec)

Scan duration (h) Image size (voxels)

HR MEC 2.68 5.8 0.64 10.5 1520 × 1520 × 4100
LR MEC 10.72 23.2 0.64 5.1 380 × 380 × 1025
HR ILS 2.68 5.8 0.64 9.42 1520 × 1520 × 3552
LR ILS 10.72 23.2 0.64 4.75 380 × 380 × 888
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to emphasize this approach has limitations whereby the defined solid phase may still pose 
a small percentage of porosity at a lower scale (assuming microscale features can be dis-
tinguished). However, the effect of these fine-scale porosities is minor when computing 
macroscale effective properties, i.e., permeability. The identification of microporosity in 
multi-mineral rocks would require differential imaging frameworks (Boone et  al. 2014; 
Knackstedt et al. 2006; Lin et al. 2016; Long et al. 2013).

2.2.2 � Dataset, Network Architectures, Training, and Inference

The dataset used for training is titled ‘Multi-Resolution Complex Carbonates Micro-CT 
Dataset (MRCCM)’ and has been published in the Digital rock Portal (https://​www.​digit​
alroc​kspor​tal.​org/​proje​cts/​362) and freely available to be used for future studies. The data 
repository comprises multi-resolution raw tomograms and processed volumes of both car-
bonate rocks. The MICP analysis of both samples is included in the repository.

Fig. 2   The Tyree X-ray micro-CT setup (upper), A schematic showing the imaging procedure used to 
obtain a multi-resolution image (middle), and slices of the middle eastern carbonate where the magnifica-
tion showing the resolved microporosity (lower)

https://www.digitalrocksportal.org/projects/362
https://www.digitalrocksportal.org/projects/362
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Two different frameworks shown in Fig. 3 were used to obtain the super-resolved seg-
mentation. In one framework we segmented and super-resolved images in one Encoder-
Decoder network (End-to-End super-resolved segmentation). In the second framework, 
we applied a 3D Enhanced Deep Residual Network (EDSR) (Lim et  al. 2017) to obtain 
a super-resolved grayscale image and then segment the super-resolved using a separate 
encoder-decoder network. All the network architectures considered are three-dimensional 
because 3D CNNs tend to learn geometrical features in 3D space which helps in preserving 
topological features, i.e., connectivity, and generally delivers better results compared to 2D 
networks (Wang et al. 2021b).

The encoder-decoder networks used in both frameworks are mainly based on 
the U-net architecture (Ronneberger et  al. 2015). This architecture was originally 
designed for 2D image segmentation purposes and has shown excellent performance 

(C) EDSR-U-ResNet

Fig. 3   A schematic showing the network architectures used for obtaining super-resolved segmentation. The 
top schematic is showing two highlighted architectures where a standard U-net block consists of double 
convolutional layers as in (Ronneberger et al. 2015) and b the Residual U-net block (U-ResNet) consists of 
triple convolutional layers with skip connections (Lee et al. 2017). The double convolution blocks (high-
lighted in yellow) at the end of the network increase the input domain size four times. The numbers under 
each block represent the number of feature maps at each level. In the bottom schematic super-resolved gray-
scale images are obtained using an EDSR network (c), then segmented using a U-ResNet network. The 
segmentations obtained from this network is referred to as EDSR-U-ResNet
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for biomedical image segmentation and was later modified to handle volumetric data. 
U-net incorporates symmetric skip connections to link shallow features in the encoder 
to the equivalent level of the decoder through concatenation/summation. The skip con-
nections improve CNNs performance by alleviating common drawbacks in backpropa-
gation (Rumelhart et  al. 1986) such as vanishing gradients in deep CNNs (Drozdzal 
et al. 2016). Furthermore, the skip connections also help to preserve and combine local 
and well-detailed features, such as edges, with global features without deep supervision 
(Panichev and Voloshyna 2019). In this work, we implemented multiple U-net variants 
where we compared the use of standard U-Net implementation against Residual U-Net. 
Residual U-Net borrows concepts from ResNet where residual blocks are utilized to 
achieve better performance.

All networks were trained using Adam optimizer with β1 = 0.9 and β2 = 0.999, and 
L2 regularization of 1e-5 and starting learning rate of 2e-4. The learning rate is halved 
dynamically during training each time the segmentation evaluation metric reaches a 
plateau (no improvement) on a separate validation set. The Sørensen–Dice coefficient 
(Dice 1945; Sørensen 1948) is used to compute loss between the network output and 
GT. The Sørensen–Dice coefficient is given the following formula:

where X, Y are two images, and the operator |X| refers to the number of voxels in image X. 
The symbol ∩ refers to the intersection between the voxels of the two images. The training 
was run at least for 100 K iterations and stopped when the network learning rate falls below 
a predefined threshold (1-e6). PyTorch, a deep learning software package, was used to train 
the models on an NVIDIA TITAN RTX GPU installed on a PC with Intel I7-8700 CPU 
@3.20 GHz and a RAM of 64 GB. The U-net/U-Resnet models were trained with a batch 
size of 2 and domain size of 643 grayscale volumes where the network outputs a domain 
size of 2563 super-resolved segmented volume. For the EDSR-U-ResNet framework, the 
images were first upsampled using EDSR and then segmented using domain sizes of 1283. 
In total, 2300 training MEC subvolumes and 1800 ILS training subvolumes were used for 
training the presented models.

A brief description of the evaluation metrics considered is reported. These metrics 
include voxel-wise accuracy segmentation, topological characterization of each phase, 
and measurements of the effective flow properties. Because of the nature of the problem 
and the imaging framework and processing, several implications might affect how the 
results are assessed. These implications are caused by:

•	 Registration of the HR and LR images is not exact, a misalignment in the range of 
1–2 voxels may affect the voxel-wise metrics results.

•	 Image quality/noise levels will significantly control the cutoff volume of resolved 
features/textures in the HR images, which may be impossible to identify in the LR 
images.

•	 Watershed Transform, the GT segmentation method for HR images, requires the 
user to define ‘safe’ thresholds that act as a seed for determining the extent for each 
phase. While the method minimizes the effect of user bias in general, it still may 
affect the GT segmentation creation. Regardless of this happening as a source of 
error, the improvement in segmentation is granted because LR grayscale images are 
translated based on the HR images of the same region. This leaves less chance of 
erratic segmentation or user misjudgment.

(1)Sørensen−Dice coefficient(X, Y) = 2 × |X ∩ Y|∕(|X| + |Y|)
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All the numbers reported are computed from the testing set volumes. These volumes are 
not used while training or validation.

A.	 Voxel-wise Accuracy:

We assessed the voxel-wise segmentation accuracy using two segmentation metrics, 
namely: the Jaccard similarity index (Jaccard 1912) and the accuracy of voxel classification 
using confusion matrices. Jaccard similarity index of phase (P) in two volumes (A) and (B) 
can be expressed as:

where A(P) and B(P) indicate the voxels in volumes A and B that are labeled as phase P, 
respectively. The operator |A| indicates the number of voxels in volume A. The symbols ∩ 
and ∪ refer to the intersection and the union between the voxels of the two images, respec-
tively. The confusion charts show the true and predicted voxels percentages of each phase. 
The diagonal values of the chart represent truly classified voxels percentage, and the off-
diagonal values represent misclassified voxels percentage. The rate of false positivity and 
negativity are also reported outside the confusion matrices.

B.	 Morphological Measurements

We measured two geometrical properties of each phase which are the porosity and the 
specific surface area (SSA). Furthermore, the topological connectivity wassured by com-
puting Euler-Poincare characteristic (EC) for resolved macropores only. The porosity of 
each phase was computed through voxel counting. The specific surface area was computed 
through the discretization of the Crofton formula (Legland et al. 2011). EC was estimated 
using graph portioning where the numbers of vertices (Ѵ), edges ( ∈ ), faces ( F), . and solids 
( L) . of the volume were computed. EC can be written as (Legland et al. 2011):

Volume fractions, SSA EC are computed using MatImage, an open-source Matlab 
library for image processing (Legland 2021).

C.	 Flow characteristics and pore networks

For assessing the flow characteristics of the output segmentation, single- and multi-phase 
flow simulations were performed. The comparison includes the segmentations oned from 
the HR and LR images using Otsu and watershed methods and the trained model Also, 
macropore and micropore pore network models were extracted for each image separately 
using PoreSpy (Gostick et al. 2019). Coordination numbers and average pores and throats 
sizes were compared from the extracted pore network models. The macropore network 
model was extracted from the resolved pore phase, and the micropore network model was 
extracted from the microporosity phase. The micropore network extraction aimed to give a 
general indication about the connectivity of the textures looking microporous and should 
not be misinterpreted to indicate the actual connections of unresolved pore space.

For single-phase flow, we signified the importance of assigning conductivity to 
the microporosity phase by comparing flow simulations with/without a conductivity 

(2)Jaccard
(
A(P),B(P)

)
=
|||A(P) ∩ B(P)

|||
/|||A(P) ∪ B(P)|

|||

(3)EC = # − V# ∈ + #F − #L
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assigned to the microporosity phase. The permeability was computed using the Pore 
Finite Volume Solver (PFVS) (Chung et  al. 2019, 2020b; Wang et  al. 2019c). PFVS 
assigns a conductivity to each voxel according to the proximity of the voxel to the solid 
wall and the radius of the inscribed flow channel that the voxel belongs to. For simplic-
ity, the microporosity phase was assigned a voxel conductivity based on the Hagen–Poi-
seuille (Mortensen et al. 2005; Rabbani et al. 2020a; Schmid and Henningson 1994) law 
where the permeability (K) of a pore throat is assumed to approximately equal

for fluid flow with a low Reynolds number where R is the hydraulic throat radius. The con-
tribution of microporosity is known to have lower permeability compared to macropores 
by several orders of magnitude (Soulaine et al. 2016). Therefore, the assignment of micr-
oporosity conductivity was based on the average pore throat radius estimated through the 
MICP analysis ran on the same cores (See "Appendix"). The conductivity in the micropo-
rous phase is estimated to be 2.45 × 10−13 m2 in the MEC and 1.25 × 10−13 m2 in the ILS.

For the multi-phase flow simulation, relative permeability was computed using 
MorphLBM (Wang et al. 2020b). This method applies an accelerated morphologically 
coupled multi-phase Lattice Boltzmann Method directly on the macropore space. The 
microporosity phase is assumed to be fully saturated with the wetting phase, and the 
absolute permeability of macropores is only considered. In the beginning, the fluid 
configuration is initialized morphologically and updated after LBM steady-state condi-
tions are reached, with small increments of erosion and dilation to target saturation. The 
LBM simulation continues its execution at the same time as the small morphological 
increments are updated. Once the target saturation is achieved, the LBM is performed 
until the capillary number is stable. Then, the steady-state relative permeability point 
is recorded, and another cycle is launched. For the simulation compared in the results 
section, imbibition simulations were performed on each segmentation with relaxation 
applied every 1000 LBM timestep between morphs. The saturation increments were 
set to 5% with a capillarity tolerance of less than 10−3 per 1000 timesteps. The system 
capillary number was held below 10−5 to mimic capillary-dominated two-phase flow 
dynamics. The wettability was set to be uniform at 45 degrees for all solid voxels for 
simplicity.

3 � Results and Discussion

All the comparisons reported were based on unseen/testing subvolumes of size 10243 vox-
els for the HR images and 2563 voxels for the LR images that correspond to a volume of 
size 20.6 mm3. This volume was considered here only for comparison purposes and might 
be subject to further heterogeneity effects at a bigger scale. The methods presented do not 
involve upscaling of the physical properties of the medium of interest but rather compares 
the segmentation accuracy of the models. As such, representative elementary volume 
analysis is not required for this purpose. Overall, 14 segmented volumes were compared 
for each of the two carbonate rock types, of which 4 segmented volumes were obtained 
from the HR and LR through Otsu and Avizo watershed segmentation methods, and 3 seg-
mented HR volumes obtained through the frameworks described in Sect. (2.2.2).

(4)K ≈
R
2

8
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3.1 � Voxel‑wise Accuracy

Voxel-wise accuracy was computed based on a separate testing volume of size 2563 in 
LR that were super-resolved to a volume of size 10243 and compared with the GT seg-
mentation (watershed segmentation) for both carbonate rocks. Both testing volumes are 
around 20% of the entire tomogram imaged of each rock. The network frameworks gener-
ate batches of size 1283 that are stitched together to construct the testing volume. Three 
super-resolved segmentation for each rock was segmented and reconstructed, using U-net, 
U-Resnet, and EDSR-U-ResNet. The voxel-wise percentage of each phase is shown as a 
confusion matrix for ILS and MEC in Fig. 4 for all the networks. Overall, the U-ResNet 
scheme provides the best voxel-wise accuracy. The U-net results in second place and is 
very close to the performance margins of U-ResNet. EDSR-U-Resnet shows the highest 
discrepancy especially in segmenting the MEC rock sample. The same trends are observed 
in Fig. 5 as indicated by Jaccard similarity Index where in general U-Resnet tends to per-
form better than the other models. The confusion matrices in Fig. 4 and Jaccard indices in 
Fig. 5 show the microporosity phase with the highest margins of error (compared to solid 
and pore phases) both in falsely positive and negative classified voxels. Additionally, the 
error margins are higher in MEC compared to ILS in general, and this is likely due to the 
complex microporous textures in the MEC sample.

A comparison between a region of interest for the different models’ segmentations is 
shown in Figs. 6 and 7. The difference maps in Figs. 6 and 7 reveal the misclassified voxels 
happen mostly at the boundaries, especially the solid/microporosity boundary. This fact is 
also clearly shown by the confusion matrices in Fig. 4. This is expected as the grayscale 

Fig. 4   The confusion matrices showing the percentage of a phase in each cell. The rows of a confusion 
matrix represent the true class/GT, and the columns represent the predicted class by the network model. 
Diagonal and off-diagonal cells represent correctly and incorrectly identified phases classes, respectively. 
The row and column summaries shown outside the confusion matrices correspond to the percentages of 
false positive and false negative rates for true and predicted classes, respectively. Warmer color codes show 
higher error margins
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intensities of these boundaries can be impossible to detect, at least visually (see LR images 
in Figs. 6 and 7). Overall, the incorrect microporosity segmentation perhaps arises from 
two causes, (1) partial volume effects in LR images which might be interpreted as micr-
oporosity by the models and (2) the tendency of the models to smooth out edges of highly 
unresolved features/textures. The partial volume effects on the segmentation output are 
mostly evident near the grain boundaries characterized by strong blurring effects. The net-
work performance is likely to improve by regularization (Jia et al. 2021) and using more 
task-specific loss functions (Caliva et al. 2019).

From the network architecture perspective, the models’ performance ranking was con-
sistent on both rocks where U-Resnet performed best. While the EDSR-U-Resnet frame-
work uses two networks to obtain a super-resolved segmentation as shown in Fig. 3, this 
framework poses the highest discrepancy in voxel-wise accuracy. The comparison with 
other studied models that utilize end-to-end frameworks (LR to HR segmented image) 
might suggest that EDSR super-resolved grayscale images might not preserve the impor-
tant features for accurate segmentation.

3.2 � Morphological Comparison

As an addition to the reported voxel-wise metrics of networks segmentation accuracy, the 
morphological characteristics of the watershed, Otsu, and the networks segmented volumes 
are reported. In this section, the watershed and Otsu segmentation of LR and HR volumes 
are included for a broader comparison. This will give an indication of how CNNs can 
improve segmentation if compared with other classic methods. The comparison includes 
the volume fraction and SSA of each phase, and the Euler number of the effective medium 
pore space. These values are reported for the testing volumes of ILS and MEC in Tables 2 
and 3, respectively. The measured volume fractions of the trained network segmented vol-
umes clearly provide better results and lower relative difference if compared with the clas-
sic methods of segmenting LR volumes. The network segmentations are mainly erratic in 

Fig. 5   Jaccard similarity index of each phase computed for networks’ segmentations as compared to the GT 
segmentation
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estimating the microporosity phase as suggested by previous results, however, more con-
forming than Otsu HR segmentation where microporosity is overestimated if compared 
to the GT. The end-to-end models (U-net and U-Resnet) estimate the volume fractions 
with a relative difference of less than 10%, while the error is found to be up to 22% using 
the EDSR-U-Resnet framework. The error margins in estimating the SSA of the differ-
ent segmentations are higher than the volume fractions estimation error margins. However, 
the SSA of the network segmentations are again found to be consistent, with a relative 
difference of less than 50%, while all the other segmentation showed significant relative 
errors (more than 100%) in the estimation of SSA in some phases. The extreme errors 

Fig. 6   1st row: 2D slices of the ILS testing volume (LR and HR). 2nd and 3rd rows: LR (input to networks) 
and HR resolution grayscale region of interest as shown in the first row (red square), and the corresponding 
segmentation (GT watershed and networks segmentations). 4th row: difference maps where networks are 
compared to GT. The blue color corresponds to correctly classified voxels and the pink color to misclassi-
fied phase classes
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in estimating the SSA perhaps arise from the tendency of the classic methods to create 
a microporosity phase at solid grains and pore space boundary. This ‘coating’ effect is a 
by-product of strong partial volume effects and the nature of sharp global thresholding in 
classic methods. Consequently, this observation is expected in the segmentation of the LR 
volumes where partial volume effects are evident.

The topological connectivity of each segmentation macropore space is assessed based 
on the measured Euler Characteristic (EC). The results show significant variations in the 
computed connectivity of pore space with relative differences of around 80% to GT using 
the trained networks. The variation in EC mostly likely arises from strong imaging artifacts 
including the translation of partial volume effects to false microporosity. This may cre-
ate undesired connections between solid grains and hence altering the computed EC. An 

Fig. 7   1st row: 2D slices of the LR and HR MEC testing volume. 2nd and 3rd rows: LR (input to networks) 
and HR resolution grayscale region of interest as shown in the first row (red square), and the corresponding 
segmentation (GT watershed and networks segmentations). 4th row: difference maps where networks are 
compared to GT. The blue color corresponds to correctly classified voxels and the pink color to misclassi-
fied phase classes



512	 N. J. Alqahtani et al.

1 3

Ta
bl

e 
2  

A
 se

t o
f m

or
ph

ol
og

ic
al

 m
ea

su
re

m
en

ts
 o

f t
he

 In
di

an
a 

lim
es

to
ne

 te
sti

ng
 v

ol
um

e 
re

po
rte

d 
fo

r d
iff

er
en

t s
eg

m
en

ta
tio

n 
m

et
ho

ds

Pe
rc

en
ta

ge
s i

ns
id

e 
br

ac
ke

ts
 sh

ow
 th

e 
re

la
tiv

e 
di

ffe
re

nc
es

 w
ith

 re
sp

ec
t t

o 
gr

ou
nd

 tr
ut

h 
se

gm
en

ta
tio

n 
va

lu
es

. E
C

 w
as

 c
al

cu
la

te
d 

fo
r m

ac
ro

po
re

 sp
ac

e 
on

ly

In
di

an
a 

Li
m

es
to

ne
 (I

LS
)

Po
re

 V
ol

. (
%

)
So

lid
 V

ol
. (

%
)

M
ic

ro
po

re
 V

ol
. (

%
)

Po
re

 S
SA

So
lid

 S
SA

M
ic

ro
po

re
 S

SA
EC

H
R-

w
at

er
sh

ed
 (G

T)
9.

17
 (0

.0
%

)
77

.9
5 

(0
.0

%
)

12
.8

8 
(0

%
)

0.
01

99
 (0

.0
%

)
0.

06
21

 (0
.0

%
)

0.
06

28
 (0

.0
%

)
−

 88
60

 (0
.0

%
)

H
R-

O
ts

u
9.

08
 (−

 1.
0%

)
75

.3
6 

(−
 3.

3%
)

15
.5

6 
(2

1%
)

0.
02

48
 (2

4.
6%

)
0.

01
06

 (−
 82

.9
%

)
0.

13
02

 (1
07

.3
%

)
−

 61
,9

80
 (5

99
%

)
U

-N
et

8.
86

 (−
 3.

4%
)

79
.0

7 
(1

.4
%

)
12

.0
7 

(−
 6%

)
0.

01
59

 (−
 20

.3
%

)
0.

03
62

 (−
 41

.7
%

)
0.

03
71

 (−
 40

.9
%

)
−

 10
61

 (−
 88

%
)

U
-R

es
ne

t
8.

81
 (−

 3.
9%

)
79

.4
5 

(1
.9

%
)

11
.7

4 
(−

 9%
)

0.
01

58
 (−

 20
.6

%
)

0.
03

56
 (−

 42
.7

%
)

0.
03

54
 (−

 43
.7

%
)

−
 98

9 
(−

 88
%

)
ED

SR
-U

-R
es

ne
t

8.
92

 (−
 2.

7%
)

76
.6

0 
(−

 1.
7%

)
14

.4
8 

(1
2%

)
0.

01
68

 (−
 15

.5
%

)
0.

04
50

 (−
 27

.6
%

)
0.

04
65

 (−
 25

.9
%

)
−

 42
61

 (−
 51

%
)

LR
-w

at
er

sh
ed

8.
29

 (−
 9.

6%
)

84
.9

1 
(8

.9
%

)
6.

80
 (−

 47
%

)
0.

04
07

 (1
04

.7
%

)
0.

07
38

 (1
8.

8%
)

0.
05

25
 (−

 16
.4

%
)

−
 38

 (−
 99

%
)

LR
-O

ts
u

8.
33

 (−
 9.

2%
)

76
.8

5 
(−

 1.
4%

)
14

.8
3 

(1
5%

)
0.

04
51

 (1
26

.8
%

)
0.

09
62

 (5
4.

9%
)

0.
13

93
 (1

21
.7

%
)

−
 57

3 
(−

 93
%

)



513Super‑Resolved Segmentation of X‑ray Images of Carbonate Rocks…

1 3

Ta
bl

e 
3  

A
 se

t o
f m

or
ph

ol
og

ic
al

 m
ea

su
re

m
en

ts
 o

f t
he

 M
id

dl
e 

Ea
ste

rn
 C

ar
bo

na
te

 te
sti

ng
 v

ol
um

e 
re

po
rte

d 
fo

r d
iff

er
en

t s
eg

m
en

ta
tio

n 
m

et
ho

ds

Pe
rc

en
ta

ge
s i

ns
id

e 
br

ac
ke

ts
 sh

ow
 th

e 
re

la
tiv

e 
di

ffe
re

nc
e 

w
ith

 re
sp

ec
t t

o 
gr

ou
nd

 tr
ut

h 
se

gm
en

ta
tio

n 
va

lu
es

. E
C

 w
as

 c
al

cu
la

te
d 

fo
r m

ac
ro

po
re

 sp
ac

e 
on

ly

M
id

dl
e 

Ea
ste

rn
 C

ar
-

bo
na

te
 (M

EC
)

Po
re

 V
ol

. (
%

)
So

lid
 V

ol
. (

%
)

M
ic

ro
po

re
 V

ol
. (

%
)

Po
re

 S
SA

So
lid

 S
SA

M
ic

ro
po

re
 S

SA
EC

H
R-

w
at

er
sh

ed
 (G

T)
17

.8
1 

(0
.0

%
)

69
.5

3 
(0

.0
%

)
12

.6
6 

(0
.0

%
)

0.
04

34
 (0

.0
%

)
0.

12
88

 (0
.0

%
)

0.
10

66
 (0

.0
%

)
−

 30
,8

06
 (0

.0
%

)
H

R-
O

ts
u

16
.2

3 
(−

 8.
9%

)
63

.7
6 

(−
 8.

3%
)

20
.0

1 
(5

8.
0%

)
0.

05
12

 (1
8.

1%
)

0.
16

98
 (3

1.
8%

)
0.

21
78

 (1
04

.3
%

)
−

 11
5,

44
8 

(2
74

%
)

U
-N

et
17

.9
0 

(0
.5

%
)

69
.3

7 
(−

 0.
2%

)
12

.7
2 

(0
.5

%
)

0.
03

45
 (−

 20
.4

%
)

0.
08

12
 (−

 37
.0

%
)

0.
05

94
 (−

 44
.3

%
)

−
 58

77
 (−

 80
%

)
U

-R
es

ne
t

17
.9

7 
(0

.9
%

)
70

.1
5 

(0
.9

%
)

11
.8

8 
(−

 6.
2%

)
0.

03
51

 (−
 19

.0
%

)
0.

08
06

 (−
 37

.4
%

)
0.

05
75

 (−
 46

.0
%

)
−

 59
79

 (−
 80

%
)

ED
SR

-U
-R

es
ne

t
16

.7
9 

(−
 5.

7%
)

67
.6

8 
(−

 2.
7%

)
15

.5
3 

(2
2.

6%
)

0.
03

20
 (−

 26
.2

%
)

0.
08

03
 (−

 37
.7

%
)

0.
07

27
 (−

 31
.8

%
)

−
 22

05
 (−

 92
%

)
LR

-w
at

er
sh

ed
14

.2
7 

(−
 19

.9
%

)
72

.2
0 

(3
.8

%
)

13
.5

3 
(6

.9
%

)
0.

07
57

 (7
4.

7%
)

0.
13

64
 (5

.9
%

)
0.

11
83

 (1
1.

0%
)

−
 51

5 
(−

 98
%

)
LR

-O
ts

u
12

.6
7 

(−
 28

.8
%

)
67

.1
2 

(−
 3.

5%
)

20
.2

0 
(5

9.
5%

)
0.

07
51

 (7
3.

1%
)

0.
14

58
 (1

3.
2%

)
0.

21
65

 (1
03

.1
%

)
−

 15
20

 (−
 95

%
)



514	 N. J. Alqahtani et al.

1 3

example of this segmentation error can be seen in the EDSR-U-ResNet segmentation in 
Fig. 7. Also, there is always a limitation on the signal/representation that can be resolved as 
pore space in some parts of the LR images causing connectivity loss in the output network 
segmentation. Irrespectively, the network segmentations improve the connectivity meas-
ured when compared to the LR watershed and Otsu segmentation as shown in Tables 2 and 
3. It is also anticipated that global thresholding (Otsu method) creates many isolated holes 
and solids, and redundant loops, hence the high error margins.

3.3 � Macro‑ and Micropore Networks, Single‑ and Multi‑phase Flow Analyses

The flow features of the segmented volumes are probably the most crucial measures for 
assessing the accuracy of the super-resolved segmentation. Hence, pore and micropore net-
works, single- and multi-phase flow simulations are analyzed. Macro- and micropore net-
works are extracted ‘separately’ for the different segmentations considered. The statistics 
of these networks and the single-phase permeability values are reported in Tables 4 and 5 
for the ILS and MEC samples, respectively.

The coordination number (i.e., the average number of pore throats connected to a pore 
body) is computed to estimate the connectivity from the macropore and micropore net-
works. The results show more consistent trends when computing the coordination number 
of the macropore compared to the micropore networks. For the macropore networks, the 
LR segmentations show lower coordination numbers compared to the GT, this is perhaps 
due to the loss of tight pore throats during segmentation. However, the CNNs segmentation 
seems to preserve similar connections showing minor differences in the computed coor-
dination number. For the micropore networks, the CNNs segmentation seems to overesti-
mate the connections in general. This is mainly because the adherence to boundaries of the 
super-resolved segmentation is prone to relatively high errors. The average pore sizes, pore 
throat lengths and diameters show in general a similar trend, where the CNNs improve the 
computed statistics. Moreover, it is also generally observed that the ILS results are again 
more conforming compared to MEC because of the lower microporosity in ILS.

For single-phase flow, the permeability in Tables 4 and 5 is computed with and without 
assigning conductivity to the micropore phase. The addition of microporosity conductiv-
ity increases the computed permeability, as both rocks pose relatively high percentages of 
unresolved porosity. However, the contribution to the computed permeability might not be 
as significant to the macropore phase. In any case, the CNNs segmentation show more 
accurate permeability values compared to the simulation ran on LR segmented images. 
More interestingly, U-net and U-ResNet specifically present more accurate permeability 
values than the HR Otsu segmentation with and without microporous conductivity. Look-
ing over all the results and metrics, it might be concluded that U-ResNet and U-net pro-
vide the best and second-best results, respectively. The permeability of the ground truth 
and networks show in general a good agreement with the experimental Helium permeabil-
ity (Klingenberg-corrected) on bigger cores of the ILS (221 mD) and MEC (1092 mD) 
samples.

For further comparison, multi-phase flow experiments are run on the U-ResNet, LR, 
and HR watershed segmentations of both rocks using MorphLBM. The secondary imbi-
bition experiments are simulated on the testing volumes macropore space using the Aus-
tralian National Computational Infrastructure (NCI) supercomputer Gadi. The micropo-
rosity is assumed to be fully saturated with the wetting phase. The simulation of the LR 
watershed segmentation did not converge to a solution. The reason is likely to be the low 
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connectivity of the pore space and the narrow flow paths. The results from the GT and 
U-ResNet show a good match on both MEC and ILS samples. The computed relative per-
meability curves in Fig. 8 show similar saturation endpoints for water (wetting phase) and 
oil (non-wetting phase). The topology of the non-wetting phase during pore desaturation is 
observed to be analogous in both GT and U-ResNet segmentation (see Fig. 9). The differ-
ence maps visualized in Fig. 9e show minor differences in the non-wetting phase distribu-
tion. These differences happen mainly: (1) at the boundary of grains/fluids interface (seg-
mentation differences) and (2) the filling/desaturation of smaller pores, which perhaps arise 
from differences in the overall pore topology.

4 � Conclusions

The segmentation/identification of pore space, sub-resolution porosity, and the solid matrix 
are vital for reliable digital rock analysis frameworks. Deep learning workflows involving 
the utilization of CNNs to enhance the segmentation of grayscale images improve the over-
all outcome. CNNs can work in an end-to-end scheme to super-resolve and segment raw 
X-ray images, without any interference from the user. This reduces the user prejudice asso-
ciated with classic segmentation methods which often require user input. Two CNNs train-
ing configurations were considered to super-resolve and segment grayscale images into 
pore, solids, and micropores. Firstly, U-Net and U-ResNet were trained in an end-to-end 
manner to super-resolve and segment images in one network. Secondly, EDSR-U-Resnet 
was trained to super-resolve grayscale images at once then segment the image (two dif-
ferent networks). The output segmentation of all the CNNs frameworks shows relatively 
consistent voxel-wise accuracy compared to the GT segmentation. The U-ResNet dis-
played the best performance with Jaccard indices of 0.92, 0.83, and 0.57 for solid, pore, 
and micropore phases, respectively. U-Net shows very close voxel-wise accuracy margins 
to U-ResNet (with less than 1% difference in Jaccard score). In general, the highest error 
margins are observed in the identification of the microporosity phase. This is perhaps due 
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Fig. 8   Secondary Imbibition Relative Permeability Curves of (left) the Indiana limestone and (right) Mid-
dle Eastern Carbonate. The ground truth and U-ResNet segmentation are compared. Matching curves and 
relative permeability endpoints with minimal differences are observed
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to the effects of the noise (partial volume effects) and extreme sub-resolution in the input 
LR images, making it impossible to identify microporosity by the CNNs (or even judging 
visually). The results also show the phases volume fractions of network segmentation are 
more conforming than using only LR segmentation or HR Otsu segmentation as compared 
to GT. The same trends in terms of network consistency are observed in measuring spe-
cific surface area, however, with higher relative errors (up to 46% using U-ResNet). The 
connectivity of the pore space as measured using EC number shows also high relative dif-
ferences, when network and GT segmentations are compared (up to 92%). Regardless, the 
network segmentations show lower relative error compared to HR Otsu, LR watershed and 
Otsu segmentations (see Tables 2 and 3).

Additionally, macro- and micropore networks comparisons with GT show better 
results in terms of connectivity, pores, and pore throats sizes for CNNs segmentation. 
The same outcome trends are observed in single-phase permeability and relative perme-
ability curves. Overall, the end-to-end training frameworks are found to be superior to 
using two networks for super-resolution and segmentation confirming the suitability of 
end-to-end learning to perform more complex tasks. The reason is likely to be the loss 
of important features that distinguish the different rock phases to obtain precise segmen-
tation when upsampling LR images using super-resolution network. This leads to a gen-
eral conclusion that end-to-end CNNs training for X-ray imaging super-resolution and 
processing promise a lot of improvements to current DRP frameworks. Similar applica-
tions to this study can be applied based on single or multiple rock types, where image 
acquisition includes LR imaging capturing high field of view and HR region of interest 
imaging capturing more explicit details of pore geometry. Also, the CNNs methods pre-
sented here do not necessarily highlight all potential improvements that can be gained. 

Fig. 9   Visualizations of the imbibition simulation on the Middle Eastern Carbonate cubic sample at wetting 
phase saturation of (Swp = 0.43). Upper: 3D visuals of the non-wetting phase distribution (red) in the a GT 
and the b U-ResNet segmentation. Lower: 2D slices showing the non-wetting phase distribution (yellow) of 
c the GT and d U-ResNet segmentations. The difference map in e shows most of the discrepancies happen 
in the filling of smaller pores and the boundaries of solid and fluids (segmentation differences)
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The CNNs frameworks presented only show a general workflow for improving the accu-
racy in segmentation and modeling. The interpolation of the presented methods on other 
rocks type can be established by adding subvolumes from the medium of interest to the 
current dataset and commencing training in a transfer learning scheme. This eliminates 
the need for training the models from the ground up. The results obtained with more 
sophisticated CNNs architectures, training data and ad hoc strategies are anticipated to 
boost the outcome accuracy. CNNs architectures such as HRNet-OCR (Tao et al. 2020), 
and EfficientNet (Tan and Le 2019) are few examples of the active research of improv-
ing network design and performance. The automation of DRP using CNNs would also 
benefit from including important physical properties, i.e., permeability, as a component 
in the loss function for optimizing the CNNs performance.

Appendix

The MICP tests are performed using POREMASTER® by Quantachrome instruments on 
the 6 mm core plugs after X-ray imaging. For the MICP experiment analysis, a methodol-
ogy presented by (Buiting and Clerke 2013; Clerke et al. 2008) is followed. This method 
fits multiple Thomeer hyperbolas (Thomeer 1983, 1960) to quantify the different pore sys-
tems in carbonates using superposition. This enables the identification of the porosity of 
macro- and micropores systems and their pore throat distribution. The pore volume frac-
tion of each pore is determined based on the volume of mercury injected (%BVocc). The 
pore volume fraction obtained from the MICP for the macropore system is used to choose 
a safe threshold to complete the ground truth (watershed) segmentation. The pore throats 
distribution is estimated based on the minimum entry pressure (Pd) from Thomeer Hyper-
bola. The conductivity of the micropore system is then estimated based on the average 
pore throats for the single-phase permeability simulation. In the below figures, we show 
the Thomeer Hyperbolas (Figs. 10 and 11) and the pore throat distribution (Fig. 12) for the 
ILS and MEC samples.  
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