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Abstract
Convective acceleration occurs in porous media flows due to the spatial variations of 
the nonuniform flow channel geometry of natural pores. This article demonstrates that 
the influence of convective acceleration in a nonuniform a pore channel is analogous to 
that of a constricting pipe channel. Their fluid mechanical behaviour can be comparable, 
provided that their geometrical characteristics are described precisely in the same man-
ner, and from the same point of reference with regards to the fluid velocity in the flow 
channels. The analogy of the dissipation mechanisms in nonlinear porous media flow 
to the "minor loss" approach in fluid mechanics of pipes is therefore appropriate. Con-
ventional nonuniform pipe channel geometries obtain dissipation coefficients within the 
range 0 < CKL < 0.2. These pipe geometries are relevant reference points for natural porous 
media, and it is thus expected that most natural pore geometries will obtain values within 
this range. This assumption holds true for the nine different 3D porous media samples pre-
sented here. However, the results show that the rate of change in the pore geometry, and 
consequently the magnitude of induced convective acceleration, depends on: the area ratio 
a of the pore channel, the angle of approach θ and the rounding of the pore channel geom-
etry. The rounding of the pore channel reduces the dissipation coefficient, as the rate of 
change becomes smoother along the channel length. The results also indicate that the pore 
tortuosity increase the magnitude of nonlinear dissipation, in good agreement with pipe 
flow behaviour. This knowledge can help improve our interpretation of experimental data 
and enhance the predictability of porous media equations that incorporate the appropriate 
dissipation coefficients CKL as a variable.

Article Highlights 

• The analogy of porous media flow to the "minor loss" approach in fluid mechanics of 
pipes is appropriate, and the angle of approach θ and the area ratio a of the pore chan-
nel govern the magnitude of induced convective acceleration in porous media

• The rounding of the pore channel geometry reduces the magnitude of induced convec-
tive acceleration

• The tortuosity of a pore influences the dissipation coefficient  CKL and increase the mag-
nitude of induced convective acceleration
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1 Introduction

Inertial forces and convective acceleration have a significant influence on the dissipation 
of mechanical energy in fluid flow regimes characterized by relatively high flow veloci-
ties. These forces induce nonlinear pressure responses that are not accounted for by the 
linear Darcy-equation (Darcy 1856). The second-order Forchheimer-equation is needed 
to explain these effects on the pressure gradient (Forchheimer 1901). Such flow condi-
tions in porous media are relevant in many practical engineering problems. Particularly 
for the determination of the performance and the capacity of production wells and injec-
tion wells, i.e. in the petroleum industry (Huang and Ayoub 2008; Barree and Conway 
2004), in groundwater wells utilized for domestic and irrigational purposes (Houben et al. 
2018; Wen et al. 2011; van Lopik et al. 2019), and for groundwater heat pump applications 
(Gjengedal et al. 2021).

The inertial resistance factor β of the Forchheimer equation is a geometrical property 
that describes how the pore channel shape influence the nonlinear flow characteristics. It is 
challenging to determine this factor without performing field and laboratory tests. In-situ or 
experimental tests are therefore often routinely performed to determine well performances 
in the petroleum industry (Huang and Ayoub 2008). However, in many civil engineering 
projects there is limited time and funding available for detailed in-situ testing and labo-
ratory tests, and many engineering projects therefore depend on empirical equations for 
prediction purposes. Most empirical equations used in soil engineering rely on soil charac-
terization rather than on pore space characterization (van Lopik et al. 2019, 2017; Chapuis 
2012). The Forchheimer equation is also frequently utilized in numerical modelling and 
computational fluid mechanics (Guo et al. 2019). Continuous use of these equations argues 
that further study on this topic is of scientific interest and is useful for many industries.

Convective acceleration occurs due to spatial variations of the flow channel geometry. 
This paper explores how geometrical properties of a pore channel induced convective 
acceleration and how this affects the inertial losses. Recent laboratory studies on 3D fabri-
cated particle beds with predefined pore geometries enables more detailed and controlled 
analysis of the geometrical properties that are important for porous media flows (Huang, 
et al. 2013; Gjengedal et al. 2020). Gjengedal et al. (2020) has hypothesized that porous 
media flows exhibit similar behavioural traits to that of pipe flows in situations where the 
pipe channels are nonuniform, the so called minor losses approach in fluid mechanics. A 
method of comparison with the pipe flow equations is here presented, and the similarities 
between the porous media flows and pipe flows are further assessed.

2  Theory

The general Forchheimer equation corresponds to Eq. (1) for horizontally directed, one-phase, 
incompressible fluid flow in pore channels. Here the pressure dissipation ΔP (Pa) across the 
superficial length of the porous medium L (m) is proportional to a first-order viscous term 
and a second-order inertial term. The viscous resistance is proportional to the superficial 
velocity of the flow us (m/s), the viscosity of the fluid μ (Pa·s) and is inversely proportional 
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to the permeability of the porous medium k  (m2). The inertial resistance is proportional the 
inertial resistance factor β  (m−1), the density ρ (kg/m3) of the fluid, and the superficial veloc-
ity squared. The superficial fluid velocity is here defined as the bulk fluid flow rate Q  (m3/s) 
divided by the bulk cross-sectional area A  (m2) of the porous media oriented perpendicular to 
the superficial flow direction.

The permeability k and the inertial resistance factor β represent intrinsic geometrical prop-
erties that describe the size and shape of the porous media pore channels (Ruth and Ma 1992; 
Yazdchi and Luding 2012; Whitaker 1996; Gjengedal et al. 2020). These geometrical proper-
ties are typically represented by a diameter of the solids that surround the pores (Chukwudozie 
and Tyagi 2013; van Lopik et al. 2019). However, the permeability and the inertial resistance 
factor should be identified with respect to the shape and size of the pores within the pore 
matrix. A new semi-analytical approach is presented in detail by Gjengedal et al. (2020) and 
provides Eq. (2). This equation describes the fluid flow through a single pore in relation to the 
average flow velocity in the pore body region. The permeability and the inertial resistance fac-
tor are here represented by Eqs. (3) and (4), respectively.

The geometry of the pore is described by the porosity n  (m3/m3), the specific surface of 
the pore S  (m2/m3), the tortuosity factor τ (-), and the pore body shape factor k0 (-). The dis-
sipation coefficient Cd is not yet clearly defined in the porous media literature. It is suggested 
that the Cd depends on the constriction ratio and the streamlining shape of the pore channel, 
like the "minor loss" coefficient in the literature of fluid mechanics of pipes, Fig. 1 (Gjengedal 
et al. 2020).

The concept of minor losses in pipes is an experimentally developed approach for deter-
mining the hydraulic loss contribution of various pipe components that have an obstructive 
effect on the flow, such as pipe bends, diffusers and flow controlling valves. These head loss 
components are termed "minor" because, in typical piping systems with long sections of 
pipes, they occur relatively infrequent in the pipeline and these losses are consequently minor 
compared to the head losses induced by the long straight pipe section itself (consequently the 
"major" losses). However, in piping systems with numerous turns, bends and valves over short 
distances, the minor losses can be far greater than the major losses. The corresponding equa-
tion for pipes is that of Eq. (5) (Çengel and Cimbala 2010).
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The total losses of hydraulic head hL (m) through a pipe segment of length L (m), 
and diameter D (m) is a sum of two terms that are proportional to the average velocity 
squared Vs (m/s) and inversely proportional to the acceleration due to gravity g (m/s2). 
The liner term, represented by the Darcy-Weisbach friction factor component f, corre-
sponds to the viscous friction in straight and uniform pipe channels. The second-order 
term, represented by the loss coefficient KL, express the minor losses of each individual 
obstructive component in the piping layout. The sum of these coefficients account for 
the total inertial losses that are induced by convective acceleration through the entire 
pipeline. An obstruction in the flow path of the fluid might e.g. be the contraction and 
expansion of the pipe channel geometry seen in Fig. 1.

Pipe manufacturers readily provide experimental data for the KL of various pipe com-
ponents. The KL of a single pipe component is calculated from experimental data via 
Eq. (6) (Crane Company, 2009).

The loss coefficient is treated as a product of an inertial resistance factor fT times the 
ratio of the length of the pipe segment L and the diameter D of the chosen representative 
pipe size within this segment. The smaller pipe size is typically selected as the refer-
ence size and the average flow velocity Vs in Eq. (5) is based on the flow velocity in the 
smaller pipe segment. The letter "T" infers that the inertial resistance factor fT represents 
turbulent flow conditions. Including Eq. (6) into Eq. (5) produces Eq. (7) with the addi-
tion of the Darcy-Weisbach friction factor for circular pipes (f = 64/Re). The hydraulic 
head is now represented in terms of the corresponding pressure differential ∆P (Pa), 
instead of heads.

The Reynolds number (Re) for pipe flow in Eq. (8) relate to the pipe diameter D (m), 
which is the scientific convention in pipe flow engineering problems.
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Fig. 1  Flow obstructions: A A constricting pipe segment induce a "minor loss" effect in a pipe. B The 
same phenomenon occurs in porous media flows where the narrowing of the pore throat induces convective 
acceleration in the flow (Gjengedal et al. 2020)



415Convective Acceleration in Porous Media  

1 3

Equation (9) shows the pipe flow equation with the Reynolds number fully expressed. The 
linear term is now the famous Hagen–Poiseuille equation for circular pipes with a uniform 
circular pipe diameter.

However, if a pipe has a nonuniform and non-circular geometry the characteristic shape 
of the pipe is not related to the diameter of the pipe alone. Therefore, to evaluate nonuniform 
pipe channels, the fundamental characteristic shape definition must be applied instead (Schil-
ler 1923), corresponding to Eq. (10).

This necessitates a correction to the conventional loss coefficient KL of Eq. (6). It is evident 
from Eq. (10) that to utilize the pipe diameter D as the characteristic length unit must pro-
duce a loss coefficient four times greater than would otherwise occur should the mpipe unit be 
applied instead. This numerical difference is not obvious because it is imbedded in the experi-
mentally derived KL value. The corrected pipe flow equation therefore becomes Eq.  (11), 
where the characteristic length unit mpipe describes the shape of the pipe channel along the 
pipe length L.

Equation (2) for porous media and Eq. (11) for pipes display apparent similarities now that 
they are expressed in terms of a single pore channel and pipe channel. However, a direct com-
parison of Eqs. (2) and (11) necessitates that these two equations are organized in the same 
manner, where the fluid flow is evaluated from the same point of reference within the flow 
field in the pore channel and pipe channel.

Equation (2) must also be expressed by the characteristic length unit m in the most funda-
mental form through Eq. (12), and the average flow velocity must be expressing by Eq. (13). 
The letter "l" specifies that the average velocity Vl (m/s) is the velocity of the flow with respect 
to the "larger" channel opening within the pore, corresponding to the pore body region of the 
pore. This provides Eq. (14), which is more fitting for the problem at hand.

(8)Re =
� ⋅ Vs ⋅ D

�
.

(9)ΔP =
32

D2
⋅ � ⋅ Vs ⋅ L +

fT

D ⋅ 2
⋅ L ⋅ � ⋅ V2

s
.

(10)mpipe =
volume of pipe

surface area in pipe
=

npipe

Spipe
=

� ⋅
D2

4
⋅ L

� ⋅ D ⋅ L
=

D

4
.

(11)
ΔP

L
=

2

m2
pipe

⋅ � ⋅ Vs +
fT

8
⋅

1

mpipe

⋅ � ⋅ V2
s
.

(12)m =
porosity of the pore unit volume

spesific surface of the pore unit volume
=

n

S
.

(13)Vl =
�

k0 ⋅ n
⋅ us.

(14)
ΔP

L
=

3 ⋅ � ⋅ �

m2
⋅ � ⋅ Vl + Cd ⋅

�

m
⋅ � ⋅ V2

l
.



416 S. Gjengedal 

1 3

The resemblance of the second-order terms of Eqs. (11) and (14) is now apparent. The 
comparison is particularly fitting in the special case with the tortuosity of the pore equal to 
unity (τ = 1.0). However, a direct comparison requires that a correction must be performed, 
to either one of Eq. (11) or Eq. (14), since the reference velocity for both equations is not 
yet the same. The reference velocity (Vs) in piping system is based on the velocity of the 
smaller pipe segment, while the reference velocity (Vl) in the pore channel is based on the 
fluid velocity in the pore body region of the pore. Gjengedal et al. (2020) therefore sug-
gested that a correction should be performed on Eq. (14) for the inertial term according to 
Eq. (15), where the cross-sectional area ratio a (-) is applied in compliance with the con-
ventions in fluid mechanics of pipes (Crane Company 2009; Idelchik 1994). The compara-
ble porous media equation is therefore Eq. (16).

The dissipation coefficient CKL of porous media is deemed similar to the inertial resist-
ance factor fT for pipes and should therefore display similar behavioural traits with respect 
to the constriction ratio and the streamlining shape of the flow channel. Both factors should 
also display similar traits with respect to the flow characteristics that dominate in laminar 
and turbulent flow conditions. It is known that the minor loss coefficients of pipes display 
an increased numerical value in laminar fL flow conditions versus turbulent fT flow condi-
tions, fL > fT (Idelchik 1994; Çengel and Cimbala 2010). The flow characteristics in Forch-
heimer flow is laminar, and it is therefore the laminar inertial resistance factor (fL) that 
should be similar to the dissipation coefficient CKL.

The suggested analogy for convective acceleration in porous media flows and laminar 
flow in nonuniform pipes can be verified through evaluating the legitimacy of Eq. (17) with 
published experimental data.

3  Method

A comparison is performed on known CKL and fL coefficients derived from experimental 
data found in the literature. Two independent experimental works on different 3D fabri-
cated porous media provide the CKL data (Huang et al. 2013; Gjengedal et al. 2020). These 
porous media were constructed by stacking spherical and octahedra particles in the pre-
defined packing configurations shown in Fig.  2. These packing arrangements produce a 
pore in between the solids that correspond to the shape of the pores shown in Fig. 3. In 
the experiments of Huang et al. (2013) the spherical balls in the Samples T1–T4 were fab-
ricated by gluing acrylic ball together in cubic containers. These balls were smooth, and 
the corresponding pore geometries in their experiments have a similar shape as shown in 
Fig. 3.
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Unlike the smooth acryl balls T1–T4, the Sample A–D particles of Gjengedal et al. 
(2020) are very rough due to the 3D printing technology employed in the fabrication. 
This caused the actual shape of the pores to be slightly different than the ideal and 
smooth configurations seen in Fig. 3. The rough samples have lower porosities, larger 
degree of contraction, and rougher surfaces than shown in the ideal sketches in Fig. 2. 
The estimated geometrical properties and the measured geometrical properties are 
reproduced in Table 1 for comparison, along with the calculated dissipation coefficient. 

The spherical particle configuration has the most severe constriction ratio of all the 
packing configurations. It is assumed that the smooth acrylic balls T1–T4 have the same 
area ratio as the ideal, a = 0.215, while the A3 sample has a much more severe con-
striction ratio of a = 0.128, due to the rough particle surface. Still, the A3 pore channel 
has a similar curved pore shape to that of T1–T4. Curved and rounded channels tend 
to reduce the "minor losses" observed in pipe flow experiments (Idelchik 1994; Crane 
Company 2009; Çengel and Cimbala 2010). This geometrical trait is reflected in the dis-
sipation coefficient, which is lowest for the spherical samples A3 CKL ≈ 0.03 and T1–T4 
CKL ≈ 0.033–0,048. Note that the T1–T4 and A3 samples have similar numerical CKL 
values, regardless of the particle roughness.

Fig. 2  Ideal sketch of the 3D porous media testes by Huang et  al. (2013) and Gjengedal et  al. (2020). 
Huang et al. (2013) tested the cubical packing of spheres of T1 = 3.0 mm, T2 = 5.0 mm, T3 = 8.0 mm, and 
T4 = 10 mm diameters. Gjengedal et al. (2020) tested the cubic packing of spheres A3 = 1.0 mm diameter. 
And octahedrons of 1 mm diameter (B3, B6 and D) and octahedrons of 0.5 mm diameter (C1). Sketch is 
modified after Gjengedal et al. (2020)

Fig. 3  The sketch of the corresponding ideal pore shape and relative pore size of the porous media geom-
etries in Fig. 2. The pore throat cross section is highlight in red. Sketch is modified after Gjengedal et al. 
(2020)
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It is conventional in pipe flow experiments it to assign an angle of approach θ that 
describes the rate with which the contracting geometry changes towards the narrowest sec-
tion of the flow channel (Crane Company 2009; Gibson 1910; Gibson 1911–1913). For 
these 3D geometries the narrowing does not occur evenly along the pore channels, and 
there will not be a single angle of approach that uniquely describes the rate of contraction. 
However, an apparent angle of approach θ* can be assigned based on the uniform angle 
that would result from an inscribed circle within the pore throat cross section and the pore 
body cross section. This angle allows for an intuitive comparison between the 3D sample 
types. The apparent angle of approach for A3 is approximately θ* ≈ 82° and for the T1–T4 
samples the θ* ≈ 75°.

The octahedron Samples B, C and D are also fabricated with a rough surface and the 
actual shape of the pores are slightly different than the ideal and smooth configurations in 
Fig. 3. The ideal configuration of the B and C samples should produce the same area ratio 
of a = 0.500 regardless of the particle size. However, the C1 sample is relatively rougher 
than the B and D samples, which produce a more severe constriction ratio a = 0.290 than 
the B3 and B6 samples a ≈ 0.42. Consequently, the apparent angle of approach is more 
abrupt for the C1 θ* ≈ 71° than for B3 and B6 θ* ≈ 61°. A slightly higher dissipation coef-
ficient of C1 CKL = 0.11 than the B3 and B6 samples CKL = 0.09 also arise.

The D3 sample has the least constricting area ratio a = 0.640 and the least abrupt appar-
ent angle of approach θ* ≈ 38°. Yet, the channel pathway of sample D3 is offset by an 
interfixed octahedron particle and the pores have a tortuosity of τ = 1.2247. An altera-
tion of the predominant flow direction tends to increase the "minor losses" observed in 
pipe flow experiments (Idelchik 1994; Crane Company 2009; Çengel and Cimbala 2010). 
Gjengedal et al. (2020) suggest that this trait is reflected in the D3 sample having the larg-
est CKL = 0.13.

For comparison with pipe flow equations it is necessary to evaluate a pipe geometry that 
has similar geometric qualities to these pores. This is a pipe with a constricting segment 
along the flow channel and must consist of a contracting part and an expanding part, like 
the symmetrical half-cone pipe shown in Fig. 1A. Crane Company (2009) and Rennels and 
Hudson (2012) have summarized experimental data for the loss coefficients of such half-
coned pipe segments and provide semi-empirical equations. The area ratio a and the angle 
of approach θ determine the shape and length of the pipe channel. The minor loss coef-
ficients of pipes can be determined via Eq. (18–22). The minor losses depend on the flow 
direction through the half-cone, where Eq. (18–20) apply for the expanding cone segment 
(Rennels and Hudson 2012; Crane Company 2009).
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Note that the equations are rendered in terms of the standardized area ratio a, while 
most pipe literature present these equations in terms of pipe diameter ratio, corresponding 
to the root of the standardized area ratio. Equation (21–22) apply for the contracting cone 
segment (Rennels and Hudson 2012).

where

The minor loss coefficients of Eqs. (18–22) are typically determined in fully developed 
turbulent flow conditions, where the inertial friction factor (fT) is independent of the Reyn-
olds number and where the viscous contribution to the dissipation is negligible. However, 
in laminar flow conditions the minor loss coefficients show an increased numerical value 
(Idelchik 1994). A correction of the minor loss coefficient is typically applied by introduc-
ing the coefficient αL,T (-), which is close to unity for fully turbulent flow (αT ≈ 1.05) but 
is two for fully developed laminar flows (αL ≈ 2.0) (Çengel and Cimbala 2010). This phe-
nomenon also occurs in porous media when the onset of turbulence is observed in experi-
mental data. The data typically display a reduction in β of the Forchheimer equation as the 
flow velocity increases beyond the Forchheimer flow regime (Barree and Conway 2004; 
Fand et al. 1987; Skjetne and Auriault 1999).

Equations (18–20) are plotted in Fig. 4 and Eq. (21) in Fig. 5 and show the trends of the 
minor loss coefficients KL with respect to the contraction ratio and the angle of approach. 
The contraction losses and the expansion losses increase when the θ increase and when 
the a becomes progressively more constricting. The expansion losses are typically larger 
than the contraction losses for the same geometrical shape but are of similar magnitude for 
a0,5 > 0.60. This demonstrate that the direction of flow through a constricting pipe segment 
has an influence on the induced convective acceleration.

Equations  (18–21) are used to calculate the corresponding dissipation coefficient CKL 
and the inertial resistance factor fL for these pipe geometries. The geometrical properties of 
a half-coned pipe segment: the pipe channel length Lpipe, the pipe channel volume npipe and 
the pipe channel internal surface area Spipe can be expressed by the diameter size of either 
one of the pipe entrances. The larger pipe size is here selected as the reference size (Alarge 
in Fig. 1) and calculated via Eq. (23, 24, and 25).
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Fig. 4  Minor loss coefficients for fluid flows in turbulent flow conditions (αT = 1.05) due to gradual and sud-
den expansion of a pipe. The values are calculated from Eq. (18–20). The data approximately compress into 
a single line for angles larger than 45° and larger angles are therefore not shown

Fig. 5  Minor loss coefficients for fluid flows in turbulent flow conditions (αT = 1.05) due to gradual contrac-
tion of a pipe. The values are calculated from Eq. (21)
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The numerical value of the pipe size Dlarge does not affect the outcome of the calcula-
tions, because the ratio of m/L in Eq. (17) render the outcome independent of the pipe 
size. The only geometrical variables that affect the outcome of Eq. (17) is the area ratio 
a and the angle of approach θ, which demonstrate that the inertial friction factors fL and 
fT are a function of the shape of the flow channel, but not the size of the flow channel.

If the contracting segment and the expanding segment of the pipe are not symmetri-
cal the length units, L and m, must be calculated separately for both the contraction and 
the expansion segment of the channel. However, for a symmetrical half-cone pipe the 
angle of approach θ is equal in both segments. The comparable pipe flow expression 
then becomes the sum of the contraction loss and the expansion loss of the pipe, shown 
in Eq. (26).

This equation is utilized to determine the pipe dissipation coefficients (CKL-pipe) for 
comparison with the porous media data.

(25)Spipe =

(
Dlarge + a ⋅ Dlarge

)
⋅ � ⋅ Lpipe

2 ⋅ cos
�

2

.

(26)CKL−pipe
=

�L ⋅ npipe

Spipe ⋅ Lpipe ⋅ 2
⋅

(
KL−exp + KL−con

)

Fig. 6  Dissipation coefficients  CKL-exp due to gradual and sudden expansion of a half-cone pipe for laminar 
flow conditions (αL = 2.0). The values are obtained with the smaller flow channel as the reference velocity 
 Vs. The data are calculated from the  CKL-exp part of Eq. (26)
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4  Results

The CKL-exp due to expansion of a pipe is presented in Fig. 6 for the range of area ratios 
0.01 < a < 0.98 and the range of angle of approaches 0° < θ < 170°. The figure demonstrates 
that a large angle of approach induces larger dissipation coefficients than smaller angles, in 
good agreement with the general behaviour of the minor loss coefficient (KL-exp). However, 
unlike the KL-exp data that plot almost equally for all angles above 45°, the CKL-exp provide 
individual curves for each individual angle of approach.

The CKL-exp does not depend on the area ratio a in the same manner to that of KL-exp in 
Fig. 4. The CKL-exp display a peak value within the 0.2 < a < 0.3 range (slightly dependent 
on the angle of approach). When the area ratio approaches zero the dissipation coefficients 
trends towards a unique value depending on the angle of approach. On the other hand, the 
CKL-exp drops sharply towards zero when the area ratio increases and approach unity. In the 
special case with a = 1.0 the CKL-exp reaches a critical point and becomes zero. This dem-
onstrate that the CKL-exp will always affect the fluid flow through the channel except when 
a = 1.0 and there is no change in the flow channel geometry.

The CKL-con due to contraction of a pipe is presented in Fig.  7 for the range 
0.01 < a < 0.98 and the range of angle of approaches 0° < θ < 170°. The figure demonstrates 
that larger angles of approach induce larger dissipation coefficients than smaller angles, 
which is in good agreement with the minor loss coefficient KL-con. However, opposite to the 
KL-con data that have largest values at small area ratios, the CKL-con display a reversed trend 
where the peak values occur for relatively small constricting area ratios (0.6 < a < 0.7).

The dissipation coefficients for the symmetrical half-cone pipe geometry are obtained 
by combining the data of Figs. 6 and 7. This is presented in Fig. 8, in addition to the dis-
sipation coefficients of the T1, T2, T3, T4, A3, B3, B6, C1 and D3 samples. The combined 
effect of the CKL-exp data and the CKL-con data, produce a "bell-shaped" curve. Figure  8 

Fig. 7  Dissipation coefficients  CKL-con due to gradual and sudden contraction of a half-cone pipe for laminar 
flow conditions (αL = 2.0). The values are obtained with the smaller flow channel as the reference velocity 
 Vs. The data are calculated from Eq. (26)
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demonstrates that a contracting and expanding pipe segment can obtain dissipation coeffi-
cients as high as CKL ≈ 0.2. The porous media dissipation coefficients plot within the same 
region as those of the calculated pipe data.

However, the porous media data plot differently than what the apparent angle of 
approach (θ*) would suggest. The CKL of T1, T2, T3, T4 with θ* ≈ 75°and A3 sample with 
θ* ≈ 82° is here shown to plot equal to a comparable pipe segment with θ° = 30–40°, argu-
ably much lower than what would be expected. The opposite is observed for the octahedron 
samples C1, B3, and B6 whom all show higher CKL values than for comparable angle of 
approaches in pipes θ° = 85–95°. The differences are particularly profound for the D3 sam-
ple with θ* ≈ 38°, where the CKL is shown to plot equal to a pipe segment with θ° = 125°. 
The larger CKL value of C1 than for B3 and B6 is consistent with C1 (θ* ≈ 71°) having a 
more abrupt constriction ratio than the other two (θ* ≈ 61°). The same phenomenon occurs 
for the pipe data where larger θ° consistently produce larger CKL values for the same area 
ratio.

The data in Figs. 6, 7 and 8 are calculated with the smaller channel velocity Vs as the 
reference velocity. This point of reference visualizes how the angle of approach affect the 
CKL, more so than the area ratio. The data of Fig. 8 demonstrate this particularly well for 
very small angles of approach, e.g. θ° = 10°, which shows that the dissipation coefficient 
will be very small, e.g. CKL ≤ 0.001, regardless of the area ratio a.

The larger channel velocity Vl provides another point of reference that, in contrast to the 
Vs, visualize more clearly how the area ratio affect the magnitude of dissipation. The cor-
responding dissipation coefficient Cd calculated from Eqs. (17) and (26) for the symmetri-
cally half-cone pipe segments is presented in Fig. 9 along with the corresponding porous 
media data.

It is evident that the Cd values are much larger than the corresponding CKL values and 
Fig.  9 demonstrates more clearly how the constricting area ratio a influences the flow 

Fig. 8  Dissipation coefficients  CKL for symmetrically constricting half-cone pipe channels and dissipation 
coefficients of porous media samples T3, T4, A3, B3, B6, C1 and D3 in laminar flow conditions (αL = 2.0). 
The values are obtained with the smaller flow channel as the reference velocity  Vs. The pipe values are cal-
culated from Eq. (26)
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characteristics. For instance, even for very small angles of approach, e.g. 10°, Fig. 9 shows 
that the Cd will have a significant influence on the convective acceleration term if the area 
ratio is small enough, e.g. when a < 0.1. This is not as clear in the CKL data in Fig. 8 where 
the corresponding CKL values are very small. This effect is reflected in the porous media 
data, where the A3 sample now has the largest Cd and the D3 sample has the lowest Cd of 
all the samples, in good agreement with the data response of the experimental flow tests of 
Gjengedal et al. (2020) and Huang et al. (2013).

5  Discussion

The presented work compares pipe flow equations and porous media flow equations. It is 
demonstrated that the influence of convective acceleration in pipe channels and pore chan-
nels are comparable if their geometrical aspects are described precisely in the same man-
ner, and from the same point of reference with regards to the fluid velocity in the channels. 
A contracting and expanding pipe segments obtain dissipation coefficients that plot within 
the same region as dissipation coefficients obtained from similar contracting and expand-
ing porous media geometries. This is logical because both approaches deal with the same 
geometrical aspects, namely the expansion and contraction of a flow channel.

The comparison of the pipe flow data and the porous media data reveals some important 
geometrical characteristics and their influence on convective acceleration. From Fig. 8 it 
is shown that the dissipation coefficient CKL is only zero in the special case of a uniform 
flow channel geometry, when a = 1.0. This infers that the convective acceleration term can 
be ignored when the pore or pipe geometry is equal to a straight and uniform flow channel 
but must be accounted for in all other geometrical cases. For all other geometrical cases it 
can be expected that many relevant pore channel geometries in natural porous media will 

Fig. 9  Dissipation coefficients  Cd for symmetrically constricting pipe channels and dissipation coefficients 
of porous media samples T1, T2, T3, T4, A3, B3, B6, C1, and D3 in laminar flow conditions (αL = 2.0). The 
values are obtained with the larger flow channel as the reference velocity  Vl. The pipe data are calculated 
from Eq. 17 and Eq. (26) divided by the area ratio squared (a2)
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obtain dissipation coefficients lower than CKL < 0.2, as is observed for these pipe geom-
etries in Fig. 8.

The rate of change in the geometry along the channel length governs the magnitude of 
convective acceleration that develops in the flow. The rate of change is here expressed as a 
function of the angle of approach θ and the area ratio a of the flow channel. The pipe data 
and the porous media data in Figs. 8 and 9 show dissipation coefficients CKL and Cd that 
have similar numerical values and trends with respect to the angle of approach θ and the 
area ratio a of the pipe flow channels. An abrupt constriction in pipes, with a large angle 
of approach θ induce more convective acceleration than does a gradual constriction where 
the angle of approach θ is small. The same trend occurs in the porous media data and can 
be observed by comparing the CKL data of C1 θ* ≈ 71° versus B3 and B6 θ* ≈ 61°. This 
is reasonable because the rate of change in the geometry will then be greater over shorter 
distances.

The T1–T4 and A3 samples achieve lower CKL values than the apparent angle of 
approach θ* would suggest when compared to the pipe CKL data. The opposite is seen 
in the C1, B3 and B6 samples with relatively higher CKL value than the pipe data. This 
indicate that the rounding of the channel geometry play an important role in reducing the 
numerical values of the CKL coefficient. These observations are in good agreement with 
the observed trends in other pipe flow experiments (Idelchik 1994; Crane Company 2009; 
Çengel and Cimbala 2010; Rennels and Hudson 2012). This implies that an abrupt and 
sharp change in the flow cross-sectional area induce more convective acceleration, than 
does a rounded and gradual change in the flow channel. This is a logical response because 
the rate of change in the geometry is greater over shorter distances for abrupt and sharp 
corners.

From Fig. 8 it can be expected that the most relevant straight, nonuniform flow channel 
geometries in natural porous media will obtain dissipation coefficients within the range 
0 < CKL < 0.2. However, the influence of pore tortuosity is not directly accounted for in this 
study because the presented pipe data apply to straight pipes only. It is recognized from 
pipe flow experiments that an alteration of the predominant flow direction tends to increase 
the "minor losses" in pipe bends, even without contraction or expansion of the pipe channel 
(Crane Company 2009; Çengel and Cimbala 2010; Idelchik 1994). By comparing the D3 
data with the pipe data in Fig. 8 it is evident that the CKL value of D3 is higher than the CKL 
of straight pipes with a similar angle of approach. The D3 angle θ* ≈ 38° is here shown to 
plot equal to a pipe segment with θ = 125°. This suggests that the induced convective accel-
eration in D3 originate from other sources than the contraction and expansion of the flow 
channel alone, and one such source might be the influence of the tortuosity. Further studies 
should evaluate this phenomenon by including a comparison with pipe bend data so that 
the influence of the tortuosity on the CKL can be accounted for.

An interesting characteristic can be observed in Eq. 26 with regards to the role of sym-
metry. If the pore channel is symmetrical the sum of the dissipation coefficients from the 
expanding and contracting segments will be independent of the direction of flow. However, 
if the pore channel is asymmetrical on either side of the obstruction, the sum of the dis-
sipation coefficients will depend on the direction of flow because the sum of the two terms 
might be directionally dependant. This is shown in Eq. 26 where, for an asymmetrical pore 
channel, the length units L and m must be calculated separately for both the contraction and 
the expansion segment of the channel, which in turn will have different values of KL-exp and 
KL-con depending on the direction of flow. The resulting over-all effect on the dissipation 
coefficient CKL and Cd will thus be larger in one flow direction than in the other flow direc-
tion through the pore.
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Naturally occurring pores are rarely symmetrical, e.g. since the pore geometry in soils is 
determined by the packing of irregular particle grains. The role of symmetry therefore has 
practical relevance in many engineering problems that deal with non-Darcy flow conduc-
tions, particularly with regards to well performance testing of pumping wells and injection 
wells. One relevant example is the Aquifer Thermal Energy Storage (ATES) system where 
a groundwater well can be used for both groundwater production and groundwater injec-
tion (Abuasbeh and Acuna 2018). If an ATES well is operated under non-Darcy flow con-
ditions, it might have a different hydraulic capacity depending on the direction of flow, e.g. 
into or out from the well, and it is thus not necessarily reasonable to assign the same well 
capacity in pumping mode as in injection mode. Similarly, conducting a pumping test in a 
well is not necessarily the appropriate testing method for evaluating its injection capacity. 
This might play a role e.g. when old oil wells, originally used for oil production, will be 
used as  CO2 injection wells in the future.

It is a scientific challenge to determine the shape of the pore channel in naturally occur-
ring porous media. This requires extensive laboratory work, especially to evaluate the 
angle of approach θ* and the area ratio a of the flow channel, which arguably makes it 
challenging to utilize the CKL coefficient for prediction purposes or for comparison with 
other experimental data where these geometrical traits are unidentified. For practical appli-
cations it is probably more convenient to evaluate the combined influence of θ and a from 
the Cd data of Fig. 9 rather than the CKL of Fig. 8. Still, the presented results might serve as 
useful reference points for numerical modelling, especially when more experimental data 
becomes available for other pore geometries in the future. Consulting Eq. 2 to evaluate the 
geometry of the pore space in e.g. numerical models might therefore be useful from an 
interpretational point of view.

6  Conclusion

This work demonstrates that the influence of convective acceleration in nonuniform pore 
channels is analogues to convective acceleration in nonuniform pipe channels. The two 
phenomena are comparable if their geometrical characteristics are described precisely in 
the same manner, and from the same point of reference with regards to the fluid velocity 
in the channels. Studies on pipe geometries are consequently relevant for comparison with 
porous media studies. Data interpretation can then be improved as more experimental data 
and knowledge regarding the influence of the channel geometry become available from 
future studies and this will help our data interpretation and improve the predictability of 
porous media equations.

The presented results suggest that most nonuniform straight pipe flow channel geom-
etries obtain dissipation coefficients within 0 < CKL < 0.2. These geometries are relevant for 
natural porous media and it is expected that most pore geometries will obtain values within 
this range. However, the dissipation coefficient is a function of the rate of change of the 
geometry along the channel length. The results show that the rate of change depends on:

• The angle of approach θ and the area ratio a of the pore channel. The Cd data of Fig. 9 
and the CKL of Fig. 8 demonstrate how these geometrical traits influence the magnitude 
of induced convective acceleration

• The rounding of the pore channel geometry reduces the magnitude of induced convec-
tive acceleration
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• The tortuosity of a pore influences the CKL and increases the magnitude of induced con-
vective acceleration

Further work should investigate the influence of other pore geometries and, especially 
the influence of the pore tortuosity. A comparison with pipe bend data might reveal the 
influence of the pore tortuosity on the CKL and Cd.

Appendix A

The experiments of Huang et al. (2013) were conducted on acrylic balls of uniform size 
and shape bonded together by chloroform to the produce a porous media of cubic packing 
of smooth spheres. Four different diameters d of acrylic balls were chosen for these tests; 
the T1 = 3.0 mm, T2 = 5.0 mm, T3 = 8.0 mm, and T4 = 10.0 mm. This data is here evalu-
ated via the methods suggested by Gjengedal et al. (2020) to produce the dissipation coef-
ficient CKL for each sample.

For the evaluation of their data, it would have been preferable if the porosity n, specific 
surface area S and area ratio a were measured directly, e.g. with a CT scanner and a 3D 
visualization software. However, in their paper the porosity n of the samples is not meas-
ured but is assumed to be equal to the ideal cubic sphere packing porosity, with n = 0.476, 
regardless of the sphere diameter. The specific surface area S of the pores is calculated 
indirectly via Eq.  (27). This geometric relation is correct for the T1–T4 samples if the 
spheres are smooth and if the fabrication has ensured no alteration of the sphere shape and 
the shape of the corresponding pore geometry.

In ideal conditions these assumptions are reasonable, but it is evident from the pictures 
of the spheres (Fig. 2 of their paper) that the melting of the acrylic balls have caused a 
slight merging at the contact points of the spheres. These geometric discrepancies can lead 
to an erroneous correlation with the experimental results. However, without supplementary 
measurements of the pore structures it is currently not easy to evaluate the data further.

The data of Huang et al (2013) are presented in Table A1 and are used to calculate the 
corresponding dissipation coefficient CKL for samples T1–T4. The fluid properties of water 
are found via reversed calculation of the data found in Table 1 of their paper and reveal that 

(27)S =
6 ⋅ (1 − n)

d
.

Table A1  Calculations based on data from Huang et  al. (2013). The fluid properties are that of water at 
11 °C, corresponding to ν/g = 1.26·10–5 cm/s and 1/g = 1.02·10–3  s2/cm for all four samples T1–T4

ID Sphere diam-
eter, d (mm)

Regression 
constant, a

Ideal 
porosity, n 
(%)

α k0 Regression 
constant, b

β Ideal area 
ratio, a (−)

CKL

Huang et al. 2013
T1 3.0 0.0533 47.6 150 2.27 0.0139 0.084 0.215 0.033
T2 5.0 0.0168 47.6 131 2.59 0.0064 0.065 0.215 0.033
T3 8.0 0.0055 47.6 111 3.07 0.0041 0.066 0.215 0.048
T4 10.0 0.0036 47.6 113 3.00 0.0029 0.059 0.215 0.041
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the water temperature was approximately 11 °C. The remaining numerical values originate 
from Table 1 of their paper and are based on an Ergun-type correlation, shown in Eqs. (28) 
and (29), where the linear coefficient α and the polynomial coefficients β are adjusted to 
best fit the experimental data. Visual comparison with other empirical equations in Fig. 9 
of their paper show that the linear coefficient should be α < 144 and the coefficients β 
should be close to 0.6 or slightly higher.

To calculate the dissipation coefficient CKL one must first calculate the pore shape factor 
k0 from Eq. (30). It is here assumed that the Stokes constant (3π) is a good approximation 
for the spatial strain ratio within the fluid flow field of the pores, as suggested by Gjengedal 
et al. (2020). The tortuosity is unity for the cubic packing of spheres and does not affect the 
calculations (τ = 1.0).

If the pores within samples T1–T4 are equal in shape to the ideal cubic packing of 
spheres, they should ideally produce equal α-values and β-values regardless of sphere size. 
In Table A1 it is shown that the estimated linear coefficients α agrees well with the plotted 
figures and graphs of Huang et al. (2013) where the α < 144. However, the largest sphere 
samples T3 and T4 attain smaller coefficient α than does the T3, and especially the T4 
sample. The slight variation in the coefficients α of the four samples suggest that the shape 
of the pores in the four samples are slightly different and are altered compared to the ideal 
case.

A qualitative evaluation of these results suggest that this is due to the fabrication 
method. The bonding with chloroform melts the acrylic balls together, altering the ball’s 
shape slightly at the contact points with the neighbouring spheres. This melting causes a 
slight, but observable distortion of the pore geometry compared to the ideal cubic packing 
of loose individual spheres. The size of the merged section between the acrylic balls will 
obviously depend on the relative amount of chloroform used in the fabrication. In practise, 
it is likely it was utilized relatively more amount of chloroform per individual sphere in the 
fabrication of the small spheres (T1 and T2) than for larger spheres (T3 and T4), at least if 
the same equipment was used for the fabrication of all four sample sizes. The size of the 
melted section between the acrylic balls should thus depend on the ball diameter, and the 
bonded section would be relatively larger for the small sphere sizes. In Fig. 2 of Huang 
et al. (2013) the melted section of acryl can be observed in several pictures of one sample. 
It is not specified which sphere size these pictures portray, but it is likely the T3 = 8.0 mm 
or the T4 = 10.0 mm sample size. If the alteration at the contact points is slightly different 
for the T1 and T2 it might explain the larger linear coefficient α. However, it is not easy 
to correct for such effects since both the porosity n and the specific surface area S will be 
reduced from such a merging, but with variable magnitude depending on the size of the 
melted section. The contraction ratio a will also be affected and increased compared to 
the ideal cubic case depending on the size of the melted section. However, since the pore 
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shapes are not described in this manner in their paper it is not attempted to perform such 
corrections here.

The dissipation coefficient CKL is here estimated from Eq.  (31) based on the assump-
tion that the area ratio is equal to the ideal cubic ratio (a = 0.215). In Table A1 it is shown 
that the samples T2, T3, and T4 attain coefficient β that are close to 0.6 or slightly higher, 
which agrees well with the plotted figures and graphs of Huang et al. (2013). However, a 
slight increase in the coefficients β of T1 further suggest that the shape of the pores in this 
samples, more so than T2, is slightly altered compared to the T3 and T4 data.

The CKL of the T1–T4 samples attain numerical values CKL = 0.033—0.048, which is in 
relatively close agreement with the A3 sample with CKL = 0.03 of Gjengedal et al. (2020), 
but somewhat larger in magnitude, especially for T3 and T4.
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