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Abstract
A pore-scale forward modelling approach for NMR relaxation responses of sandstones 
incorporating their dual-scale nature is presented. The approach utilises X-ray micro-CT 
images to capture inter-granular porosity and scanning electron microscopy images to 
reconstruct clay regions via a resolved clay micro-structure model. A key to calculating the 
NMR response with resolved clay micro-structure is the development of a dual-scale inter-
nal magnetic field calculation. This is achieved by a separation of near- and far-field effects 
in a dipole approximation of the internal field with periodic clay micro-structures, the latter 
of which take local clay pocket porosity into account. Tri-linear interpolation of the micro-
CT image before calculation of the internal magnetic field further reduces errors in the 
transition regions between coarse- and fine-scale structure, with final discretisation level 
matching the fine-scale clay micro-structure model across the whole domain. The method 
is validated against direct calculations of model media at full resolution and applied to 
Bentheimer sandstone. Measured and simulated NMR T

2
 relaxation responses, including 

relaxation time distribution shape, are in excellent agreement and distributions of inter-
nal magnetic field gradients at the highest spatial resolution as well as diffusion-averaged 
effective gradients are reported.

Keywords  Nuclear magnetic resonance · Relaxation · Porous media · Internal fields · 
Digital core analysis

1  Introduction

Due to advances in micro-structure characterisation and computational techniques, the 
modelling of pore-scale transport phenomena is increasingly important in ground water 
engineering and geostorage applications. Increasing the accuracy of rock representa-
tions would significantly improve the quality of forward simulations, which are increas-
ingly important, e.g. in the context of carbon capture and storage. Reservoir rocks includ-
ing sandstone (Øren and Bakke 2002) and carbonate rocks (Biswal et al. 2007) typically 
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exhibit dual-scale micro-structures. Capturing multiple scales of porosity in rocks, like 
vugs, macro-, and micro-porosity, is a long-standing problem: while nano-computed 
tomography (nano-CT) and focused ion beam scanning electron microscopy (FIB-SEM) 
offer exceptional resolution of micro-structures, this comes at the expense of a very narrow 
field of view (FoV), typically missing larger-scale heterogeneity of the pore space entirely 
(Bai et  al. 2013; Welch et  al. 2017). X-ray micro-computed tomography (micro-CT) is 
capable of capturing heterogeneity at core scale but is limited to micron resolution (Arns 
et al. 2003). The problem can be partially overcome by the introduction of so-called super-
resolution techniques (Chang et al. 2004; Glasner et al. 2009; Wang et al. 2018b), which 
increase the effective resolution by a factor 4 to 8 with the help of auxiliary high-resolution 
information for training. This approach is insufficient to accurately represent the micro-
structure of clay regions when applied at X-ray micro-CT imaging resolution. Effective 
medium theories (Bruggeman 1935; Kirkpatrick 1971) describe the macroscopic behav-
iour of a micro-structure at larger scales, avoiding the need for explicitly resolved spatial 
information. A combination of the latter with direct imaging in the context of digital core 
analysis was proposed in the past (Arns et  al. 2005). “Macroscopic” pore-scale spatial 
information is directly captured by micro-CT imaging of an appropriate resolution, and an 
effective medium representation is used for the finest elements of the system (micro-poros-
ity, clays, etc.), including in recent upscaling approaches (Jiang and Arns 2021). However, 
this strategy has a significant limitation—every effective element or region needs to be 
large enough to possess the effective property of interest. If this condition is not, fulfilled 
problematic boundary conditions between regions of resolved and non-resolved porosity 
may arise. Another convenient approach for representing multiple spatial scales of rocks is 
pore-network modelling (Øren and Pinczewski 1994; Stig and Øren 1997). Due to strong 
abstractions of the local geometry and the need to incorporate mineralogy, it is less suited 
for the predictive modelling of NMR responses.

NMR transverse relaxation time ( T2 ) distributions are frequently used in reservoir char-
acterisation to estimate pore size distributions and permeability (Kleinberg et  al. 1994). 
However, T2 responses are sensitive to internal magnetic field inhomogeneities induced 
by susceptibility contrast between solids and fluids in rocks. Molecular diffusion in the 
presence of strong internal magnetic field gradients leads to additional dephasing, which 
enhances transverse relaxation, potentially invalidating the condition of ‘fast diffusion’ 
(Brownstein and Tarr 1979). Accounting for relaxation enhancement due to internal mag-
netic field gradients in pore-scale simulations requires the accurate calculation of these 
fields.

Over the past decades, two main numerical methods for deriving the internal magnetic 
field distribution in rocks have been established. The first method derives the magnetic 
field distribution by calculating the magnetic potential using the finite element method 
(FEM) to solve the Maxwell equations in zero-current condition. For instance, the internal 
magnetic field and internal gradients are simulated using thin sections of Berea sandstone 
(2D model) for multiple constituent phases (Chen et al. 2005). The 3D internal magnetic 
field of a single pore is calculated in Fordham and Mitchell (2018). More recently the 
3D internal magnetic field was computed for digital rock samples (Connolly et al. 2019), 
assigning a mean magnetic susceptibility across all solid components.

The second method to calculate the internal magnetic field is based on a linear super-
position of dipolar fields (also known as dipole approximation). Internal field distributions 
of random sphere packs were calculated (Drain 1962; Majumdar and Gore 1988; Audoly 
et al. 2003). The approach has been investigated for a periodic cylinder pack system, which 
represented the simplest pore geometry for visualisation of internal field distribution (Sen 
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and Axelrod 1999). The application of the dipole approximation to 3D micro-CT images 
of rocks including for multiple mineral phases was demonstrated in the past (Arns 2004; 
Arns et  al. 2007, 2011). However, the magnetic field distribution of the clay phase was 
calculated assuming a continuous effective medium with constant volume-weighted sus-
ceptibility for the entire clay region due to a lack of image resolution. Utilising directly 
a high-resolution micro-structure of clay regions poses a significant computational chal-
lenge. Such a micro-structure could be chosen to be periodic in a way that it still covers 
regional micro-structure patches (Arns et  al. 2009). The latter resulted in local porosity 
variations and, therefore, average susceptibility variation at voxel scale. Calculating high-
resolution internal magnetic fields then must consider near-field effects at intermediate 
scales. We note that resolving the micro-structure of kaolinite requires resolution of the 
order of 20 nm (Cui et  al. 2021). A direct approach using, e.g. an n3

c
 voxel sub-domain, 

nc = 1000 , of a micro-CT image at 2 μm resolution would result in fields of size 100,0003 , 
which is impractical.

Most NMR response simulations are based on random walk algorithms, where each 
‘walker’ is representative of a nuclear spin package (Mendelson 1990; Bergman et  al. 
1995). 2D anisotropic pore geometries involving different pore shapes were considered by 
Wilkinson et  al. (1991). Comparisons of simulation and experiment for the mono-sized 
grain consolidation model led to good agreement with experiments (Straley and Schwartz 
1996). However, internal magnetic field gradients were not included in these earlier stud-
ies. The dephasing spins are considered in a uniform gradient in a porous material (Val-
ckenborg et al. 2002) and for ferromagnetic grains (Valckenborg et al. 2003). The NMR 
response is simulated with constant gradient based on a 3D model that includes arbitrary 
bi-modal pore size distributions by compacted spheres (Toumelin et  al. 2003). Consider 
now NMR relaxation response simulations incorporating a general internal magnetic field. 
Random walk simulations on X-ray micro-CT images of heterogeneous sedimentary rock 
samples comparing different definitions of pore size were presented in Arns (2004). D–T2 
responses of Bentheimer and Berea sandstone were modelled based on micro-CT images 
including internal field effects (Arns et al. 2011). Recent work simulating T2 responses led 
to partial agreement with experiments; short relaxation times are not recovered (Connolly 
et al. 2019).

Another method for NMR relaxation response simulation is based on the FEM to solve 
the Bloch–Torrey equations for the evolution of the magnetisation. The magnetisation 
decay due to diffusion in the internal magnetic field gradient in a single pore of complex 
shape was explored in Fordham and Mitchell (2018). A recent study (Mitchell et al. 2019) 
involving intra- and inter-particle porosity compares random walks and FEM on simplified 
models. Due to different magnitudes of length scales in micro- and macro-pores, micro-
porous grains were treated as effective medium.

The increasing sophistication of NMR simulators for porous media responses opens new 
applications regarding the extraction of intrinsic physical properties of complex materials 
when a high-resolution 3D physical representation is available, e.g. by micro-CT imag-
ing. Recently, a comprehensive and efficient Bayesian optimisation framework to extract 
multiple intrinsic physical parameters simultaneously was introduced (Li et al. 2021). They 
demonstrated the framework on Bentheimer sandstone, extracting quartz surface relaxivity 
as well as effective diffusion and transverse relaxation time of unresolved clay regions.

The latter suggests that dynamic changes in surface properties, e.g. as result of wet-
tability alteration (Shikhov et  al. 2018, 2019), may be understood spatially resolved and 
inform modelling of two-phase flow (Wang et al. 2018a). For such an approach, it would be 
desirable to replace effective clay parameters with clay structure and surface properties. A 
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first step in this direction has been presented by Cui et al. (2021), where a dual-scale model 
of Bentheimer sandstone described the heterogeneity of the rock including micro-porosity 
in clay regions. However, a multi-stage approach was used for the simulation of the NMR 
responses.

In this work, we present a dual-scale NMR solver which supports multiple clay micro-
structures and accounts for the resultant internal magnetic fields at the highest resolution. 
The paper is organised as follows: we first introduce the materials including a simplified 
three-layer model, kaolinite model, and the representation of Bentheimer sandstone. This 
is followed by the dual-scale internal field calculation utilising the dipole approxima-
tion, based on a decomposition of the field into high- and low-resolution components and 
accounting for near- and far-field effects. We then introduce the dual-scale random walk 
approach to solve for NMR responses. Section  3 illustrates the accuracy of the simula-
tion approach utilising the model material, and applications to Bentheimer sandstone with 
excellent match to experimental measurements. Finally, we report on the distributions of 
spatial internal magnetic field gradients and diffusion-averaged effective gradients for dif-
ferent regions of the sample.

2 � Materials and Methods

The study includes dual-resolution samples which consist of two categories. One is the 
coarse-resolution micro-CT image (around 2 to 4 μm resolution). The other is the fine-
resolution artificially reconstructed 3D model (down to about 10 nm resolution). There can 
be N different fine-scale models with different porosity and micro-structure representing 
coarse-scale (unresolved) phases in the low-resolution image. The internal fields of these 
domains will be named as coarse field and fine field in the later discussion, with transition 
regions giving cause to near-field effects. The simple three-layer model is first introduced 
here to better explain the dual-scale internal field calculation methodology. We then trans-
fer to complex rock geometry.

2.1 � Three‑Layer Model

The coarse-resolution sample (Fig.  1a) contains three parallel layers, assumed, respec-
tively, as pore (top), unresolved “clay” phase (middle) which will be replaced by resolved 
micro-structure, and solid (bottom). Image size is 20 × 20 × 40 cubic voxel with resolu-
tion of 3 μm/voxel. The 3D micro-structure is constructed by a level cut through a Gauss-
ian Random Field (GRF). For such fields, the resultant two-point correlation function can 
be calculated analytically and fitted to measured correlation functions, e.g. from 2D high-
resolution SEM micrographs. We employ the field-field correlation function (Cahn 1965; 
Roberts 1997; Arns et al. 2004):

with cut-off scale rc = 0.7355, correlation length � = 0.9095 and domain size d = 7.6434 
in voxel units. Actual values are given for concreteness but have no particular meaning 
other than defining the model structure. With the known g(r), realisations of GRF Z(� ) are 

(1)g(r) =
e(−r∕�) − (rc∕�)e

−r∕rc

1 − rc∕�

sin 2�r∕d

2�r∕d
,
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numerically generated using the fast Fourier transform (FFT) method utilising a one-level 
cut

with level cut parameter � = 0.17. The fine-scale model structure is generated with peri-
odic boundary conditions as 4003 voxel domain with the model domain covering 83 vox-
els of the coarse-resolution image (Fig. 1b). To generate a fully resolved model, we map 
the coarse-resolution sample to a conforming subgrid. Each coarse-scale voxel corre-
sponds to n3

s
 fine-scale voxels. Here, we chose ns = 3 μm∕0.06 μm = 50 . This results in a 

1000 × 1000 × 2000 voxel micro-structure at 60 nm resolution, where the unresolved mid-
dle layer of the structure is replaced by corresponding micro-structure voxels. The fully 
resolved model is visualised in Fig. 1c. Note the periodic repetition of the template 4003 
domain.

2.2 � Bentheimer Sandstone

Bentheimer sandstone exhibits a more complex geometry and is often used as benchmark rock 
(Arns et al. 2011; Mitchell et al. 2013; Peksa et al. 2015). While Bentheimer sandstone does 
not contain a large amount of clay (around 1.9 wt% Shikhov et  al. 2017), the clay type is 
mainly kaolinite and the reason we chose it for this study. An X-ray micro-CT image was 
acquired at resolution of 2.2  μm/voxel. More details about the specific sample and image 
acquisition can be found in our previous work (Shikhov and Arns 2017). The simulation pre-
sented here is based on an 8003 central subset of the original image data. The sample is seg-
mented into five phases, namely pore space, clay region (mixture of pore space and kaolinite), 

(2)Z(�) =

{
1, Z(�) ⩾ 𝛽

0, Z(�) < 𝛽
,

Fig. 1   3D three-layer model; a 20 × 20 × 40 voxel coarse-resolution sample, 3  μm/voxel, b 
400 × 400 × 400 voxel micro-structure represented by the Gaussian Random Field, 60  nm/voxel, and c the 
1000 × 1000 × 2000 voxel fully resolved model at 60 nm/voxel. The phases colour scheme: pore space—
blue; “clay”—grey; solid—red
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quartz, feldspar, and high-density minerals utilising an active contour method (Sheppard et al. 
2014). Slices through the tomogram and segmented image are shown in Fig. 2.

2.3 � Kaolinite Model

Kaolinite is one of the most common clay mineral constituents of sedimentary rocks, espe-
cially in sandstones. It is difficult to capture the booklets’ morphology of kaolinite (Fig. 3a, 
b) in the micro-CT image due to resolution limitations. We employ a 3D reconstruction tech-
nique (Cui et al. 2021) based on SEM images to overcome these limitations. Kaolinite book-
lets are distributed following a Boolean process with random unit rotation angles (Cui et al. 
2021). Individual kaolinite platelets as constituents of the booklets are approximated as hex-
agonal plates with thickness of about 60 nm and diameter of 2-3 μm. To mimic the morphol-
ogy of booklet units, we generate stacked hexagonal platelets, separated by a small separation 
distance (about 30 nm). In this study, we choose a domain size of n3

f
 voxel, nf = 400 , with 

resolution 22 nm, which is 1/100 of micro-CT image resolution, to discretise the kaolinite 
micro-structure (Fig. 3c, d). The surface area ( Sv ) of the model is 18.7 m2 /g in agreement with 
the literature (East 1950).

2.4 � Internal Magnetic Field

The magnetic field at position � consists of the uniform external magnetic field �0 and the 
internal magnetic field �i induced by the magnetic susceptibility contrast:

The dipole approximation is employed to calculate the nonuniform internal magnetic field 
(e.g. Song 2003); SI unit will be utilised. The dipole moment of an isolated sphere of 
radius rD as function of distance r to the centre of the sphere is given by

(3)�(�) = �0 + �i(�).

Fig. 2   a A slice of 8003 tomogram of Bentheimer, 2.2  μm/voxel. b A slice of 8003 5-phase segmented 
tomogram of Bentheimer, 2.2  μm/voxel. The phases colour scheme: pore space—blue; clay—light blue; 
quartz—green; feldspar—brown; high-density minerals—red
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where �0 = 4� × 10−7 NA−2 is the magnetic permeability of the vacuum. The magnetic 
dipole moment of a single cubic voxel is calculated as � ≈ �0�v�0 for 𝜒v ≪ 1 , which is a 
good approximation for typical rock constituent minerals (Hürlimann 1998). The suscepti-
bility field of a larger body is generated by assigning each voxel an isotropic magnetic vol-
ume susceptibility �v(�) according to phase occupancy at location � . The induced change 
in magnetic field is linear in susceptibility, and the internal magnetic field can be calculated 
as a sum of dipoles. Then the internal magnetic field is given by the convolution of dipole 
and susceptibility field:

(4)�dip =

{
�0

4�

[
3(�⋅�)�

r5
−

�

r3

]
for r ≥ rD

2

3
�0� for r ≤ rD

,

Fig. 3   Kaolinite images and model. a SEM image of a kaolinite pocket, b SEM of a kaolinite booklet struc-
ture, c slices through the 4003 kaolinite model with porosity of 0.4; voxel size is 22 nm, d 3D-reconstructed 
kaolinite model
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The approach is validated by deriving the dipole profile of a sphere discretised on a Carte-
sian regular grid with spacing � = 1

15
rD and comparison with the analytical solution. Fig-

ure  4 depicts cross sections of the resultant fields and profiles along the z-axis through 
the centre of the dipole generated by a solid sphere inclusion ( �s = 5.0 × 10−6 ) in water 
( �w = −9 × 10−6 ) with applied field �0 = (0, 0,B0).

Consider now the case of the three-layer model, which consists—at the coarse scale 
(Fig. 1a)—of one unresolved and two resolved phases. While the resolved phases directly 
take the magnetic susceptibilities �w and �s , each unresolved coarse-scale voxel maps to 
n3
s
 fine-scale voxels, a sub-domain of the fine-scale model as discussed previously. Conse-

quently, the coarse-scale susceptibility of the unresolved phase �u must vary locally (unless 
n3
s
 is the same size as the fine-scale model), and those voxels are assigned the local volume-

weighted susceptibility

where �c stands for the volume susceptibility of pure clay. Convolution of the coarse-reso-
lution susceptibility field �v(�) with the dipole field, where �v(�) takes the values �s , �w , or 
�u(�) , gives the coarse-resolution internal magnetic field �i,c . The convolution establishes a 
macroscopic internal field trend in the unresolved phase as well as near-field perturbations 
in the resolved phase in regions close to the fine-scale structure.

The fine-scale field �i,f is calculated analogous to �i,c , using the constituent material 
susceptibilities �w and �c . From �i,f we derive the coarse-scale averaged trend model 
�i,t covering the fine-scale domain. For our periodic fine-scale structure with nf = 400 
(Fig. 1b) and ns = 50 the periodic trend model has a size of n3

t
 voxel with nt = nf ∕ns = 8 . 

In practice, we can map �i,t to high resolution by tri-linear interpolation. At places where 
no fine-scale structure exists because the coarse-scale voxel belongs to a fully resolved 
phase, the associated trend value and fine-scale field are set to zero. A high-resolution 

(5)�i = ∫R3

�v(�)�dip(� − �
�)d��.

(6)�u =

∑
Vi�i∑
Vi

, i = w, c,

Fig. 4   Dipole field of a discrete sphere and comparison to the analytical solution at f = 2 MHz. a compari-
son of the dipole profile (in central xy-plane perpendicular to z) calculated numerically using Eq. (5) with 
the analytical solution given by Eq. (4); ( �s = 5.0 × 10−6 , �w = −9 × 10−6 ), b central xz cross section of the 
internal field
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internal magnetic field �i covering the whole simulation domain of size (ncns)3 voxel can 
now be calculated as follows:

We note that the field �i is never stored in memory but constructed locally when required 
for either a random trajectory during NMR simulations, to visualise parts of the high-reso-
lution internal magnetic field, or to extract statistics.

Given �i ≡ (0, 0,Bz) , the corresponding internal magnetic field gradients at image reso-
lution are given by

and are calculated using central differences. In Sect. 3, we report histograms and visuali-
sations of the internal gradient fields for different phases with the further distinction of 
including ( Gi ≡ Gin ) or excluding ( Gi ≡ Gex ) voxels which have different phase neigh-
bours. Not including gradients for voxels with different phase neighbours is reasonable, 
since near-surface interactions are included in surface relaxivity.

The accuracy of the internal field representation can be further improved by utilising 
a higher-resolution mesh at the coarse scale. In Sect.  3, we make a distinction between 
results for a fully resolved calculation where a single fine-scale grid is utilised (possible 
only for the artificial model), and for coarse-grid refinement factors between 1 and 5. While 
a factor of 1 indicates that the initial resolution of the coarser grid is utilised, it represents 
nevertheless a result for the dual-scale approach.

2.5 � NMR Response Simulation

The NMR T2 relaxation response is simulated by a lattice random walk algorithm on the 
segmented image (Arns et al. 2011). In this study, we extend the method to dual-scale sam-
ples. Initial positions of the random walkers are chosen uniform randomly across the pore 
space. Since the dual-scale approach assigns either solid (quartz or kaolinite) or pore space 
to each fine-scale voxel, we use a simple rejection method. The random walk is carried 
out on a regular cubic lattice with resolution � . Consequently, the time step �i of a step i is 
given by �i = 6D(�)∕�2 , where D(�) is the local diffusion coefficient. Since here the struc-
ture is fully resolved and we consider a single fluid, D(�) = D0 , where D0 is the free-diffu-
sion coefficient of water. Bulk and surface relaxation are implemented as signal weighting 
factors for each step, with Si = Sb Ss . Here Sb = exp(−�i∕T2,b ) is the contribution by bulk 
relaxation, and Ss = 1 − 6�2�i∕(�A) the contribution by surface relaxation. For steps within 
the same fluid Ss = 1 . A is a correction factor of order 1, which accounts for the details of 
the random walk implementation (Bergman et al. 1995). For imaged structures, this value 
is typically close to A = 3∕2 . For Bentheimer sandstone, the surface relaxivity �2 of the 
solid takes the value of quartz ( �2q ), feldspar ( �2f  ), high-density minerals ( �2h ), or kaolinite 
( �2k).

While �2(�) describes the relaxation processes at the surface, the contribution of the 
internal field to dephasing is calculated explicitly. The evolution of the phase for a spin 
package in relation to the Larmor frequency at the starting position �0 = �Bz(0) can be 
written as follows (Carr and Purcell 1954):

(7)�i(�) = �i,c(�) + �i,f (�) − �i,t (�).

(8)Gi =

√(
�Bz

�x

)2

+

(
�Bz

�y

)2

+

(
�Bz

�z

)2
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where � is the gyromagnetic ratio. �0 and �j note the location of the start of the random walk 
and at time tj . The Carr–Purcell–Meiboom–Gill (CPMG) sequence (Carr and Purcell 1954; 
Meiboom and Gill 1958) is implemented by switching the sign of Δ� after tE∕2 , where tE 
is the echo spacing, and every ntE , n = 1, 2,…N − 1 thereafter, where N is the total num-
ber of echoes recorded (at echo positions tE∕2 after the phase switch). The phase variation 
caused by this diffusive relaxation is then incorporated into the calculation of each walker’s 
magnetisation, which becomes

Averaging over random walks and recording at times t = ntE ( n = 1, 2,…N ) results in the 
magnetisation decay M(t). The relaxation time distribution is obtained by fitting a multi-
exponential decay to M(t). The effective gradient of a particular random path of Ns steps 
can be calculated as follows:

with �Ns
 = 

∑Ns

i=1
�i and where the sum extends over all terms for which �j ≠ �0 and may be 

considered most meaningful for 2�Ns
≤ tE . Thus, Geff refers to a diffusion-averaged (effec-

tive) gradient over part of a magnetisation decay. We later report results for Geff (
1

2
tE) , 

avoiding refocusing pulses.

2.6 � NMR Experiments

Bentheimer sandstone core plugs of 25.4 mm diameter and 50 mm length were satu-
rated with 3% NaCl brine and transverse relaxation responses measured with a 2 MHz 
Magritek Rock Core Analyzer. The standard CPMG pulse sequence was utilised with 
echo-train length of 10 seconds. Measurements were recorded for two echo times 
( tE = 200 μ s and tE = 640 μ s) to study the significance of internal magnetic field gra-
dients. The signal-to-noise ratio (SNR) was set to at least 200. The acquired magneti-
sation decays were treated as multi-exponential signals and inverted into T2 relaxa-
tion distributions. Like for the NMR simulations, the inversion of the NMR relaxation 
decay into the relaxation time distribution was carried out utilising a non-negative 
least square approach with amplitude regularisation term (Hansen 1992).

(9)Δ� = � − �0,

(10)=

N∑

j=1

��j[Bz(tj) − Bz(0)], tj =

j∑

i=1

�i,

(11)=

N∑

j=1

��j[Bz(�j) − Bz(�0)],

(12)Mw(tj) = Mw(0) cos[Δ�(tj)]
∏

Si.

(13)Geff (�N) =
1

�Ns

Ns�

j=1

�j

Bz(�j) − B(�0)

‖�j − �0‖
,
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3 � Results and Discussion

The introduced internal field calculation method and associated NMR response simulation 
approach are demonstrated for the three-layer model first. We illustrate the field distribu-
tion change in the transition region with different degree of discretisation and the accuracy 
of the dual-scale model. Applications to Bentheimer sandstone including a discussion of 
internal field distributions follow:

3.1 � Three‑Layer Model

To verify the dual-scale Bi calculation method, we calculate the internal magnetic field Bi 
at full resolution directly for the 1000 × 1000 × 2000 resolved micro-structure (Fig. 1c) and 
compare it to the dual-scale approach with coarse-grid refinement factors of 1, 2, and 5 in 
Figs. 5 and 6. For concreteness, we present the fields for the common specific field strength 
of B0 = 470 Gauss corresponding to a frequency of f = 2 MHz for 1 H NMR. The respec-
tive susceptibilities are given in Table 1; we assign a relatively high but not implausible 
paramagnetic susceptibility for pure clay to highlight the effects from internal fields.

The Bi cross sections (Fig. 5) illustrate the overall closeness of the dual-scale approach 
with the full-scale calculation as well as the further improvement of the solution for the 
dual-scale approach when using grid refinement for the coarse-scale model, particularly in 
the transition region as visible in the rectangular cut-outs of Fig. 5. A grid refinement fac-
tor of 5, resulting in a coarse grid of 100 × 100 × 200 voxel with ns = 10 leads to excellent 
agreement.

This is further illustrated in Fig. 6a for a line crossing the coarse-scale phase boundaries 
perpendicularly.

We immediately note the large fluctuations in field associated with the fine-scale micro-
structure, which is fully recovered by all grid refinement factors, as is the far field. From 
Fig. 6b, magnifying one of the transition regions, we see that the spatial extend of the dif-
ference between full and dual-scale approach close to the transition region drops drasti-
cally with increasing grid refinement. We note that the resolution of the micro-structure 
is exactly the same for all grid refinement factors here due to the alignment of the coarse-
scale phase distribution with the grid. The main effect of the grid refinement is that the 
coarse-scale trend model of the fine-scale micro-structure has a higher resolution, which 
impacts on the accuracy of the convolution calculating the coarse-scale field contribution 
�i,c to �i (see Eq. 5).

Consider now the simulation of NMR T2 relaxation responses utilising the dual-scale 
internal field calculation approach for the three-layer model. NMR simulation parameters 
are shown in Table 1. Since internal field effects are stronger for higher field strength or 
larger echo spacing (Kleinberg and Horsfield 1990), we calculate T2 distributions for the 
following four conditions: (1) f = 2 MHz, tE = 200 μ s; (2) f = 2 MHz, tE = 640 μ s; (3) 

Table 1   Magnetic susceptibility 
( � ) and surface relaxivity ( �

2
 ) 

of each phase in the three-layer 
model

Phase � (μSI) �2 (μm/s)

Water − 9.0 –
Clay 45.0 0.8
Solid − 13.4 9.0
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f = 20  MHz, tE = 200 μ s; (4) f = 20  MHz, tE = 640 μ s. Comparisons of the NMR T2 
responses corresponding to the fully resolved model and previously discussed dual-scale 
internal field representations are depicted in Fig. 7. For all chosen field strength and echo 
time combinations, the position of the main relaxation time peak is preserved, while the 
sharpness of the main peak is affected by the internal field discretisation. However, there 
are significant differences in the width and position of the short relaxation time peak. We 
note that a coarse-grid refinement of a factor five leads in all cases to excellent agreement 
between the full-resolution solution and the dual-scale simulation approach. We further 

Fig. 5   Illustration of the different length scales present for the internal fields and their recovery utilising 
periodic fine-scale structure and a dual-scale internal field calculation. The central cross sections of the 
1000 × 1000 × 2000 voxel Bi field for the three-layer model at 60 nm/voxel resolution (see also Fig. 1c) for 
an applied field of 470 Gauss ( f = 2MHz) are shown. a Fully resolved micro-structure; [b-d] dual-scale 
approach for coarse-grid refinement factors of b one, c two, and d five. The black squares in the transition 
zone are enlarged on the right side
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Fig. 6   Comparison between the 1D Bi profiles for the fully resolved reference (blue solid line) and the dual-
scale method with different discretisation factors for an applied field of 470 Gauss ( f = 2MHz): factor = 
1 (red dashed line), factor = 2 (yellow dashed line), and factor = 5 (purple dashed line). The boundary 
between macro–micro-scale is shown as black-dotted line. a For a typical trajectory vertical to the coarse-
scale boundary along z-direction. b The transition region where the largest differences occur in (a)
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Fig. 7   NMR T2 relaxation distribution for the three-layer model comparing full-resolution calculations to 
the dual-scale simulation approach for different coarse-grid refinement factors. a f = 2 MHz, tE = 200 μ s; b 
f = 2 MHz, tE = 640 μ s; c f = 20 MHz, tE = 200 μ s; d f = 20 MHz, tE = 640 μs
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remark that the dual-scale approach mimics well the apparent “coupling” of the two main 
peaks for the case of f = 20 MHz and tE = 640 μ s. The discretisation level of the internal 
field (recall that the fine-grid resolution � remains constant) becomes increasingly impor-
tant with increasing field strength and longer echo times.

3.2 � Bentheimer Sandstone

The segmented micro-CT image of Bentheimer (coarse resolution, � = 2.2 μ m) is com-
bined with the kaolinite model (fine resolution, � = 22nm) to construct the high-resolu-
tion internal field Bi as well as the high-resolution micro-structure. However, jagged edges 
along phase boundaries defined by cubic voxels are magnified when refining the coarse-
resolution sample. To reduce these artefacts, we use a surface interpolation technique to 
obtain smoother solid surfaces and consider refinement factors of 1, 2, and 4 (Fig. 8). This 
results in coarse-grid sizes of 8003 , 16003 and 32003, respectively. The fine-scale grid is 
constructed at a resolution of � = 22 nm with a fine-scale (logical) grid size of 80, 0003 and 
ns = 100 , ns = 50 , and ns = 25 for the refinement factors of 1, 2, and 4.

NMR T2 response simulations are performed for two different echo spacings, tE = 200 μ s 
and tE = 640 μ s in order to investigate the significance of internal magnetic field gradi-
ents. Here, we only consider a field strength of 470 Gauss, for which we have experimental 
data. In an earlier study (Cui et al. 2021), we determined the effective parameters for the 
unresolved clay phase of Bentheimer sandstone by matching simulated NMR responses to 
experimental data. In this study, the surface relaxivities utilised in simulations were slightly 
adjusted compared to the previous study (Cui et al. 2021) to account for the integration of 
the internal field and micro-structure model into a single dual-scale simulation. Table  2 
lists the utilised material properties � and �2 for each phase. Susceptibilities were set to 
typical values and agree with the measured volume susceptibility of the crushed sample.

Simulations are compared to experiment in Figs. 9 and 10 depicting magnetisation 
decay and T2 distribution, respectively. We immediately note the good match between 
experiment and simulation for all dual-scale simulations. Grid refinement by a factor 
of 2 or 4 improves the match further, affecting mainly the peak position of the shorter 
T2 peaks. This implies that the internal magnetic field gradient resolution of the transi-
tion region between coarse- and fine-scale structure again matters in agreement with 
the findings for the three-layer model. This is despite the relatively small clay fraction 

Fig. 8   Cross section of a subsection of the Bentheimer sandstone image illustrating the interpolated surface 
for increasing coarse-grid refinement factors. a Original image with voxel size of 2.2 μm, b Grid refinement 
factor 2 (1.1 μm/voxel), c grid refinement factor 4 (0.55 μm/voxel)
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existent in Bentheimer sandstone (about 2% volume fraction is covered by clay regions 
in the segmented image) and only considering the low field response ( f = 2MHz).

Consider now the spatial internal magnetic field gradient distributions across the 
pore space. Gradients in the solid are not considered and set zero for visualisation. We 
further differentiate between including ( Gin(� )) and excluding ( Gex(� )) voxels at the 
solid–fluid boundary.
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Fig. 9   Measured and simulated transverse magnetisation decays for Bentheimer sandstone. a f = 2 MHz, 
tE = 200 μ s; b f = 2 MHz, tE = 640 μs
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Fig. 10   T2 relaxation time distributions corresponding to magnetisation decays shown in Fig.  9. a 
f = 2 MHz, tE = 200 μ s; b f = 2 MHz, tE = 640 μs

Table 2   Magnetic susceptibility 
( � ) and surface relaxivity ( �

2
 ) 

of each constituent phase of 
Bentheimer sandstone

Properties � (μSI) �2 (μm/s)

Water − 9.0 –
Kaolinite − 11.0 1.2
Quartz − 12.0 9.0
Feldspar − 12.0 9.0
High density 5270 50.0
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Cross sections of the spatial fields Gin(�) and Gex(�) for a 15,0002 sub-slice of the 
80, 0003 volume are given in Fig. 11 and the corresponding histograms for the full sample 
are depicted in Fig. 12.

The spatial visualisation of internal magnetic field gradients (Fig. 11) highlights the dif-
ference between including and excluding fluid–solid gradients in regions of high surface 
area, e.g. clay regions. For longer-range gradients in the macro-pore space caused by larger 
homogeneous regions, the fields Gin(�) and Gex(�) are visually almost indistinguishable. 
The difference in the respective internal gradient distributions can be seen as sharper offset 
peaks in Fig. 12 (left). The position and magnitude of this offset changes with increasing 
grid refinement factor since the discontinuity between solid and fluid is better resolved for 
higher refinement, while the larger resultant gradients are distributed across fewer voxels. 
In the right column of Fig. 12, we compare the distribution of Gex to a normal distribution, 
leading to a good fit with fit parameters given in Table 3 and highlighting the limited shift 
in peak position.

Most of the values fall into the range of 10−1 G/cm to 102 G/cm, the mean values of Gex 
are 1.09 G/cm (factor 1), 1.12 G/cm (factor 2), and 1.17 G/cm (factor 4), and maximum 
internal magnetic field gradients can reach 105 G/cm. We note that very high gradients in 
the fluid can be generated by the high-density paramagnetic inclusions (see red region in 
Fig. 11).

The histograms of magnetic field gradients explored by NMR simulations ( Geff ) are 
shown in Fig. 13 for grid refinement factors of 1 and 4, where Eq.  (13) is evaluated for 
�Ns

=
1

2
tE = 100 μs.

The shapes of the distributions are well described by normal distributions (see 
Table  4). The means of the diffusion-averaged gradients are around 1.07  G/cm. With 
increasing coarse voxel refinement, the Geff distributions broaden. There is a relative 
rise of both tails in Fig.  13 compared to Fig.  12 and associated drop in peak value, 
which can be explained by diffusional averaging. The distributions are limited to the 
range of 10−3 G/cm to 103 G/cm since actual histogram contributions outside this range 

Fig. 11   Cross section of a 15,0003 subset of the 80,0003 internal magnetic gradient fields ( Gin(�) ) at 22 nm/
voxel; non-fluid voxels are set to zero values. a Gin , solid–fluid gradients included, b Gex , solid–fluid gradi-
ents excluded
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Fig. 12   Histograms of the internal magnetic field gradients of the water phase including ( Gin ) and excluding 
( Gex ) the water-fluid boundary for different coarse-grid refinement factors. a, b Factor = 1; c, d factor = 2; 
e, f factor = 4. Left Comparison of Gin and Gex . Right Normal distribution fits to Gex (see also Table 3)

Table 3   Normal distribution 
parameters corresponding to the 
fits of G

ex
 in Fig. 12 for different 

grid refinement factors

Factor Mean ( log10 (G/
cm))

Std ( log10 (G/cm)) R
2

1 0.037 0.655 0.98
2 0.051 0.660 0.98
4 0.068 0.669 0.99
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are difficult to discern from zero. Random walks do experience no gradients when 
interacting with the surface, since near-surface effects are incorporated into the surface 
relaxivity. Similarly, the very high gradients possible in the fluid when close to a para-
magnetic mineral affect a larger region when accounting for diffusional averaging.

It is worth noting that the common approach to account for the effect of susceptibil-
ity contrast-induced internal magnetic field gradients is based on an analysis of relaxa-
tion regimes proposed by Hürlimann et  al. (1995). It has been demonstrated that for 
the two asymptotic regimes (“free-diffusion” or “short time” typically applicable for 
larger pores; and “motional averaging” for smaller pores), the corresponding analytical 
expressions (Mitchell et  al. 2010; Mitchell and Chandrasekera 2014) could be devel-
oped to account for the additional relaxation due to spin dephasing in magnetic field 
gradients. This enables standard petrophysical interpretations of the transverse relaxa-
tion responses in the fast diffusion limit, e.g. estimating pore size distributions, despite 
the presence of significant internal magnetic field inhomogeneities. For instance, it was 
applied to great benefit in the analysis of capillary trapping in sandstones subjected 
to partial desaturation by nitrogen and carbon dioxide (Connolly et  al. 2017, 2019). 
However, the analytical approach requires the identification of a “mean” relaxation 
regime. Furthermore, the expressions so far were developed for two out of three relaxa-
tion regimes, being invalid for frequently reported intermediate regimes and coexist-
ing regime mixtures. On the contrary, the dual-scale approach presented here does not 
require any assumption about governing relaxation regimes, offering potentially a tool 
to study associated problems. In particular, the coexistence of different regimes and sig-
nificance of intermediate regimes in certain conditions even for diamagnetic on average 
sandstone were demonstrated in Cui et al. (2021).
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Fig. 13   Histograms of the diffusion-averaged effective gradients Geff according to Eq.  (13) with 
�Ns

=
1

2
tE = 100 μ s for different coarse-grid refinement factors. a Factor = 1, b factor = 4. The solid lines 

are Gaussian distributions over log(Geff ) with respective parameters reported in Table 4

Table 4   Normal distribution 
parameters corresponding to the 
fits of G

eff
 in Fig. 13 for different 

grid refinement factors

Factor Mean ( log10 (G/
cm))

Std ( log10 (G/cm)) R
2

1 0.036 0.844 0.99
2 0.035 0.849 0.99
4 0.031 0.861 0.99
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4 � Conclusions

This study introduced an effective NMR relaxation response modelling approach incor-
porating resolved internal magnetic fields enabling numerical simulations spanning 
five orders of magnitude in length scales on grids logically containing of the order of 
1015 cells. The internal magnetic fields were calculated via the dipole approximation in 
a dual-scale approach with trend model. The approach was validated against a model 
micro-structure and demonstrated for the Bentheimer sandstone as common benchmark 
rock. For the latter, NMR T2 responses of a (1.76mm)3 domain were derived with grid 
resolution of 22 nm based on micro-CT images at 2.2 μm resolution and a clay micro-
structure resolved at 22 nm resolution. Comparison of T2 distributions between simula-
tion and experiment show excellent agreement.

A significant result is the influence of tri-linear interpolation on the position of 
shorter relaxation time modes. This is associated with reduced errors in the transi-
tion regions between macro- and micro-scale regions, where near-field effects become 
important. We note that the change in peak position cannot be explained by a change in 
surface relaxivity of the kaolinite model in practice, since the underlying cause is the 
transition region. This has significant implications for modelling more complex rock 
samples where clay fractions are larger and paramagnetic impurities more frequent.

Finally, we comment on the observed fine-scale internal field gradient distributions. 
Spatially we observe that larger gradients are associated with surfaces in an irregular 
way—with higher gradients at the solid–fluid boundary, which depending on the pore 
shape may extend more or less into the fluid. The diffusion-averaged effective gradients 
are well described by log-normal distributions.
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