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Abstract
Recent models represent gas (methane) migration in low-permeability media as a weighted 
sum of various contributions, each associated with a given flow regime. These models typi-
cally embed numerous chemical/physical parameters that cannot be easily and unambigu-
ously evaluated via experimental investigations. In this context, modern sensitivity analysis 
techniques enable us to diagnose the behavior of a given model through the quantification 
of the importance and role of model input uncertainties with respect to a target model out-
put. Here, we rely on two global sensitivity analysis approaches and metrics (i.e., vari-
ance-based Sobol’ indices and moment-based AMA indices) to assess the behavior of a 
recent interpretive model that conceptualizes gas migration as the sum of a surface diffu-
sion mechanism and two weighted bulk flow components. We quantitatively investigate the 
impact of (i) each uncertain model parameter and (ii) the type of their associated probabil-
ity distribution on the evaluation of methane flow. We then derive the structure of an effec-
tive diffusion coefficient embedding all complex mechanisms of the model considered and 
allowing quantification of the relative contribution of each flow mechanism to the overall 
gas flow.

Article Highlights

•	 Relative importance of parameters driving gas flow in low-permeability media is 
assessed.

•	 The influence of parameter probability distribution on gas flow statistics is appraised.
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derived.

Keywords  Gas flow · Nanopores · Bulk flow · Methane · Sensitivity analysis

 *	 Leonardo Sandoval 
	 rafaelleonardo.sandoval@polimi.it

1	 Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. da Vinci 32, 
20133 Milan, Italy

2	 Geolog Technologies, Via Monte Nero 30, 20098 San Giuliano Milanese, Italy

http://orcid.org/0000-0001-6264-9452
http://orcid.org/0000-0002-7304-4114
http://orcid.org/0000-0002-2888-6451
http://orcid.org/0000-0003-3959-9690
http://crossmark.crossref.org/dialog/?doi=10.1007/s11242-022-01755-x&domain=pdf


510	 L. Sandoval et al.

1 3

List of Symbols
Cg	� Gas compressibility 1/MPa—MiniREFPROP
Csc	� Adsorbed concentration kg/m3—Eq. 28
dm	� Gas molecule diameter nm—0.38
�p∕�l	� Gradient of gas pore pressure MPa/m—0.1
D	� Overall diffusion coefficient m 2/s—Eq. 15
Ds	� Surface diffusion coefficient m 2/s—Eq. 25
Dk	� Knudsen effective diffusion coefficient m 2/s—Eq. 16
Dss	� Surface effective diffusion coefficient m 2/s—Eq. 16
Dv	� Slip flow effective diffusion coefficient m 2/s—Eq. 16
J	� Mass flux of gas per unit of area T/(m2 year)—Eq. 1
Jk	� Knudsen diffusion kg/(m2 s)—Eq. 8
Js	� Surface diffusion kg/(m2 s)—Eq. 2
Jv	� Slip flow kg/(m2 s)—Eq. 7
Kn	� Knudsen number—Eq. 5
M	� Gas molar mass kg/mol—1.6 × 10−2
pL	� Langmuir pressure MPa—Eq. 22
po	� Atmospheric pressure MPa—0.1
r	� Pore size nm—Eq. 19
R	� Universal gas constant J/(mol K)—8,3144
rad	� Thickness of adsorbed gas layer nm—Eq. 18
wk	� Knudsen diffusion flux weight factor—Eq. 4
wv	� Slip mass flux weight factor—Eq. 3
Z	� Gas deviation factor—MiniREFPROP
�	� Rarefied effect coefficient for gas—Eq. 24
�ms	� Correction factor of surface diffusion—Eq. 17
�mb	� Correction factor bulk flow—Eq. 23
�	� Gas viscosity Pa s—MiniREFPROP
�	� Gas coverage of the geomaterial—Eq. 21
�	� Mean free path of gas molecules m—Eq. 6
�	� Porosity—Eq. 20

1  Introduction

Methane is recognized as a potential energy source to assist transition to a carbon-free 
energy landscape (Hughes 2013), considerable reserves of methane being associated with 
subsurface reservoirs worldwide (U.S. Energy Information Administration 2015). After its 
generation, this gas typically accumulates in reservoir regions subdued to low-permeability 
layers (i.e., caprocks) that prevent its upward migration (Dembicki-Jr. 2017). Due to the 
partial sealing efficiency of caprocks, some amount of gaseous phase hydrocarbons might 
cross such barriers and reservoir gas can then be released into the overburden to (eventu-
ally) reach the surface (Schlömer and Krooss 1997; Schloemer and Krooss 2004). In this 
context, appropriate modeling approaches to quantify gas migration in low-permeability 
geomaterials can assist the appraisal of the feasibility of a methane recovery project.

A variety of models depicting gas movement in low-permeability geomaterials have 
been proposed (Wu et  al. 2016; Sun et  al. 2017; Rani et  al. 2018; Wang et  al. 2019). 
These models typically estimate the mass flow rate of gas as the result of a combination 
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of various gas transport mechanisms taking place across the porous system. Parameters 
associated with these models, describing chemical, mechanical, flow, and transport fea-
tures governing feedbacks between gas and the host rock matrix are always affected by 
uncertainty. The conceptual model of Wu et al. (2016) depicts the mass flow rate of a gas 
across a low-permeability medium as the sum of three key processes: (i) a surface diffu-
sion, and two weighted bulk diffusion components corresponding to (ii) slip flow and (iii) 
Knudsen diffusion. This model takes into account changes in the porous system caused by 
mechanical deformation and adsorption/desorption dynamics. The model embeds numer-
ous parameters which are typically estimated through (direct or indirect) laboratory-scale 
experiments. Considering the set of complex mechanisms involved, these types of experi-
ments are costly, time demanding, and their results are prone to uncertainty. The latter is 
also related to the intrinsic difficulties linked to replicating operational field conditions at 
the laboratory scale as well as to the challenges stemming from transferability of results to 
heterogeneous field scale settings (Pan et al. 2010; Yuan et al. 2014; Tan et al. 2018).

Due to our still incomplete knowledge of the critical mechanisms driving gas move-
ment in low-permeability media (Singh and Myong 2018; Javadpour et al. 2021) and the 
complexities associated with the estimation of model parameters, model outputs should be 
carefully analyzed considering all possible (aleatoric and epistemic) sources of uncertainty. 
In this sense, sensitivity analysis approaches are important tools enabling us to (i) quantify 
uncertainty, (ii) enhance our understanding of the relationships between model inputs and 
outputs, and (iii) tackle the challenges of model- and data-driven design of experiments 
(Dell’Oca et al. 2017). Hence, sensitivity analysis techniques may be effectively used in the 
context of methane flow modeling efforts to (i) quantify and rank the contribution of our 
lack of knowledge on each model parameter to the uncertainty associated with model out-
puts; (ii) identify model input–output relationships; and (iii) enhance the quality of param-
eter estimation workflows, upon focusing efforts on parameters with the highest influence 
to target model outputs (Saltelli et al. 2010; Dell’Oca et al. 2020). In cases where param-
eters associated with a model have already been estimated (e.g., through model calibra-
tion), the main purpose of a Global Sensitivity Analysis (GSA) is to assist quantification 
of the uncertainty still remaining after model calibration, thus guiding additional efforts 
for its characterization (e.g., Dell’Oca et al. (2020) and references therein). The probability 
density function (pdf) related to each model parameter at this step might differ from the 
one employed before model calibration and some model parameters might be associated 
with a reduced uncertainty. In cases where processes are described through black-box mod-
els, GSA can be employed to quantify the influence that the variability of hyperparameters 
embedded in these models can have on their outcomes. We note that if uncertainty of some 
model parameters is further constrained, for example through (stochastic) inverse modeling 
(e.g., Ceresa et al. (2021)), results of the uncertainty quantification might also change. In 
this work we illustrate the methodological framework and the workflow required for GSA 
of a methane flow model and provide the elements to perform such an analysis for diverse 
scenarios. In order to assist this process, we provide a repository with scripts developed 
during this work (see declaration section).

In this work, we rely on GSA approaches to study the behavior of the aforementioned 
gas migration model targeting low-permeability media. While previous works focus on 
only a few selected model parameters (Song et al. 2016; Wu et al. 2017; Sun et al. 2017), 
a comprehensive diagnosis of the system behavior based on rigorous and modern GSA 
approaches taking into account the way all model parameters influence model output 
uncertainty is still missing. Here, we do so by implementing two GSA techniques, respec-
tively based on the evaluation of (i) the classical (variance-based) Sobol’ indices (Saltelli 
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and Sobol’ 1995) and (ii) the recent moment-based GSA metrics proposed by Dell’Oca 
et al. (2017). We recall that GSA approaches relying on Sobol’ indices are widely used to 
quantify the relative expected reduction of variance of the target model output due to the 
knowledge of (or conditioning on) a given parameter. These have been employed in sev-
eral applications including diagnosis of models related to, e.g., flood risk assessment (Koks 
et  al. 2015), overpressure risk assessment in sedimentary basins (Colombo et  al. 2017), 
and energy storage (Xiao et al. 2021). A critical limitation of variance-based GSA meth-
odologies is that the uncertainty of the output is considered to be completely character-
ized by its variance. Such an assumption can lead to an incomplete characterization of the 
system behavior. The moment-based GSA approach introduced by Dell’Oca et al. (2017) 
is designed to enhance our capability to evidence model behavior upon including the quan-
tification of model parameter uncertainty on the (statistical) moments of the pdf of a model 
output of interest. As such, this comprehensive approach yields information enabling us 
to characterize various aspects of uncertainty, without being limited solely to the concept 
of variance. The ensuing indices (termed AMA indices, after the initials of the authors 
(Dell’Oca et al. 2017)) have been effectively employed in a variety of contexts, including 
geophysical analyses related to gravimetric responses due to pumping tests (Maina et al. 
2021), biochemical degradation of compounds such as glyphosate in soils (la Cecilia et al. 
2020), and groundwater flow, including its feedbacks with evapotranspiration (Bianchi Jan-
etti et al. 2019; Maina and Siirila-Woodburn 2020).

This work is organized as follows: Sect. 2.1 briefly illustrates the complete model we 
consider to describe methane flow in low-permeability media. The main theoretical ele-
ments of the GSA approaches employed are described in Sect. 2.2. Key results of the GSA 
are presented in Sect. 3, where we also derive and discuss novel formulations describing an 
effective diffusive behavior and encapsulating all physical–chemical mechanism included 
in the full methane flow model described in Sect. 2.1. Finally, conclusions are drawn in 
Sect. 4.

2 � Materials and Methods

2.1 � Gas Flow in Low‑Permeability Media

Models adopted to quantify gas migration in low-permeability media can be classified 
according to their complexity, in terms of, e.g., conceptualization and mathematical ren-
dering of the embedded processes, as well as number of their characteristic parameters. 
Among existing models associated with a high degree of complexity and including mul-
tiple transport processes jointly contributing to the total gas migration across the system 
(Mehmani et al. 2013; Wu et al. 2015a, 2016, 2017; Sun et al. 2017; Zhang et al. 2018; 
Javadpour et al. 2021), here we consider the model of Wu et al. (2016). The selected model 
allows considering mechanical deformation as well as relevant features associated with real 
gases such as variations in the gas viscosity ( � ), and the effects of the compressibility ( Cg ) 
and gas deviation (Z) factors caused by pressure and temperature changes.

The model introduced by Wu et al. (2016) rests on a conceptual picture according to 
which the total mass flow rate of gas per unit of area (J) is rendered through the sum of (i) 
a surface diffusion ( Js ) and two weighted bulk diffusion components, corresponding to (ii) 
slip flow ( Jv ), and (iii) Knudsen diffusion ( Jk ), i.e.,
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The surface diffusion component is given by Wu et al. (2015b)

where p is (gas) pore pressure and �p
�l

 represents the strength of the driving force through 
the system, corresponding to the spatial gradient of gas pore pressure. The (dimensionless) 
coefficient �ms is intended to take into account the possibility of applying the model (origi-
nally developed for capillary tubes) to a complex pore space and is defined in Eq. (17) of 
the Appendix where it is shown that �ms depends on porosity ( � ), tortuosity ( � ), pore size 
(r) (i.e., pore radius), and gas coverage on the geomaterial ( � ). The term Ds in Eq. (2) is the 
surface diffusion coefficient, which is expressed (as shown in Eq. (25)) in terms of gas tem-
perature (T), isosteric adsorption heat of the geomaterial ( ΔH ), a parameter ( � ) related to 
the blockage/migration ratio of the adsorbed molecules, and � . Finally, Csc , defined in Eq. 
(28), is the adsorbed concentration, which in turn depends on � and on the gas molecule 
diameter ( dm).

The model proposed by Wu et al. (2016) allows representing the mechanical defor-
mation of the pore space (in terms of variation of permeability and porosity with pres-
sure) through power-law relationships and making use of the classical Kozeny–Carman 
equation. Here, we rest on their original model formulation, which naturally leads to 
Equations (19) and (20), clearly evidencing that both r and � evolve with p as a function 
of a reference pore radius ( ro ) and reference porosity ( �o ), respectively.

The weight coefficients of the slip flow ( wv ) and Knudsen diffusion ( wk ) components 
in Eq. (1) are given by (Wu et al. 2016)

Here, Kn is the (dimensionless) Knudsen number defined as

with

where M and R are the gas molar mass and universal constant, respectively. Note that Kn 
relates the mean free path of the gas molecules ( � ) to a representative length of the system 
(Civan 2010), here taken as the pore diameter.

The slip flow component is dominant in systems where Kn < 0.1 (Ziarani and Aguil-
era 2012) and can be evaluated as (Karniadakis et al. (2005); Wu et al. (2016))

(1)J = Js + wvJv + wkJk.

(2)Js = −�ms

DsCsc

p

�p

�l
,

(3)wv =
1

1 + Kn

,

(4)wk =
1

1 + 1∕Kn

.

(5)Kn =
�

2r
,

(6)� =
�

p

√
�ZRT

2M
,
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Here, �mb is intended to take into account the possibility of applying the slip flow formula-
tion (7) to a complex pore space (see Eq. (23)) and � is the rarefied effect coefficient for a 
real gas which, according to Karniadakis et al. (2005), is evaluated through Eq. (24).

The Knudsen flow component is dominant in systems where Kn > 10 (Ziarani and Agu-
ilera 2012) and is evaluated as (Darabi et al. (2012); Liu et al. (2016))

Here, Df represents the fractal dimension of the pore surface and � denotes the ratio 
between dm and r.

We conclude by noting that the model here described includes a total of 15 parame-
ters, which are related to the richness of physical processes embedded therein (See also 
Sect. 3.3). All quantities here introduced are listed in Table 1 and in the list of symbols and 
nomenclature Section.

2.2 � Global Sensitivity Analysis

We perform a rigorous sensitivity analysis of the model illustrated in Sect. 2.1 to diagnose 
its behavior with reference to the estimate of methane flow as driven by imperfect knowl-
edge of the associated parameters. Here, we note that uncertainties associated with the 
selection of the interpretative model is not analyzed. GSA can also be tailored to consider 

(7)Jv = −�mb

r2pM

8�ZRT
(1 + �Kn)

(
1 +

4Kn

1 + Kn

)
�p

�l
.

(8)Jk = −
2

3
�mbr�

Df−2
(
8ZM

�RT

)1∕2 p

Z
Cg

�p

�l
.

Table 1   Ranges of variability for the methane migration model uncertain parameters considered in the GSA

Values of the coefficient of variation, criteria for the selection of the range of variability, and references 
considered for the definition of each range of variability are also listed

Parameter - (Units) - Symbol Range (CV%) Criteria for the support Reference

Reference pore radius - (nm) - r
o

2–100 (55) Literature Wu et al. (2016)
Reference porosity - (-) - �

o
0.005–0.1 (52) Literature Li et al. (2006)

Pore pressure - (MPa) - p 0.5–50 (57) Literature Wu et al. (2016)
Tortuosity - (-) - � 2.8–5.8 (20) Literature Mohd Amin et al. (2014)
Temperature - (K) - T 337–473 (10) Literature Chiquet et al. (2007)
Overburden pressure - (MPa) - pc 51–90 (16) Literature Chiquet et al. (2007)
Porosity exponent - (-) - q 0.014–0.056 (35) Literature Dong et al. (2010)
Pore radius exponent - (-) - t 0.02–0.04 (19) Literature Dong et al. (2010)
Block/migration ratio - (-) - � 0.1–2 (52) Literature Wu et al. (2015b)
Fractal dimension - (-) - D

f
2.1–2.9 (9) Theoretical limits Coppens (1999)

Isosteric adsorption heat - (J/
mol) - ΔH

12,000–16,000 (8) Literature Wu et al. (2015b)

Reference Langmuir pressure - 
(Pa) - pL

o

41–128 (30) CV Wu et al. (2015b)

Parameter - (-) - �
0

1.02–1.36 (8) Literature Karniadakis et al. (2005)
Parameter - (-) - �

1
2–6 (30) CV Karniadakis et al. (2005)

Parameter - (-) - � 0.2–0.6 (30) CV Karniadakis et al. (2005)
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quantification of uncertainty of model outputs in the presence of uncertain interpretive 
models. In this context, uncertainty of a target variable which might result from the use of 
a collection of interpretive (conceptual and mathematical) models could be assessed upon 
relying, for example, on the approach illustrated by Dell’Oca et  al. (2020). Our analysis 
is intended to yield a robust quantification of the relative importance of uncertain model 
parameters to a model output of interest. As mentioned in the Introduction, we rely on 
two GSA approaches, corresponding to (i) the classical variance-based technique grounded 
on the evaluation of the well-known Sobol’ indices (Saltelli and Sobol’ 1995) and (ii) the 
moment-based GSA framework introduced by Dell’Oca et al. (2017).

Model parameters are treated as statistically independent, as the amount of available 
information does not enable us to clearly identify cross-correlations among parameters and 
to quantify joint distributions. We consider three differing characterizations of pdf describ-
ing uncertainty of model parameters: (a) all parameters are represented through uniform 
pdfs, (b) all parameters are represented by truncated Gaussian pdfs, and (c) the reference 
pore radius is characterized by a (truncated) log-normal pdf, while all remaining param-
eters are associated with uniform pdfs. Case a is representative of an approach where 
information on the considered parameters is limited so that all parameter values within the 
identified range of variability are equally weighted in the analysis (other studies relying on 
the same assumption include, e.g., Ciriello et al. (2013), Laloy et al. (2013), Sochala and 
Le Maître (2013), Bianchi Janetti et al. (2019), Dell’Oca et al. (2020)). Case b is imple-
mented as an alternative uninformed case, making use of the widely adopted hypothesis 
that model parameters are normally distributed. Case c takes advantage of the findings of 
Naraghi et al. (2018) who provide some experimental evidence suggesting that the pdf of 
pore radii in shales can be interpreted through a log-normal model. Our choice of perform-
ing sensitivity analyses according to configurations associated with diverse pdfs character-
izing uncertain model parameters enables us to analyze the influence of model parameter 
pdf (which is generally unknown a priori) on the results of the GSA and, ultimately, on gas 
flow forecasting.

Considering the computational cost associated with multiple model evaluations (cor-
responding to 10−4 seconds per simulation on an Intel Xeon Gold 6148 CPU @ 2.4 GHz) 
required for these analyses and the corresponding cost for random sampling across the con-
sidered high dimensionality model parameter space, our analyses rest on 108 model evalua-
tions. The latter has been deemed to constitute an acceptable trade-off between the need to 
obtain stable results and computational efforts (details not shown). The pressure gradient 
acting on the system is set as a given boundary condition (and equal to 0.1 MPa/m) in all 
test cases.

2.2.1 � Variance‑Based Sobol’ Indices

Sobol’ indices (Saltelli and Sobol’ 1995) can assist the appraisal and quantification of 
the relative expected reduction of the variance of a target model output due to knowl-
edge of (or conditioning on) a given model parameter, which would otherwise be subject 
to uncertainty. In this context, considering a model output y, which depends on N ran-
dom parameters collected in vector � = (x1, x2,… , xN) and defined within the space 
Γ = Γ1 × Γ2 ×⋯ × ΓN ( Γi = [xi,min, xi,max] corresponding to the support of the ith param-
eter, xi ), the principal Sobol’ index Sxi associated with a given model parameter xi is evalu-
ated as
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Here, E[⋅] and V[⋅] represent expectation and variance operators, respectively; the notation 
y|xi denotes conditioning of y on xi . Note that Sxi describes the relative contribution to V[y] 
due to variability of only xi . Joint contributions of xi with other model parameters included 
in � to the variance of y are embedded in the total Sobol’ indices (details not shown). We 
recall that relying on Sobol’ indices to diagnose the relative importance of uncertain model 
parameters to model outputs is tantamount to identifying uncertainty with the concept of 
variance of a pdf. As such, while Sobol’ indices are characterized by a conceptual sim-
plicity and straightforward implementation and use, they provide only limited information 
about the way variations of model parameters can influence the complete pdf of model 
outputs.

2.2.2 � Moment‑Based AMA Indices

The recent moment-based GSA approach proposed by Dell’Oca et al. (2017, 2020) rests 
on the idea that the quantification of the effects of model parameter uncertainty on various 
statistical moments of the ensuing pdf of model outputs can provide enhanced understand-
ing of model functioning. Dell’Oca et al. (2017) introduce Moment-Based sensitivity met-
rics (termed AMA indices) according to which one can evaluate the influence of uncertain 
model parameter on key elements of the model output pdf, as embedded in its associated 
statistical moments. The AMA indices are defined as follows (Dell’Oca et al. (2017)):

Here, AMAMxi
 represents the indices associated with a model parameter xi and a given 

statistical moment M of the pdf of model output y (considering the first four statistical 
moments of y, M = E for the mean, M = V  for the variance, M = � for the skewness, and 
M = k for the kurtosis). The AMA indices are intended to quantify the expected change of 
each statistical moment of y due to our knowledge of xi . Large values of these indices indi-
cate that variations of the associated parameter strongly affect the statistical moments of y.

3 � Results and Discussion

3.1 � GSA of Methane Flow Model

The 15 uncertain model parameters of model (1) are considered to vary across the support 
defined through the ranges of variability listed in Table 1. These ranges have been designed 
upon considering available literature references (values typically employed for the model 
parameters in low-permeability geomaterials). With reference to three of the model param-
eters i.e., Lpo , �1 , and � , only very limited information is available from the literature, to 
the best of our knowledge (Karniadakis et al. 2005). Thus, we take the values considered 
by Wu et al. (2016) and Karniadakis et al. (2005) as the centers of corresponding ranges 
of variability. We then consider their (uniform) distributions to be characterized by a given 

(9)Sxi =
V
[
E
[
y|xi

]]

V
[
y
] .

(10)AMAMxi
=

1

|M[y]|
E
[|||M[y] −M

[
y|xi

]|||
]
.
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coefficient of variation (that we set as 30%), thus enabling us to imprint these parame-
ters with a sufficiently broad range of variability, which is also consistent with the degree 
of variability documented for the remaining uncertain parameters (see Table 1). Finally, 
we allow the fractal dimension Df to vary within its theoretical bounds (i.e., 2 < Df < 3) 
(Coppens 1999; Coppens and Dammers 2006). Methane properties (such as viscosity, 
compressibility, and deviation factor) are estimated using miniREFPROP (Lemmon et al. 
2018), a tool that incorporates equations of state for a variety of gas species. With refer-
ence to methane miniREFPROP relies on the equation of state proposed by Setzmann and 
Wagner (1991).

Table  2 lists the moment-based GSA indices related to mean (AMAExi
 ), variance 

(AMAVxi
 ), skewness (AMA�xi ), and kurtosis (AMAkxi ) of J as well as the principal Sobol’ 

indices ( Sxi ) evaluated for methane flow rate values rendered by Eq. (1) for the case in 
which all model parameters are modeled as independent and identically distributed random 
variables, each characterized by a uniform pdf (Case a).

While the strength of the influence of the reference pore radius ( ro ) on the model output 
is not the same for the (first four) statistical moments, the AMA indices clearly suggest that 
conditioning on ro has (overall) the strongest impact on the first four statistical moments 
of methane flow. This is then followed by reference porosity, pore pressure, tortuosity, and 
temperature. While the remaining model uncertain parameters still exert some influence 
on the (first four) statistical moments of J (as evidenced by the non-zero values of AMA 
indices), the strength of their influence can be considered as marginal when compared to 
the above mentioned quantities, which are seen to be key in driving the main features of 
the pdf of methane flow. In the following, we denote as most influential parameters for 
metrics AMAMxi

 or Sxi all parameters xi corresponding to AMAMxi
∕
∑

xi
AMAMxi

≥ 5% or 
Sxi∕

∑
xi
Sxi ≥ 5% , respectively. Parameters identified as most influential by each of these 

metrics are reported in bold in Table 2. Values of the Sobol’ principal indices are generally 

Table 2   Moment-based GSA 
indices AMAMxi

 and Sobol’ 
principal indices Sxi for all xi 
parameters included in Eq. (1)

All model parameters are described by uniform pdfs (Case a). Values 
of each metric identifying the most influential parameters are reported 
in bold

xi AMAExi
AMAVxi

Sxi AMA�xi AMAkxi

r
o

0.728 0.798 0.417 0.562 0.757
�
o

0.453 0.643 0.160 0.345 0.464
p 0.335 0.484 0.091 0.208 0.476
� 0.181 0.356 0.026 0.114 0.213
T 0.094 0.163 0.007 0.027 0.046
q 0.061 0.119 0.003 0.011 0.022
t 0.057 0.114 0.003 0.01 0.021
pc 0.028 0.063 0.001 0.008 0.014
� 0.010 0.005 0 0.004 0.007
ΔH 0.001 0.002 0 0.002 0.005
D

f
0.002 0.003 0 0.002 0.004

pL
o

0.002 0.003 0 0.002 0.004
�
0

0.001 0.002 0 0.002 0.004
�
1

0.001 0.002 0 0.002 0.004
� 0.001 0.002 0 0.002 0.004
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consistent with the results stemming from the moment-based GSA, even as � and T are 
not identified as influential to the model output according to the Sobol’ principal index. 
This result is consistent with the observation that conditional variance can be larger or 
smaller than its unconditional counterpart (see also Fig. 1b) in a way that its integral over 
ΓT vanishes. A similar effect associated with the principal Sobol’ indices was identified by 
Dell’Oca et al. (2017) with reference to the Ishigami function, which is a widely used ana-
lytical benchmark in sensitivity studies.

Figure 1 depicts the first four statistical moments of J conditioned on values of the five 
most influential uncertain parameters selected on the basis of Table 2. Uncertain param-
eters are normalized to span the unit interval, for ease of interpretation. Unconditional 
moments are also depicted as a reference. We note that, when considering conditioning on 
the model parameters which have been identified as non-influential according to the met-
rics employed, the difference between conditional and unconditional moments is negligible 
(details not shown).

As expected, conditioning on values of the reference pore radius ( ro ) yields the most 
marked effects to all of the statistical moments considered (see black dotted curves in 
Fig. 1). Mean and variance of methane flow generally increase with ro . A minimum mean 
methane flow value is attained for 2 < ro < 15 nm (corresponding to the range of normal-
ized values comprised between 0 and 0.15 in Fig.  1). The dominant transport mecha-
nism for ro < 15 nm is surface diffusion, the strength of its contribution decreasing with 
increasing ro . As ro increases, the strength of the contribution related to surface diffusion 
decreases faster than the corresponding increase of the slip flow contribution, thus result-
ing in a minimum value for the expected methane flow for values of the reference pore 
radius comprised in the aforementioned range. Otherwise, skewness and kurtosis (i) are 
affected by variations of the reference pore radius when the latter is smaller than 20 nm 
(corresponding to a normalized value of 0.18); and (ii) are generally constant for ro > 20 

(a) (b)

(c) (d)

Fig. 1   First four statistical moments of methane flow J (T/m2 year) conditional on values of the most influ-
ential model parameters (see Table 2): a expected value, b variance, c skewness, and d kurtosis. The cor-
responding unconditional moments (i.e., SMY ) are also depicted (gray bold horizontal lines). Intervals of 
variation of the uncertain model parameters are rescaled within the unit interval for graphical representation 
purposes. All model parameters are described by uniform pdfs (Case a)
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nm. Nevertheless, we note that these (statistical) moments are still remarkably different 
from their unconditional counterparts even for large ro values, thus evidencing the impact 
of acquired knowledge on ro on reducing the asymmetry (as rendered by the skewness) and 
the peakedness and tailedness (i.e., the probability associated with extreme values, as ren-
dered by the kurtosis) of the methane flow pdf.

Conditioning on pore pressure imprints variations to the statistics of the model output 
which are qualitatively similar to those associated with ro . Larger values of mean and vari-
ance of J are linked to larger values of p. This result descends from the linear relationship 
between pore pressure and slip flow (Eq. (7)), the latter being the dominant mechanism in 
systems formed by larger pores. Conditional skewness and kurtosis are constant (albeit dif-
ferent from their unconditional counterpart) across most of the variability range of p, sharp 
variations of these quantities being associated with conditioning on low values of p (i.e., 
corresponding to pore pressure values smaller than 10 MPa). Our findings about the influ-
ence of p on J are consistent with the results of Sun et al. (2017). These authors find that 
increasing values of pore pressure lead to an increase of apparent permeability (which is in 
turn linearly proportional to gas flow) for ro > 10 nm. Wu et al. (2016) document a similar 
behavior due to the dominance of the slip flow component (which is proportional to p; see 
Eq. (7)) in systems characterized by large pores.

While the impact of reference porosity and tortuosity is not analyzed in any of the avail-
able previous studies (Wu et al. 2015b, 2016, 2017; Sun et al. 2017; Zhang et al. 2018), our 
results rank �o and � as the second and fourth most influential parameters in the evaluation 
of the pdf of J, respectively (see Table 2). The correction factors for bulk (Eq. (23)) and 
surface (Eq. (17)) diffusion flow increase linearly with reference porosity. Thus, increased 
values of �o yield corresponding increases of the methane flow (and hence of its first two 
statistical moments) independent of the dominant transport mechanism. Conditional mean 
and variance of J decrease with increasing values of tortuosity. This is in line with the 
observation that all gas transport mechanisms are characterized by an inverse proportional-
ity between J and � through the correction factor which is related to these processes tak-
ing place within a porous domain. These elements are consistent with a physical picture 
according to which fluid flow rates across a porous geomaterial are expected to increase 
and decrease with increasing porosity and tortuosity, respectively. Unlike pore pressure and 
reference pore radius, conditioning on reference porosity and tortuosity yields a reduction 
of skewness and kurtosis of the pdf of J, whose conditional values remain constant inde-
pendent of the value of �o and/or �.

Conditioning on temperature (T) affects the mean and variance of the methane flow pdf 
in a way which is qualitatively similar to the effect of tortuosity (albeit quantitatively to a 
lesser extent) due to the inverse proportionality between J and T. Otherwise, the overall 
shape of the pdf of J is not significantly influenced by the knowledge of T, values of con-
ditional skewness and kurtosis practically coincide with their unconditional counterparts.

The results listed in Table 2 suggest that statistical moments of methane flow are virtu-
ally insensitive to the remaining parameters (i.e., 10 of the 15 model parameters). There-
fore, setting any of these parameters at given values within the variability space considered 
in our analysis yields only minor changes in the prediction of J. In this context, our results 
suggest that methane flow can be assessed with an acceptable degree of reliability even in 
the presence of scarce information about several parameters embedded in Eq. (1) such as, 
e.g., the overburden pressure (i.e., pc ), the power-law exponents related to porosity (i.e., 
q) and pore radius (i.e., t), the fractal dimension of the pore surface (i.e., Df ), or the isos-
teric adsorption heat of the geomaterial (i.e., ΔH ). Further to this, our results suggest the 
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opportunity to prioritize allocation of resources to robust characterization of (in descending 
order) reference pore radius, reference porosity, pore pressure, tortuosity, and temperature.

3.2 � Impact of the Model Parameter pdfs on GSA Results

In this section, we analyze the impact of the choice of model parameter distribution on the 
pdf of J. As described in Sect. 2.2, we compare the GSA outcomes obtained with a uniform 
pdf for all model parameters (Case a) and illustrated in Sect. 3.1 against those computed 
when (i) all model parameters are characterized through (truncated) Gaussian pdfs (Case 
b) and (ii) ro is described by a (truncated) log-normal pdf while the remaining parameters 
are described as in Case a (Case c). To provide a consistent comparison, Gaussian and log-
normal pdfs are defined to honor the same mean and variance of the scenario associated 
with Case a.

Table  3 lists values of AMA and principal Sobol’ indices for each of the parameters 
embedded in Eq. (1) for Case b. Results of Tables 3 and 2 are qualitatively similar, i.e., 
the GSA yields similar results considering a uniform or a (truncated) Gaussian pdf for all 
model parameters. Our results imbue us with confidence about the documented ranking of 
parameter importance, with reference pore radius, reference porosity, pore pressure, tortu-
osity, and temperature identified as the model parameters being the key drivers to the eval-
uation of the major features of the pdf of methane flow. Values of statistical moments of J 
conditioned on model parameters for Case b are very similar to those depicted in Fig. 1 for 
Case a (details not shown).

Table 4 lists the AMA and the principal Sobol’ indices associated with J for Case c. 
In this case, it is even more evident that the uncertainty of ro is strongly dominant on the 
evaluation of the pdf of methane flow. Additionally, the blockage/migration ratio of the 

Table 3   Moment-based GSA 
indices AMAMxi

 and Sobol’ 
principal indices Sxi for all xi 
parameters included in Eq. (1)

All model parameters are described by truncated Gaussian distribu-
tions (Case b). Values of each metric identifying the most influential 
parameters are reported in bold

xi AMAExi
AMAVxi

Sxi AMA�xi AMAkxi

r
o

0.787 0.828 0.761 0.608 0.692
�
o

0.452 0.674 0.242 0.306 0.402
p 0.321 0.481 0.131 0.152 0.302
� 0.182 0.363 0.041 0.088 0.157
T 0.100 0.178 0.012 0.027 0.042
q 0.063 0.122 0.005 0.010 0.018
t 0.059 0.117 0.004 0.009 0.016
pc 0.025 0.056 0.001 0.006 0.011
� 0.007 0.005 0 0.005 0.008
ΔH 0.001 0.002 0 0.003 0.007
D

f
0.001 0.003 0 0.002 0.005

pL
o

0.001 0.002 0 0.003 0.006
�
0

0.001 0.002 0 0.002 0.005
�
1

0.001 0.002 0 0.003 0.006
� 0.001 0.002 0 0.003 0.006
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adsorbed molecules ( � ) gains importance with respect to previous cases, quantitatively 
impacting the pdf of J to an extent which is similar to what exhibited by temperature. This 
feature is attributed to the abundance of small pores in this scenario, which favors the dom-
inance of the surface diffusion flow mechanism (linked to parameter �).

Figure 2 depicts the first four statistical moments of methane flow conditioned on values 
of influential uncertain parameters for Case c (see Table 4). Unconditional moments are 
also shown as a reference. Overall, the results are qualitatively similar to those embedded 
in Fig. 1 for Case a. The unconditional mean and variance of J in Case c are reduced (to 
approximately one-fourth and one-sixth, respectively) with respect to the corresponding 
values for Case a. Otherwise, unconditional skewness and kurtosis increase by about 2.6 
and 6 times, respectively. These behaviors are attributed to the larger frequency of small 
reference pore radius values considered in Case c with respect to Case a (and b). Low 
values of reference pore radius are associated with large values of surface diffusion and 
to small values of mean and variance of methane flow. Conditioning on ro and �o imprints 
variations to the model output mean and variance across the entire range of variability of 
these parameters (Fig. 2). We further note that conditioning on ro strongly reduces skew-
ness and kurtosis of the pdf of J, thus reducing the probability associated with extreme 
(large) values of J.

Conditioning on p induces variations in the (first four) statistical moments of the model 
output. Conditioning on larger values of this quantity yields the highest values of mean and 
variance of the model output. A minimum in the values of conditional variance, skewness, 
and kurtosis is observed in the interval 1 MPa< p <15 MPa. Finally, the blockage/migra-
tion ratio of adsorbed molecules displays (a small but noticeable) influence on the model 
output pdf. Mean and variance of J decrease with increasing values of � . This behavior is 
expected, given the nature of � , high values of this parameter being related to significant 
blockage of gas molecules on the geomaterial surface.

Table 4   Moment-based GSA 
indices AMAMxi

 and Sobol’ 
principal indices Sxi for all xi 
parameters included in Eq. (1)

Reference pore radius ( r
o
 ) is described by a (truncated) log-normal 

distribution and the remaining model parameters are described by uni-
form distributions (Case c). Values of each metric identifying the most 
influential parameters are reported in bold

xi AMAExi
AMAVxi

Sxi AMA�xi AMAkxi

r
o

3.332 3.649 2.803 0.788 0.883
�
o

0.452 0.690 0.064 0.212 0.404
p 0.192 0.507 0.012 0.152 0.263
� 0.181 0.358 0.011 0.070 0.167
T 0.090 0.173 0.003 0.024 0.050
q 0.063 0.121 0.001 0.008 0.020
t 0.041 0.112 0.001 0.008 0.020
pc 0.023 0.061 0 0.007 0.016
� 0.112 0.010 0.005 0.021 0.027
ΔH 0.002 0.006 0 0.004 0.010
D

f
0.02 0.008 0 0.011 0.018

pL
o

0.025 0.007 0 0.011 0.017
�
0

0.002 0.006 0 0.005 0.013
�
1

0.002 0.006 0 0.005 0.012
� 0.002 0.006 0 0.004 0.010
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3.3 � Scaling of Gas Flow Model and Identification of Dominant Flow Mechanisms

A pure diffusion modeling approach has been shown to represent with an acceptable degree 
of accuracy the movement of methane in low-permeability media (Lu et  al. 2015). Such a 
model embeds all physics governing the system dynamics in a unique parameter (i.e., a dif-
fusion coefficient D) and, under steady-state conditions, the mass flow rate of methane can be 
expressed as

where �C∕�l represents the spatial gradient of methane concentration (C), i.e., the driving 
force of the system. Considering an isothermal system under single-phase flow and intro-
ducing the density of methane, � = pM∕RTZ , Eq. (11) can be written as

We complete our set of results and discussion by noting that the model illustrated in 
Sect. 2.1 coincides with a pure diffusion model (Eq. (12)) under single-phase conditions, as 
we illustrate in the following.

Equation (1) can be written as

with B = Bv + Bk + Bss , where

(11)Jd = −D
�C

�l
,

(12)Jd = −
DM

RTZ

(
1 −

p

Z

dZ

dp

)
�p

�l
.

(13)J = −B
�p

�l
,

(a) (b)

(c)

(d)

Fig. 2   First four statistical moments of methane flow J (T/m2 year) conditional on values of the most influ-
ential model parameters (see Table 4): a expected value, b variance, c skewness, and d kurtosis. The cor-
responding unconditional moments (i.e., SMY ) are also depicted (gray bold horizontal lines). Intervals of 
variation of the uncertain model parameters are rescaled within the unit interval for graphical representation 
purposes. Note that r

o
 is described by a truncated log-normal pdf and the remaining model parameters are 

described by uniform pdfs (Case c)



523Sensitivity Analysis and Quantification of the Role of Governing…

1 3

Comparing Eqs. (12) and (13), it can be seen that the diffusion coefficient D can be decom-
posed according to each flow mechanism as

with

where i = v, k, ss. Note that we introduce three effective diffusion coefficients in Eq. (15). 
These are associated with the slip flow ( Dv ), the Knudsen diffusion ( Dk ), and the surface 
diffusion ( Dss ) components of model (1), respectively, and, to the best of our knowledge, 
are new for the flow model considered in this work. The variety of mechanisms included in 
model (1) are fully encapsulated in an overall diffusion coefficient D as illustrated in Eqs. 
(12), (15), and (16), where the contribution of each of the processes described in Sect. 2.1 
is clearly recognizable.

Figure 3 depicts color maps quantifying the relative strength of the contribution of 
the three flow mechanism (slip flow in red, Knudsen diffusion in green, and surface 
diffusion in blue) to the overall diffusion coefficient defined by Eq. (15) considering 
various combinations of all uncertain parameters embedded in Eq. (1) for all scenarios 
investigated. Each sub-plot depicts the average value of the ratio Di∕D as a function of 
two parameters (i.e., averaging is performed with respect to uncertain parameters with 
the exception of the two varying along the (normalized) axes of the subplots), selected 
among those which were classified as most influential to the system (see Sects. 3.1 and 
3.2).

Our results indicate that the dominant flow mechanism in defining the overall diffusion 
coefficient (and consequently the methane flow) is slip flow (in red in Fig. 3) in all of the 
analyzed cases. An exception is observed for small values of the reference pore radius and/
or small pore pressure, where surface diffusion is dominant. The contribution of Knudsen 
diffusion mechanism is always negligible. This suggests that it is possible to simplify Eq. 
(1) by neglecting the Knudsen diffusion mechanism in the evaluation of methane flow.

Further simplifications of the methane flux model illustrated in Sect. 2.1 can be consid-
ered when the dominance of a given flow mechanism can be clearly established. For exam-
ple, Fig. 3 suggests that the identification of the dominant flow mechanism is affected by 
the pdf of the uncertain model parameters. If ro is represented by a Gaussian (or uniform) 
pdf, J is mainly dominated by slip flow or surface diffusion with a sharp transition zone 
between these two mechanisms. Otherwise, when ro is represented by a log-normal pdf 
both mechanisms (i.e., slip flow and surface diffusion) may play an important role in the 
estimation of methane migration independent of the value of the model parameters.

Finally, we evaluate the pdf of the overall diffusion coefficient (D) by making use 
of Eqs. (15) and (16) for all scenarios analyzed. Sample pdfs as well as corresponding 

(14)

Bv = wv�mb

r2pM

8�ZRT
(1 + �Kn)

(
1 +

4Kn

1 + Kn

)
,

Bk = wk

2

3
�mbr�

Df−2
(
8ZM

�RT

)1∕2 p

Z
Cg,

Bss = �ms

DsCsc

p
.

(15)D = Dv + Dk + Dss,

(16)Di =
Bi RTZ

M
(
1 −

p

Z

dZ

dp

) ,
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Maximum Likelihood (ML) fits of log-normal distributions are depicted in Fig. 4 in loga-
rithmic and natural scales. Positive skewness and large kurtosis are evident for all cases, 
these being larger for Case c, as illustrated in Sect. 3.2. These results reinforce the observa-
tion of higher frequencies of low J values in Case c with respect to the other settings inves-
tigated. Sample statistical moments (mean, variance, coefficient of variation, skewness, and 
kurtosis) of the pdf of D are listed in Table 5 together with the parameters of the ML-based 
log-normal models. The overall diffusion coefficient can vary across about four orders of 
magnitude (i.e., between 10−9 and 10−5 m 2/s). As expected, the largest variance of D is 
associated with Case a, where all parameters of model (1) are characterized by uniform 
pdfs. Otherwise, the largest coefficient of variation of D is associated with Case c. Finally, 
we remark that the results embedded in Fig. 4 can be of practical assistance, as they allow 
for fast evaluations of the probability that methane flow in low-permeability media exceeds 
a given threshold value.

Fig. 3   Relative contribution of the effective diffusion coefficients ( D
v
 , D

k
 , and D

ss
 ) to the overall diffusion 

coefficient D rendered by Eq. (15) and (16). Intervals of variation of the uncertain model parameters are 
rescaled within the unit interval for graphical representation purposes
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4 � Conclusions

We perform a rigorous Global Sensitivity Analysis (GSA) to assess the impact of uncertain 
model parameters on the evaluation of methane flow (J) in low-permeability media, such 
as caprocks. We study three scenarios that consider differing characterizations of the prob-
ability density function (pdf) describing model uncertain parameters to assess the impact 
of this choice on the results of the analysis. In details, we consider settings according to 
which (i) all model parameters are represented through uniform pdfs, (ii) all model param-
eters are represented through (truncated) Gaussian pdfs, and (iii) the reference pore radius 
is characterized by a (truncated) log-normal pdf, all remaining parameters being associated 
with uniform pdfs.

Our work leads to the following main conclusions: 

1.	 The uncertainty of methane flow is governed by uncertainty in the reference pore radius, 
followed (in decreasing order of importance) by reference porosity, pore pressure, tor-
tuosity, temperature, and (to a lesser extent) blockage migration ratio of adsorbed mol-
ecules. The remaining parameters of the investigated model (Sect. 2.1) being practically 
uninfluential. This result can assist future efforts to allocate resources during experi-
mental activities aimed at characterizing methane flow in caprocks.

Fig. 4   Probability density functions (in logarithmic (a) and natural (b) scale) of the overall diffusion coef-
ficient rendered by Eq. (15) for model parameters characterized by (i) uniform distributions (Case a), (ii) 
truncated normal distributions (Case b), and (iii) uniform distributions with the exception of r

o
 which is rep-

resented by a log-normal distribution (Case c). Dashed curves represent a ML-based fit with a log-normal 
model for each case

Table 5   Sample mean, variance, 
coefficient of variation, 
skewness, and kurtosis of the 
overall diffusion coefficient D 
(m2/s) (Eq. (15)) together with 
parameters of log-normal models 
( � and � ) evaluated through ML 
fits against sample pdfs

Feature Case a Case b Case c

Mean ( ×10−6) 3.14 2.96 0.78

Variance ( ×10−12) 16.3 9.53 2.46
CV 1.29 1.04 2.01
Skewness 2.21 1.95 5.90
Kurtosis 9 8.1 53.54
� − 13.53 − 13.31 − 14.92
� 1.47 1.21 1.26
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2.	 The gas flow model introduced by Wu et al. (2016) (Sect. 2.1) can be related to a sim-
ple pure diffusion model by introducing an overall diffusion coefficient (D). The latter 
represented by the contribution of three effective diffusion coefficients, each associated 
with a well-defined flow mechanism. The ensuing mathematical structure of D allows 
distinguishing the relative contribution of all flow mechanisms to the overall methane 
flow. The relationship we derive also enables one to estimate the pdf of D when the 
model parameters are uncertain. The latter is a useful tool which can assist the proba-
bilistic evaluation of J even in the absence of the detailed amount of information which 
is typically required to characterize the full methane flow model.

3.	 The shape of the pdf employed to characterize uncertain model parameters affects the 
results of our GSA. Additionally, it has a marked effect in the definition of the dominat-
ing transport mechanisms of the model. With reference to the model parameter vari-
ability considered in this study, as evaluated on the basis of available information, our 
results suggest that the dominant transport mechanism is slip flow. Surface diffusion 
plays also an important role, especially for low values of reference pore radius and pore 
pressure, while Knudsen diffusion is negligible in all of the test cases analyzed.

Appendix: Additional mathematical details related to the description 
of the gas flow model introduced in Sect. 2.1

The correction factor �ms is given by

with

where rad is thickness of the adsorbed gas layer, dm is gas molecule diameter, pc is overbur-
den pressure, po is atmospheric pressure, and � is evaluated through a Langmuir equilib-
rium isotherm as

where pL is a Langmuir pressure evaluated with

The correction factor �mb is expressed as

(17)�ms =
�

�

(
1 −

rad

r

)2
[(

1 −
rad

r

)−2

− 1

]
,

(18)rad = r − dm�,

(19)r = ro

(
pc − p

po

)−t

,

(20)� = �o

(
pc − p

po

)−q

,

(21)� =
p∕Z

pL + p∕Z
,

(22)pL = pLo exp
(
−
ΔH

RT

)
.
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The value of � (in Eq. (7)) is evaluated through

where uncertain parameters �0 , �1 , and � allow representing the variation of � as a function 
of the Knudsen number ( Kn ). Here, �0 represents the maximum value of � for large values 
of Kn , �1 governs the values of � for small values of Kn , and � is a shape parameter.

The surface diffusion coefficient ( Ds ) is given by

with

The adsorbed concentration ( Csc ) is given by

where NA is the Avogadro Constant (6.02×10−23/mol).

Funding  Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement. The 
authors acknowledge financial support from Geolog srl.

Data Availability  All data used in the paper will be retained by the authors for at least 5 years after publica-
tion and will be available to the readers upon request.

Code Availability  Codes used in this paper are available in the following github repository https://​github.​
com/​rlsan​dovalp/​Sensi​tivity_​Analy​sis.

Declarations 

Conflict of interest  Not applicable

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

(23)�mb =
�

�

(
1 −

rad

r

)2

.

(24)� = �0
2

�
tan−1

(
�1K

�

n

)
,

(25)Ds = D0
s

(1 − �) +
�

2
�(2 − �) + H(1 − �)(1 − �)

�

2
�2

(
1 − � +

�

2
�

)2
,

(26)D0
s
= 8.29 × 10−7 exp

(
−
ΔH0.8

RT

)
,

(27)H(1 − �) =

{
0, if � ≥ 1

1, 0 ≤ � ≤ 1
.

(28)Csc =
4�M

�d3
m
NA

,

https://github.com/rlsandovalp/Sensitivity_Analysis
https://github.com/rlsandovalp/Sensitivity_Analysis
http://creativecommons.org/licenses/by/4.0/


528	 L. Sandoval et al.

1 3

References

Bianchi Janetti, E., Guadagnini, L., Riva, M., Guadagnini, A.: Global sensitivity analyses of multiple con-
ceptual models with uncertain parameters driving groundwater flow in a regional-scale sedimentary 
aquifer. J. Hydrol. 574, 544–556 (2018). https://​doi.​org/​10.​1016/j.​jhydr​ol.​2019.​04.​035

Ceresa, L., Guadagnini, A., Porta, G.M., Riva, M.: Formulation and probabilistic assessment of reversible 
biodegradation pathway of Diclofenac in groundwater. Water Res. 204(117), 466 (2021). https://​doi.​
org/​10.​1016/J.​WATRES.​2021.​117466

Chiquet, P., Daridon, J.L., Broseta, D., Thibeau, S.: CO2/water interfacial tensions under pressure and 
temperature conditions of CO2 geological storage. Energy Convers. Manag. 48(3), 736–744 (2007). 
https://​doi.​org/​10.​1016/J.​ENCON​MAN.​2006.​09.​011

Ciriello, V., Guadagnini, A., Di Federico, V., Edery, Y., Berkowitz, B.: Comparative analysis of formula-
tions for conservative transport in porous media through sensitivity-based parameter calibration. Water 
Resour. Res. 49(9), 5206–5220 (2013). https://​doi.​org/​10.​1002/​wrcr.​20395

Civan, F.: Effective correlation of apparent gas permeability in tight porous media. Transp. Porous Media 
82(2), 375–384 (2010). https://​doi.​org/​10.​1007/​s11242-​009-​9432-z

Colombo, I., Porta, G.M., Ruffo, P., Guadagnini, A.: Uncertainty quantification of overpressure buildup 
through inverse modeling of compaction processes in sedimentary basins. Hydrogeol. J. 25(2), 385–
403 (2017). https://​doi.​org/​10.​1007/​s10040-​016-​1493-9

Coppens, M.O.: The effect of fractal surface roughness on diffusion and reaction in porous catalysts—from 
fundamentals to practical applications. Catal. Today 53(2), 225–243 (1999). https://​doi.​org/​10.​1016/​
S0920-​5861(99)​00118-2

Coppens, M.O., Dammers, A.J.: Effects of heterogeneity on diffusion in nanopores-from inorganic materials 
to protein crystals and ion channels. Fluid Phase Equilib. 241(1–2), 308–316 (2006). https://​doi.​org/​10.​
1016/J.​FLUID.​2005.​12.​039

Darabi, H., Ettehad, A., Javadpour, F., Sepehrnoori, K.: Gas flow in ultra-tight shale strata. J. Fluid Mech. 
710, 641–658 (2012). https://​doi.​org/​10.​1017/​jfm.​2012.​424

Dell’Oca, A., Riva, M., Guadagnini, A.: Moment-based metrics for global sensitivity analysis of hydro-
logical systems. Hydrol. Earth Syst. Sci. 21(12), 6219–6234 (2017). https://​doi.​org/​10.​5194/​
hess-​21-​6219-​2017

Dell’Oca, A., Riva, M., Guadagnini, A.: Global sensitivity analysis for multiple interpretive models with 
uncertain parameters. Water Resour. Res. 56(2), 1–20 (2020). https://​doi.​org/​10.​1029/​2019W​R0257​54

Dembicki-Jr, H.: Petroleum geochemistry for exploration and production. Candice Janco (2017). https://​doi.​
org/​10.​1016/j.​jhsb.​2006.​10.​005

Dong, J.J., Hsu, J.Y., Wu, W.J., Shimamoto, T., Hung, J.H., Yeh, E.C., Wu, Y.H., Sone, H.: Stress-depend-
ence of the permeability and porosity of sandstone and shale from TCDP Hole-A. Int. J. Rock Mech. 
Min. Sci. 47(7), 1141–1157 (2010). https://​doi.​org/​10.​1016/J.​IJRMMS.​2010.​06.​019

Hughes, J.D.: Energy: a reality check on the shale revolution. Nature 494(7437), 307–308 (2013). https://​
doi.​org/​10.​1038/​49430​7a

Javadpour, F., Singh, H., Rabbani, A., Babaei, M., Enayati, S.: Gas flow models of shale: a review. Energy 
Fuels 35(4), 2999–3010 (2021). https://​doi.​org/​10.​1021/​acs.​energ​yfuels.​0c043​81

Karniadakis, G., Beskok, A., Aluru, N.: Microflows and Nanoflows. Springer, Berlin (2005)
Koks, E.E., Bočkarjova, M., de Moel, H., Aerts, J.C.: Integrated direct and indirect flood risk modeling: 

development and sensitivity analysis. Risk Anal. 35(5), 882–900 (2015). https://​doi.​org/​10.​1111/​risa.​
12300

la Cecilia, D., Porta, G.M., Tang, F.H., Riva, M., Maggi, F.: Probabilistic indicators for soil and groundwa-
ter contamination risk assessment. Ecol. Ind. 115(106), 424 (2020). https://​doi.​org/​10.​1016/j.​ecoli​nd.​
2020.​106424

Laloy, E., Rogiers, B., Vrugt, J.A., Mallants, D., Jacques, D.: Efficient posterior exploration of a high-
dimensional groundwater model from two-stage Markov chain Monte Carlo simulation and polynomial 
chaos expansion. Water Resour. Res. 49(5), 2664–2682 (2013). https://​doi.​org/​10.​1002/​wrcr.​20226

Lemmon, E.W., Bell, I., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference 
Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Stand-
ards and Technology (2018).https://​doi.​org/​10.​18434/​T4/​15025​28

Li, Z., Dong, M., Li, S., Huang, S.: CO2 sequestration in depleted oil and gas reservoirs-caprock characteri-
zation and storage capacity. Energy Convers. Manage. 47(11–12), 1372–1382 (2006). https://​doi.​org/​
10.​1016/J.​ENCON​MAN.​2005.​08.​023

Liu, J., Wang, J.G., Gao, F., Ju, Y., Zhang, X., Zhang, L.C.: Flow consistency between non-darcy flow in 
fracture network and nonlinear diffusion in matrix to gas production rate in fractured shale gas reser-
voirs. Transp. Porous Media 111(1), 97–121 (2016). https://​doi.​org/​10.​1007/​s11242-​015-​0583-9

https://doi.org/10.1016/j.jhydrol.2019.04.035
https://doi.org/10.1016/J.WATRES.2021.117466
https://doi.org/10.1016/J.WATRES.2021.117466
https://doi.org/10.1016/J.ENCONMAN.2006.09.011
https://doi.org/10.1002/wrcr.20395
https://doi.org/10.1007/s11242-009-9432-z
https://doi.org/10.1007/s10040-016-1493-9
https://doi.org/10.1016/S0920-5861(99)00118-2
https://doi.org/10.1016/S0920-5861(99)00118-2
https://doi.org/10.1016/J.FLUID.2005.12.039
https://doi.org/10.1016/J.FLUID.2005.12.039
https://doi.org/10.1017/jfm.2012.424
https://doi.org/10.5194/hess-21-6219-2017
https://doi.org/10.5194/hess-21-6219-2017
https://doi.org/10.1029/2019WR025754
https://doi.org/10.1016/j.jhsb.2006.10.005
https://doi.org/10.1016/j.jhsb.2006.10.005
https://doi.org/10.1016/J.IJRMMS.2010.06.019
https://doi.org/10.1038/494307a
https://doi.org/10.1038/494307a
https://doi.org/10.1021/acs.energyfuels.0c04381
https://doi.org/10.1111/risa.12300
https://doi.org/10.1111/risa.12300
https://doi.org/10.1016/j.ecolind.2020.106424
https://doi.org/10.1016/j.ecolind.2020.106424
https://doi.org/10.1002/wrcr.20226
https://doi.org/10.18434/T4/1502528
https://doi.org/10.1016/J.ENCONMAN.2005.08.023
https://doi.org/10.1016/J.ENCONMAN.2005.08.023
https://doi.org/10.1007/s11242-015-0583-9


529Sensitivity Analysis and Quantification of the Role of Governing…

1 3

Lu, J., Larson, T.E., Smyth, R.C.: Carbon isotope effects of methane transport through Anahuac Shale: 
a core gas study. J. Geochem. Explor. 148, 138–149 (2015). https://​doi.​org/​10.​1016/j.​gexplo.​2014.​
09.​005

Maina, F.Z., Siirila-Woodburn, E.R.: The role of subsurface flow on evapotranspiration: a global sen-
sitivity analysis. Water Resour. Res. 56(7), 1–20 (2020). https://​doi.​org/​10.​1029/​2019W​R0266​12

Maina, F.Z., Guadagnini, A., Riva, M.: Impact of multiple uncertainties on gravimetric variations across 
randomly heterogeneous aquifers during pumping. Adv. Water Resour. 154(103), 978 (2021). 
https://​doi.​org/​10.​1016/J.​ADVWA​TRES.​2021.​103978

Mehmani, A., Prodanović, M., Javadpour, F.: Multiscale, multiphysics network modeling of shale 
matrix gas flows. Transp. Porous Media 99(2), 377–390 (2013). https://​doi.​org/​10.​1007/​
s11242-​013-​0191-5

Mohd Amin, S., Weiss, D.J., Blunt, M.J.: Reactive transport modelling of geologic CO2 sequestration in 
saline aquifers: the influence of pure CO2 and of mixtures of CO2 with CH4 on the sealing capacity 
of cap rock at 37◦ C and 100bar. Chem. Geol. 367, 39–50 (2014). https://​doi.​org/​10.​1016/J.​CHEMG​
EO.​2014.​01.​002

Naraghi, M.E., Javadpour, F., Ko, L.T.: An object-based shale permeability model: non-Darcy gas flow, 
sorption, and surface diffusion effects. Transp. Porous Media 125(1), 23–39 (2018). https://​doi.​org/​
10.​1007/​s11242-​017-​0992-z

Pan, Z., Connell, L.D., Camilleri, M., Connelly, L.: Effects of matrix moisture on gas diffusion and flow 
in coal. Fuel 89(11), 3207–3217 (2010). https://​doi.​org/​10.​1016/j.​fuel.​2010.​05.​038

Rani, S., Prusty, B.K., Pal, S.K.: Adsorption kinetics and diffusion modeling of CH4 and CO2 in Indian 
shales. Fuel 216, 61–70 (2017). https://​doi.​org/​10.​1016/j.​fuel.​2017.​11.​124

Saltelli, A., Sobol’, I.M.: Sensitivity analysis for nonlinear mathematical models: numerical experience 
(in Russian). Math. Models Comput. Exp. 7(11), 16–28 (1995)

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S.: Variance based sensitivity 
analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Com-
mun. 181(2), 259–270 (2010)

Schloemer, S., Krooss, B.M.: Molecular transport of methane, ethane and nitrogen and the influence of 
diffusion on the chemical and isotopic composition of natural gas accumulations. Geofluids 4(1), 
81–108 (2004). https://​doi.​org/​10.​1111/j.​1468-​8123.​2004.​00076.x

Schlömer, S., Krooss, B.M.: Experimental characterisation of the hydrocarbon sealing efficiency of cap 
rocks. Mar. Pet. Geol. 14(5), 565–580 (1997). https://​doi.​org/​10.​1016/​S0264-​8172(97)​00022-6

Setzmann, U., Wagner, W.: A new equation of state and tables of thermodynamic properties for methane 
covering the range from the melting line to 625 K at pressures up to 100 MPa. J. Phys. Chem. Ref. 
Data 20(6), 1061–1155 (1991). https://​doi.​org/​10.​1063/1.​555898

Singh, H., Myong, R.S.: Critical review of fluid flow physics at micro- to nano-scale porous media appli-
cations in the energy sector. Adv. Mater. Sci. Eng. (2018). https://​doi.​org/​10.​1155/​2018/​95652​40

Sochala, P., Le Maître, O.P.: Polynomial Chaos expansion for subsurface flows with uncertain soil param-
eters. Adv. Water Resour. 62, 139–154 (2013). https://​doi.​org/​10.​1016/j.​advwa​tres.​2013.​10.​003

Song, W., Yao, J., Li, Y., Sun, H., Zhang, L., Yang, Y., Zhao, J., Sui, H.: Apparent gas permeability in an 
organic-rich shale reservoir. Fuel 181, 973–984 (2016). https://​doi.​org/​10.​1016/j.​fuel.​2016.​05.​011

Sun, Z., Li, X., Shi, J., Zhang, T., Sun, F.: Apparent permeability model for real gas transport through 
shale gas reservoirs considering water distribution characteristic. Int. J. Heat Mass Transf. 115, 
1008–1019 (2017). https://​doi.​org/​10.​1016/j.​ijhea​tmass​trans​fer.​2017.​07.​123

Tan, Y., Pan, Z., Liu, J., Kang, J., Zhou, F., Connell, L.D., Yang, Y.: Experimental study of impact of 
anisotropy and heterogeneity on gas flow in coal. Part I: diffusion and adsorption. Fuel 232(15), 
444–453 (2018). https://​doi.​org/​10.​1016/j.​fuel.​2018.​05.​173

US Energy Information Administration (2015) World Shale Resource Assessments. https://​www.​eia.​gov/​
analy​sis/​studi​es/​world​shale​gas/

Wang, T., Tian, S., Li, G., Zhang, P.: Analytical model for real gas transport in shale reservoirs with 
surface diffusion of adsorbed gas. Ind. Eng. Chem. Res. 58(51), 481–489 (2019). https://​doi.​org/​10.​
1021/​acs.​iecr.​9b056​30

Wu, K., Chen, Z., Li, X.: Real gas transport through nanopores of varying cross-section type and shape in 
shale gas reservoirs. Chem. Eng. J. 281, 813–825 (2015a). https://​doi.​org/​10.​1016/j.​cej.​2015.​07.​012

Wu, K., Li, X., Wang, C., Yu, W., Chen, Z.: Model for surface diffusion of adsorbed gas in nanopores 
of shale gas reservoirs. Ind. Eng. Chem. Res. 54(12), 3225–3236 (2015b). https://​doi.​org/​10.​1021/​
ie504​030v

Wu, K., Chen, Z., Li, X., Guo, C., Wei, M.: A model for multiple transport mechanisms through nano-
pores of shale gas reservoirs with real gas effect-adsorption-mechanic coupling. Int. J. Heat Mass 
Transf. 93, 408–426 (2016). https://​doi.​org/​10.​1016/j.​ijhea​tmass​trans​fer.​2015.​10.​003

https://doi.org/10.1016/j.gexplo.2014.09.005
https://doi.org/10.1016/j.gexplo.2014.09.005
https://doi.org/10.1029/2019WR026612
https://doi.org/10.1016/J.ADVWATRES.2021.103978
https://doi.org/10.1007/s11242-013-0191-5
https://doi.org/10.1007/s11242-013-0191-5
https://doi.org/10.1016/J.CHEMGEO.2014.01.002
https://doi.org/10.1016/J.CHEMGEO.2014.01.002
https://doi.org/10.1007/s11242-017-0992-z
https://doi.org/10.1007/s11242-017-0992-z
https://doi.org/10.1016/j.fuel.2010.05.038
https://doi.org/10.1016/j.fuel.2017.11.124
https://doi.org/10.1111/j.1468-8123.2004.00076.x
https://doi.org/10.1016/S0264-8172(97)00022-6
https://doi.org/10.1063/1.555898
https://doi.org/10.1155/2018/9565240
https://doi.org/10.1016/j.advwatres.2013.10.003
https://doi.org/10.1016/j.fuel.2016.05.011
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.123
https://doi.org/10.1016/j.fuel.2018.05.173
https://www.eia.gov/analysis/studies/worldshalegas/
https://www.eia.gov/analysis/studies/worldshalegas/
https://doi.org/10.1021/acs.iecr.9b05630
https://doi.org/10.1021/acs.iecr.9b05630
https://doi.org/10.1016/j.cej.2015.07.012
https://doi.org/10.1021/ie504030v
https://doi.org/10.1021/ie504030v
https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.003


530	 L. Sandoval et al.

1 3

Wu, K., Chen, Z., Li, X., Xu, J., Li, J., Wang, K., Wang, H., Wang, S., Dong, X.: Flow behavior of gas con-
fined in nanoporous shale at high pressure: real gas effect. Fuel 205, 173–183 (2017). https://​doi.​org/​
10.​1016/j.​fuel.​2017.​05.​055

Xiao, S., Praditia, T., Oladyshkin, S., Nowak, W.: Global sensitivity analysis of a CaO/Ca(OH)2 thermo-
chemical energy storage model for parametric effect analysis. Appl. Energy 285, 116 (2021). https://​
doi.​org/​10.​1016/j.​apene​rgy.​2021.​116456

Yuan, W., Pan, Z., Li, X., Yang, Y., Zhao, C., Connell, L.D., Li, S., He, J.: Experimental study and model-
ling of methane adsorption and diffusion in shale. Fuel 117, 509–519 (2014). https://​doi.​org/​10.​1016/j.​
fuel.​2013.​09.​046

Zhang, Q., Su, Y., Wang, W., Lu, M., Sheng, G.: Gas transport behaviors in shale nanopores based on multi-
ple mechanisms and macroscale modeling. Int. J. Heat Mass Transf. 125, 845–857 (2018). https://​doi.​
org/​10.​1016/j.​ijhea​tmass​trans​fer.​2018.​04.​129

Ziarani, A.S., Aguilera, R.: Knudsen’s permeability correction for tight porous media. Transp. Porous Media 
91(1), 239–260 (2012). https://​doi.​org/​10.​1007/​s11242-​011-​9842-6

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.fuel.2017.05.055
https://doi.org/10.1016/j.fuel.2017.05.055
https://doi.org/10.1016/j.apenergy.2021.116456
https://doi.org/10.1016/j.apenergy.2021.116456
https://doi.org/10.1016/j.fuel.2013.09.046
https://doi.org/10.1016/j.fuel.2013.09.046
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.129
https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.129
https://doi.org/10.1007/s11242-011-9842-6

	Sensitivity Analysis and Quantification of the Role of Governing Transport Mechanisms and Parameters in a Gas Flow Model for Low-Permeability Porous Media
	Abstract
	Article Highlights
	1 Introduction
	2 Materials and Methods
	2.1 Gas Flow in Low-Permeability Media
	2.2 Global Sensitivity Analysis
	2.2.1 Variance-Based Sobol’ Indices
	2.2.2 Moment-Based AMA Indices


	3 Results and Discussion
	3.1 GSA of Methane Flow Model
	3.2 Impact of the Model Parameter pdfs on GSA Results
	3.3 Scaling of Gas Flow Model and Identification of Dominant Flow Mechanisms

	4 Conclusions
	References




