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Abstract
Heat transport through a porous medium depends on the local pore geometry and on the 
heat conductivities of the solid and the saturating fluid. Through upscaling using formal 
homogenization, the local pore geometry can be accounted for to derive effective heat con-
ductivities to be used at the Darcy scale. We here consider thin porous media, where not 
only the local pore geometry plays a role for determining the effective heat conductivity, 
but also the boundary conditions applied at the top and the bottom of the porous medium. 
Assuming scale separation and using two-scale asymptotic expansions, we derive cell 
problems determining the effective heat conductivity, which incorporates also the effect of 
the boundary conditions. Through solving the cell problems, we show how the local grain 
shape, and in particular its surface area at the top and bottom boundary, affects the effective 
heat conductivity through the thin porous medium.

Keywords  Upscaling · Heat transport · Thin porous media

1  Introduction

Heat conduction in porous media is a relevant process in applications ranging from geo-
thermal engineering to various technical applications. Especially in the latter field, many 
porous components have a thin shape (see, e.g., Belgacem et  al. 2016, Michaud 2016), 
where filters, fuel cells and membranes count among typical examples. A thin porous layer 
is often part of composite materials (see, e.g., Asbik et  al. 2006). For a porous medium 
where grains and the saturating fluid are under local thermal equilibrium, the effective heat 
conductivity of the porous medium characterizes the medium’s ability to transport heat 
via conduction. A better understanding of the heat transport in porous media, in particu-
lar finding the medium’s effective heat conductivity, can help to not only predict the heat 
transport in a certain setup, but also to design porous materials according to the needs 
of industrial applications. In this context, the detailed properties of the considered porous 
medium are necessary to investigate (see, e.g., Ranut and Nobile 2014).
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When investigating heat transport in porous media, completely pore-scale resolved 
models (see, e.g., Koch et al. 2021) are often not feasible for large domains due to their 
computational complexity. Because of that, we will determine the effective heat conduc-
tivity of the porous medium at the Darcy scale. While simple approaches like a porosity-
weighted averaging are suitable to approximate the effective heat conductivity of layered 
media, as shown in Bringedal and Kumar (2017), they are not applicable to more com-
plex pore structures as also the pore and grain shapes themselves, for example through sur-
face area, affect the effective heat conductivity. We aim at capturing pore-scale effects by 
incorporating them into a model at the Darcy scale. This is done by deriving the effective 
heat conductivity. Two of the most common approaches are the method of volume averag-
ing, and the theory of homogenization. When using volume averaging, effective quantities 
are obtained based on closure relations (Whitaker 1999). Applications to heat transport in 
porous media can be found in Hsu (1999) and Quintard et al. (1997). However, in the pre-
sent work we consider the approach of formal homogenization to obtain effective heat con-
ductivities (Auriault et al. 2009; Hornung 1997). Formal homogenization allows to derive 
upscaled equations and corresponding effective quantities following suitable assumptions. 
Within this framework, the effective properties of the porous medium are obtained by solv-
ing so-called cell problems at the pore scale. If a porous medium exhibits local periodicity 
in its structure, we can obtain accurate results for general grain shapes using the theory of 
homogenization (Auriault 1983). Then, representative sections of the porous medium need 
to be considered at the pore scale and are the basis for deriving upscaled equations with 
corresponding effective quantities.

In the following, thin porous media are considered. With a thin porous medium, we 
mean a porous medium where the thickness of the porous medium is of the same order of 
magnitude as the length of a representative elementary volume at the pore scale. This cor-
responds to the proportionally thin porous medium (PTPM) considered in Fabricius et al. 
(2016). Note that different types of thin porous media are also discussed in that paper, in 
the context of fluid flow. For thin porous media, the boundary conditions applied at the top 
and bottom boundaries will have an influence on the overall effective behavior and hence 
on the effective quantities of the porous medium.

The presence of thin layers embedded in a surrounding porous medium and their effect 
on effective quantities have been analyzed by homogenization in the context of diffu-
sion–reaction systems (Bhattacharya et al. 2020; Gahn et al. 2021, 2017, 2018; Neuss-Radu 
and Jäger 2007) and for unsaturated flow (Kumar et  al. 2020; List et  al. 2020). In these 
works, the focus has been in particular on transmission conditions across the thin layer and 
the interaction with the surrounding porous medium as the width of the layer approaches 
zero. Homogenization techniques can also be applied to free-standing thin structures. By 
considering a thin strip as a simplified representation of a porous medium, effective equa-
tions have been found by combining asymptotic expansions and transversal averaging 
for reactive transport (van Noorden 2009), heat transport (Bringedal et al. 2015), biofilm 
growth (van Noorden et al. 2010) and two-phase flow (Lunowa et al. 2021; Sharmin et al. 
2020). However, in these works the thin strip is in practice a channel and does not contain 
a porous structure. On the other hand, when considering a thin porous medium, both the 
porous structure as well as the boundary conditions at top and bottom boundaries influence 
the effective behavior.

Much work has been done considering flow in thin porous media. Laminar as well as tur-
bulent single-phase flow in thin porous media have been investigated for example in Chen 
and Papathanasiou (2008), Fabricius et al. (2016), Hellström et al. (2010), Koch and Ladd 
(1997) and Wagner et  al. (2021). A benchmark comparison for a homogenization-based 



739A Three‑Dimensional Homogenization Approach for Effective…

1 3

approach applied to flow through thin porous media in Wagner et  al. (2021) shows a 
good agreement between the results of three-dimensional homogenization and pore-scale 
resolved models as well as experimental findings. In this paper, we extend the formal 
homogenization approach applied to fluid flow in thin porous media in Fabricius et  al. 
(2016) by incorporating heat transport and focus in particular on the role of the arising 
effective heat conductivity.

This work is also related to Bringedal and Kumar (2017), which takes a similar approach 
to investigate the influence of chemical reactions on effective heat conductivities in two-
dimensional periodic porous media. In Bringedal and Kumar (2017), the focus is, how-
ever, on the impact of the evolving pore structure on the effective quantities. Here, we will 
not explicitly account for reactive transport and subsequent evolving pore geometries, but 
we will investigate the effect of different grain shapes and sizes. Moreover, we consider a 
fully three-dimensional approach. As a consequence, since the porous medium is thin, the 
type of boundary conditions applied in the third spatial dimension will impact the results. 
Although we will not explicitly account for any evolution of the grains in this paper, the 
resulting models for effective heat conductivity found in this paper would under suitable 
assumptions be the same if allowing the grains to evolve, and complementing the model 
by an appropriate evolution equation. As shown in Bringedal et al. (2016), the influence of 
the evolving grains appears in the derived Darcy-scale model, while the effective quanti-
ties only depend on the grain shape at a given time (Bringedal et al. 2016; Bringedal and 
Kumar 2017). Hence, extensions to porous media evolving due to mineral precipitation and 
dissolution reactions can be formulated and included in the upscaling procedure by consid-
ering, e.g., a level-set formulation as in Bringedal et al. (2016).

In the following, we first introduce the model formulation for a thin, periodic porous 
medium in Sect.  2. The two-scale asymptotic expansions of the formal homogenization 
approach are introduced in Sect. 3. In Sect. 4, we obtain the respective cell problems at the 
pore scale. Upscaled equations valid at the Darcy scale are derived in Sect. 5. The Darcy-
scale equations rely on effective quantities, which are found through solving the corre-
sponding cell problem. We continue with a discussion on the impact of different boundary 
conditions and grain shapes on the derived effective heat conductivity as well as the impact 
of the upscaling procedure itself in Sect. 6, before we end with some concluding remarks.

2 � Model Formulation

2.1 � Structure of Porous Medium

The modeled porous medium �� consists of void space ��
f
 that is occupied by fluid, and 

grain space ��
g
 such that �� = ��

f
∪��

g
∪ S�

�
 , where S�

�
 denotes the internal boundaries 

between void and grain space. The porous medium �� is characterized by a coordinate sys-
tem (x1, x2, z) , and we assume that x1, x2 ∈ [0, L] and z ∈ [0,H] , with H ≪ L since we are 
dealing with a proportionally thin porous medium. We introduce the parameter

to separate Darcy and pore scale. The quantity l describes the horizontal extent of the cho-
sen pore-scale reference domain and defines the length size of the pore scale. Hence, we 

𝜀 =
l

L
≪ 1
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can model the periodically oscillating domain at the pore scale by introducing the local 
variable

For a given point (x, z) ∈ �� , we then have (y, z) ∈ Q∶ = [0, l]2 × [0,H] . We use the super-
script � to stress that the domain �� contains highly oscillatory structures.

A so-called cell Q, as shown in Fig. 1, consists of void space Qf , which is occupied by 
fluid, and grain space Qg . The internal surface between Qf and Qg is denoted with SQ . Fur-
thermore, we introduce �Q for the internal sidewalls as well as �Q for top and bottom of 
the cell as visualized in Fig. 2. We have that �Q = �Qf

∪ �Qg
 , where �Qf

 and �Qg
 are the 

fluid and grain part of the top and bottom surfaces, respectively. Hence, we define the 
boundary of the void space as �Qf = �Qf

∪ SQf
∪�Q and of the grain space as 

�Qg = �Qg
∪ SQg

 . For simplicity, we here assume that the internal sidewalls �Q are occu-
pied by fluid, but allowing grains to touch these sidewalls represents no practical difference 
for the presented model as long the void space remains connected. Note that SQf

 and SQg
 

indicate the same surface but with opposite orientation. Altogether, we have the surface of 
the whole cell to be given as �Q = �Q ∪�Q . We consider Q to be a zoomed-in view for a 
given x and in Sect. 3 we assume that functions defined on Q are periodic in y . Hence, �� 
is built up through several cells Q. Note that these cells do not need to be identical as, 
e.g., grain shape could vary, but all cells follow the structure as described above. Different 
grain shapes correspond to the pore-scale geometry varying with x . However, since we will 
rely on local periodicity in y , two nearby-lying cells Q should not be too different from 
each other.

y =
1

�
x.

Fig. 1   Darcy and pore scale with cell Q. Note that we consider the z-direction as the vertical direction, but 
is for simplicity depicted as pointing out of the paper in figure

(a) SQ (b)ΠQ (c) ΓQf (d) ΓQg

Fig. 2   Surfaces of the pore-scale cell Q 
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The whole porous medium �� is defined as the union of all pore-scale cells Q, meaning 
�� =

⋃
Q . Accordingly, we obtain ��

f
=
⋃

Qf and ��
g
=
⋃

Qg . Similarly, the union of all 
boundaries is defined by � �

�f
=
⋃

�Qf
 , � �

�g
=
⋃

�Qg
 and S�

�
=
⋃

SQ.

2.2 � Equation Set and Boundary Conditions

To model fluid flow and heat transport on the pore scale of the porous medium, we for-
mulate corresponding conservation equations and boundary conditions. We consider the 
conservation of mass and the conservation of momentum by using the Stokes equations

where �f(Tf) denotes the density of the fluid, u the velocity, p the pressure and �(Tf) the vis-
cosity of the fluid. The fluid density and viscosity are assumed to depend smoothly on fluid 
temperature. We use here the Stokes equations instead of the more general Navier–Stokes 
equations as we in the upscaling only consider the creeping flow regime to be in the range 
of Darcy’s law. However, with suitable assumptions on the Reynolds number, Darcy’s law 
can also be derived from the Navier–Stokes equations (see, e.g., Bringedal et al. 2016).

To describe the conservation of energy in the system, we consider a simplified system. 
Since we are considering creeping flow in a porous medium, fluid velocities will generally 
be low. Further, we consider temperature ranges such that no phase change occurs. In this 
case, energy conservation can be formulated in terms of temperature (Landau and Lifshitz 
1987). We introduce the two temperatures Tf defined in the void space ��

f
 , and Tg defined 

in the grain space ��
g
 . In the fluid, heat transport is due to advection and conduction, while 

any internal heat production due to friction is neglected. The heat transport in the grain 
space only occurs through conduction:

The quantities kf and kg denote the heat conductivities of the fluid and the grain, whereas cf 
and cg are the specific heats. They are all assumed to be material constants. Finally, �g(Tg) 
is the density of the grain, which is assumed to depend smoothly on the grain tempera-
ture. Note that the equations (1–4) are strongly coupled as the fluid flow and temperatures 
jointly affect each other through the advective term, and since the densities and viscosity 
are temperature dependent.

Note that although we here consider relatively simple energy equations (3), (4), extend-
ing the model by including, e.g., temperature-dependent specific heats in the upscaling is 
straightforward as long as they depend smoothly on temperature. However, due to the spe-
cial role of heat conduction, allowing the heat conductivities to depend on temperature 
would affect the upscaling procedure as higher-order effects for this process play a role. 
Hence, we are limited to consider moderate temperature ranges and fluids and solids such 
that the assumptions behind (3), (4) remain valid.

To close the model, boundary conditions at all boundaries as well as initial conditions for 
the variables are needed. Since the upscaling only depends on boundary conditions on � �

�
 

and S�
�

 , only these will be specified in the following. Regarding the flow, we assume no-slip 

(1)�t�f + ∇ ⋅ (�fu) = 0 in ��

f
,

(2)∇p = ∇ ⋅ (�∇u) in ��

f
,

(3)�t(�fcfTf) = ∇ ⋅ (kf∇Tf − �fcfuTf) in ��

f
,

(4)�t(�gcgTg) = ∇ ⋅ (kg∇Tg) in ��

g
.
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boundary conditions on the grain surface and on the top and bottom boundaries of the porous 
medium:

No-slip conditions are commonly used for porous-media flows and ensure that the fluid 
flow remains in the creeping regime. For completeness, we mention that extensions with 
slip also exist (Lasseux and Valdés-Parada 2017; Lunowa et al. 2021). The impact of Neu-
mann as well as Dirichlet boundary conditions on the top and bottom boundaries of the 
domain for the energy conservation will be considered: 

 Hence, we will use either (6a) and (7a), or (6b) and (7b). Here, ez denotes the basis vector 
in z-direction. Further, we have introduced the heat flux � and the temperature � that are 
specified on top and bottom boundaries of the cell Q. The Neumann boundary conditions 
correspond to an applied heat flux � at the top and bottom boundaries. Applying Dirichlet 
boundary conditions corresponds to assuming that the top and bottom boundaries are per-
fectly heat conducting and hence adopts the applied temperature � imposed here. These 
two types of boundary conditions represent the two complementary cases of the top and 
bottom boundaries either transmitting a given heat flux or being perfectly heat conduct-
ing. Combinations of these two cases can be formulated through Robin boundary condi-
tions, but are outside the scope of this work. Note that the heat flux � or the temperature 
� could themselves come from a heat transport model for an adjacent medium, which is 
why they could in the general case vary with time and space. We are interested in how the 
two different types of coupling to the thin porous medium affect the heat transport. Note 
that the boundary conditions are for consistency assumed to be the same on the top and 
bottom boundaries. Furthermore, they are assumed to not depend on the local variable y , 
meaning that they cannot be highly oscillating in space. We also assume that they are not 
highly oscillating with time. The latter two assumptions are needed to enable a separation 
of scales when upscaling the model.

On the interface between fluid and grain, we assume local thermodynamic equilibrium:

which is a reasonable assumption in the creeping flow regime. Alternatively one can apply 
a contact conductivity model, and we refer to Auriault et al. (2009)[Chapter 4.3] for the 
influence of such boundary conditions. To conserve the energy, the heat flux from fluid to 
grain is the same as from grain to fluid:

where n denotes the normal vector on S�
�

.

(5)u = 0 on � �

�f
∪ S�

�
.

(6a)kf∇Tf ⋅ ez = �(x, t) on � �

�f

(6b)or Tf = �(x, t) on � �

�f
,

(7a)kg∇Tg ⋅ ez = �(x, t) on � �

�g

(7b)or Tg = �(x, t) on � �

�g
.

(8)Tf = Tg on S�
�
,

(9)n ⋅ (kf∇Tf) = n ⋅ (kg∇Tg) on S�
�
,
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2.3 � Non‑Dimensionalization

The equations and boundary conditions (1) - (9) are non-dimensionalized by introducing 
the following reference quantities to define non-dimensional variables and quantities:

Since we consider thin porous media, we assume that H, which is the length of the 
domain in z-direction, is of the same order as the length l of the previously defined cell. 
This leads to H̃∶=H∕l = O(𝜀0) , where the non-dimensional height H̃ does not depend on 
� . We use the horizontal length scale l to non-dimensionalize the vertical direction to 
emphasize their same order in size. Our assumption corresponds to the case ’Proportion-
ally Thin Porous Medium’ introduced in Fabricius et al. (2016). The non-dimensionaliza-
tion of the spatial variables in (10) allows us to introduce the non-dimensional domains 
Q̃ = {(ỹ1, ỹ2, z̃) ∶ ỹ ∈ [0, 1]2, z̃ ∈ [0, H̃]} and 𝛺̃𝜀 ⊂ {(x̃1, x̃2, z̃) ∶ x̃ ∈ [0, 1]2, z̃ ∈ [0, H̃]} . 
Due to the different scalings used for x̃ and ỹ , both pore-scale and Darcy-scale domains 
appear as unit sized domains. Note that ∇̃ denotes the non-dimensionalized nabla operator 
in the following.

By inserting the non-dimensionalized definitions (10), all model equations and bound-
ary conditions can be rewritten in terms of non-dimensional variables and characteristic 
non-dimensional numbers. From dimensional analysis, we expect 5 independent non-
dimensional numbers in addition to the length scale ratio � . These 5 non-dimensional num-
bers are described and chosen below. The conservation of mass (1) and momentum (2) 
result in

where we have introduced the Euler number Eu = pref∕u2
ref
�ref and the Reynolds number 

Re = �refurefL∕�ref . Note that for the mass conservation equation we have assumed that the 
reference time tref is equal to the advective time scale; tref = L∕uref , which corresponds to 
choosing one non-dimensional number ( trefuref∕L = 1 ). Since we use Stokes equations, it is 
implicitly assumed that the Reynolds number is small. In order to ensure that we are in the 
creeping flow regime where Darcy’s law is valid, we assume ReEu = O(�−2) . Hence, we 
write ReEu = kflow�

−2 , where kflow is a non-dimensional constant not depending on �.
The equations describing the heat transport in the void (3) as well as the grain space (4) 

are rewritten in the following way

(10)

x̃ =
x

L
,

ỹ =
y

l
,

z̃ =
z

l
,

t̃ =
t

tref
,

𝜌̃f =
𝜌f

𝜌ref
,

𝜌̃g =
𝜌g

𝜌ref
,

ũ =
u

uref
,

p̃ =
p

pref
,

𝜈̃ =
𝜈

𝜈ref
,

T̃f =
Tf

Tref
,

T̃g =
Tg

Tref
.

(11)𝜕t̃𝜌̃f + ∇̃ ⋅ (ũ𝜌̃f) = 0 in 𝛺̃𝜀

f
,

(12)ReEu∇̃p̃ = ∇̃ ⋅ (𝜈̃∇̃ũ) in 𝛺̃𝜀

f
,

(13)𝜕t̃(𝜌̃fT̃f) = ∇̃ ⋅ (𝜅f∇̃T̃f − 𝜌̃fũTf) in 𝛺̃𝜀

f
,
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with �f = kf∕Luref�refcf = 1∕Pef and �g = kg∕Luref�refcg = 1∕Peg . Here, Pef and Peg are the thermal 
Péclet numbers for fluid and grain, and hence, our last two independent non-dimensional 
numbers. We assume Pef, Peg = O(�0) , which means that the time scales for heat conduc-
tion and heat advection are the same. Our assumption implies that heat transport by con-
duction and advection are equally important at the macroscopic scale, and both will appear 
in the resulting upscaled model. Different assumptions on the Péclet number would lead 
to either only conduction (low Péclet number) or only advection (high Péclet number) 
to be dominating at the macro-scale. Note that our assumption also implies that the ratio 
between kf and cf has to be the same order of magnitude as the ratio between kg and cg . For 
the influence of large differences between the heat conductivities, we refer to Auriault et al. 
(2009)[Chapter 4.2]. In the following, we denote with �f and �g the non-dimensional heat 
conductivities of fluid and grain, respectively.

The non-dimensionalized boundary conditions are:

 Note that we have introduced 𝜓̃ = 𝜓∕uref𝜌refcfTref and 𝜃 = 𝜃∕Tref . Since we will only consider 
the non-dimensional variables in the following, we skip the tilde.

3 � Two‑Scale Asymptotic Expansions

To incorporate the dependence on the local variable y , we introduce two-scale asymptotic 
expansions for the velocity, the pressure as well as the temperatures in the fluid and the grain. 
For � ∈ {u, p,Tf, Tg} we assume

We hence have that these functions �i are periodic in y , meaning that

(14)𝜕t̃(𝜌̃gT̃g) = ∇̃ ⋅ (𝜅g∇̃T̃g) in 𝛺̃𝜀

g
,

(15)ũ = � on 𝛤 𝜀

𝛺f
∪ S̃𝜀

𝛺
,

(16)T̃f = T̃g on S̃𝜀
𝛺
,

(17)𝜅f∇̃T̃f = 𝜅g∇̃T̃g on S̃𝜀
𝛺
,

(18a)𝜅f∇̃T̃f ⋅ ez̃ = 𝜓̃ on 𝛤 𝜀

𝛺f
,

(18b)or T̃f = 𝜃 on 𝛤 𝜀

𝛺f
,

(19a)𝜅g∇̃T̃g ⋅ ez̃ = 𝜓̃ on 𝛤 𝜀

𝛺g
,

(19b)or T̃g = 𝜃 on 𝛤 𝜀

𝛺g
.

�(x, z, t) = �0(x, y, z, t) + ��1(x, y, z, t) + �2�2(x, y, z, t) +⋯ .

�i(x, (y1, y2), z, t) = �i(x, (y1 + 1, y2), z, t) = �i(x, (y1, y2 + 1), z, t)
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for all (y1, y2, z) ∈ Q . Due to the difference in scaling for x , y and z, the non-dimensional 
nabla operator is

where

For the non-dimensional Laplace operator �[⋅] = ∇ ⋅ ∇[⋅] , we introduce

Furthermore, we introduce for convenience the short-hand notation

Recall that the densities and the viscosity are assumed to depend smoothly on the tempera-
ture. By inserting the asymptotic expansions for the temperatures and applying the Taylor 
expansion, we get

where we have introduced the short-hand notations �f0 , �f1 , �g0 , �g1 , �0 and �1 to describe 
the temperature-dependence as indicated in (20)-(22). We are interested in the limit as 
� → 0 and analyze which terms of the model equations are then dominating. By inserting 
the asymptotic expansions into the model equations and sorting the terms after increasing 
order in terms of � , we can isolate those terms.

When the asymptotic expansions of the velocity and fluid temperature are inserted into the 
conservation of mass (11), the terms for the two lowest orders in � are:

∇[⋅] = ∇x[⋅] +
1

�
∇y[⋅] +

1

�
∇z[⋅]

∇x =
(
�x1 , �x2 , 0

)T
,

∇y =
(
�y1 , �y2 , 0

)T
,

∇z =
(
0, 0, �z

)T
.

�x = �2
x1
+ �2

x2
,

�y = �2
y1
+ �2

y2
,

�z = �2
z
.

∇y+z∶ = ∇y + ∇z,

�y+z∶ = �y + �z.

(20)

�f(Tf) = �f(Tf0 + �Tf1 +…)

= �f(Tf0) +
(
�Tf1 + O

(
�2
))
��
f
(Tf0) + O

(
�2
)

= �f(Tf0)
⏟⏟⏟
=∶�f0

+� Tf1�
�
f
(Tf0)

⏟⏞⏞⏟⏞⏞⏟
=∶�f1

+O
(
�2
)
,

(21)�g(Tg) = �g(Tg0) + �Tg1�
�
g
(Tg0) + O(�2) = ∶�g0 + ��g1 + O

(
�2
)
,

(22)�(Tf) = �(Tf) + �Tf1�
�(Tf0) + O(�2) = ∶�0 + ��1 + O

(
�2
)
,
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Similarly, the conservation of momentum (12) results in

For the conservation of energy within the void space (13), we insert asymptotic expansions 
for the velocity as well as the fluid temperature and get

Using the respective asymptotic expansions in the non-dimensionalized conservation of 
energy in the grain space (14), yields

The two lowest orders of the velocity’s no-slip boundary are obtained by inserting the 
asymptotic expansions of the velocity into the non-dimensionalized boundary condition 
(15):

Analogously, the Neumann and Dirichlet boundary conditions for the temperature on the 
top and bottom boundary of the void and grain space (18) and (19) result in 

(23)�0 ∶ 0 =∇y+z ⋅ (u0�f0) in ��

f
,

(24)�1 ∶ 0 =�t�f0 + ∇x ⋅ (u0�f0) + ∇y+z ⋅ (u0�f1 + u1�f0) in ��

f
.

(25)�−1 ∶ 0 = − ∇y+zp0 in ��

f
,

(26)�0 ∶ 0 = − kflow(∇xp0 + ∇y+zp1) + ∇y+z ⋅ (�0∇y+zu0) in ��

f
.

(27)�−2 ∶ 0 =∇y+z ⋅ (�f∇y+zTf0) in ��

f
,

(28)
�−1 ∶ 0 = ∇x ⋅ (�f(∇y+zTf0))

+ ∇y+z ⋅ (�f(∇xTf0 + ∇y+zTf1) − �f0u0Tf0) in ��

f
,

(29)

�0 ∶ �t(�f0Tf0) =∇x ⋅ (�f(∇xTf0 + ∇y+zTf1) − �f0u0Tf0)

+ ∇y+z ⋅ (�f(∇xTf1 + ∇y+zTf2)

− �f0(u0Tf1 + u1Tf0) − �f1u0Tf0) in ��

f
.

(30)�−2 ∶ 0 =∇y+z ⋅ (�g∇y+zTg0) in ��

g
,

(31)
�−1 ∶ 0 = ∇x ⋅ (�g∇y+zTg0)

+ ∇y+z ⋅ (�g(∇xTg0 + ∇y+zTg1)) in ��

g
,

(32)
�0 ∶ �t(�g0Tg0) = ∇x ⋅ (�g(∇xTg0 + ∇y+zTg1))

+ ∇y+z ⋅ (�g(∇xTg1 + ∇y+zTg2)) in ��

g
.

(33)�0 ∶ u0 = 0 on � �

�f
∪ S�

�
,

(34)�1 ∶ u1 = 0 on � �

�f
∪ S�

�
.



747A Three‑Dimensional Homogenization Approach for Effective…

1 3

 where we for convenience have multiplied the Dirichlet conditions (18b) and (19b) with 
�−1.

The internal boundary condition for the temperature in void and grain space (16) holds in a 
similar way for the different orders as well:

By inserting the asymptotic expansions for the temperatures into the internal flux boundary 
(17), we get

(35a)�−1 ∶ �zTf0 = 0 on � �

�f
,

(35b)or Tf0 = � on � �

�f
,

(36a)�zTg0 = 0 on � �

�g
,

(36b)or Tg0 = � on � �

�g
,

(37a)�0 ∶ �f�zTf1 = � on � �

�f
,

(37b)or Tf1 = 0 on � �

�f
,

(38a)�g�zTg1 = � on � �

�g
,

(38b)or Tg1 = 0 on � �

�g
,

(39a)�1 ∶ �zTf2 = 0 on � �

�f
,

(39b)or Tf2 = 0 on � �

�f
,

(40a)�zTg2 = 0 on � �

�g
,

(40b)or Tg2 = 0 on � �

�g
,

(41)�0 ∶ Tf0 = Tg0 on S�
�
,

(42)�1 ∶ Tf1 = Tg1 on S�
�
.

(43)�−1 ∶ n ⋅ (�f∇yTf0) = n ⋅ (�g∇yTg0) on S�
�
,

(44)�0 ∶ n ⋅ (�f(∇xTf0 + ∇yTf1)) = n ⋅ (�g(∇xTg0 + ∇yTg1)) on S�
�
,
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3.1 � Dominating Order Behavior

Based on the dominating term in the momentum equation (25), we can conclude that

which means that p0 does not depend on y and z. Equivalent results for Tf0 and Tg0 follow 
from the dominating terms in the conservation of energy (27) and (30), and the respective 
top and bottom boundaries (35a) - (36b) as well as the interface condition (43). Hence, Tf0 
and Tg0 are constant within a cell and fulfill

because of the continuity condition on the interface (41). Moreover, since �0 , �f0 and �g0 
only depend on Tf0 and Tg0 , respectively, this leads to

Hence, these variables remain constant within the respective cell for a given x at the Darcy 
scale.

4 � Cell Problems

The equations corresponding to a fixed order with respect to � from the previous section are 
now used to derive so-called cell problems which describe the variations at the pore scale. 
We first consider the conservation of mass and momentum which results in a cell problem 
for the flow. The corresponding derivation for the upscaled flow in a porous medium can be 
found, e.g., in section 1.4 of Hornung (1997) or for the proportionally thin porous medium 
in Fabricius et al. (2016), and is only included for completeness here. Our main focus is on 
the conservation of energy and the corresponding cell problems for heat transport which 
are discussed afterwards.

4.1 � Conservation of Mass and Momentum

Due to the linearity of the terms of order �0 in the conservation of momentum (26), we can 
rewrite p1 = p1(x, y, z, t) and u0 = u0(x, y, z, t) as linear combinations of �xjp0

(45)�1 ∶ n ⋅ (�f(∇xTf1 + ∇yTf2)) = n ⋅ (�g(∇xTg1 + ∇yTg2)) on S�
�
.

(46)p0 = p0(x, t),

(47)Tf0(x, t) = Tg0(x, t) = ∶T0(x, t)

(48)�f0(Tf0) = �f0(x, t), �g0(Tg0) = �g0(x, t), �0(Tf0) = �0(x, t).

(49)p1(x, y, z, t) =

2∑
j=1

rj(x, y, z)�xjp0(x, t),

(50)u0(x, y, z, t) = −
kflow

�0

2∑
j=1

sj(x, y, z)�xjp0(x, t)
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for some unknown weights rj and sj . In order to ensure the periodicity of p1 and u0 , we 
require periodicity of rj and sj in y.

We insert the linear combinations (49) and (50) into the second lowest order terms of 
the conservation of momentum (26) as well as the lowest order terms of mass conservation 
(23) and the second lowest order terms of the no-slip boundaries (34). By making use of 
the dependencies of density and viscosity in (48), we obtain the following cell problems to 
determine rj and sj for j = 1, 2:

where ej denotes the unit vector in xj-direction. As mentioned before, sj and rj are periodic 
on �Q . We add the constraint

to ensure the uniqueness of the solution. One should note that this cell problem only needs 
to be solved in y and z. The effect of x comes in as a parameter accounting for the chosen 
pore geometry at a position x at the Darcy scale. Hence, the cell problem accounts for the 
local flow at the pore scale and will later be used to define the permeability of the porous 
medium. By solving for rj and sj in ( Pflow(x) ), we can obtain p1 and u0 as functions of ∇xp0 
through (49) and (50).

4.2 � Conservation of Energy

Next, we apply a similar approach to the conservation of energy: The linearity of the terms 
(28) and (31) of order �−1 indicates that Tf1 and Tg1 can be represented as linear combina-
tions of �xjT0 , factorizing the dependencies on x and y . Since the following steps depend on 
which boundary conditions are used on the top and bottom boundary �Q , we divide our 
approach into two cases: We first consider Neumann boundary conditions, and then, the 
results for Dirichlet boundary conditions are presented. For a clear distinction between the 
two cases, we use the superscript ’N’ or ’D’, respectively, to indicate the considered bound-
ary conditions.

4.2.1 � Neumann Boundary Conditions on Top and Bottom Boundary �Q

Due to the linearity of the problem, we choose the following expressions in order to satisfy 
the boundary conditions at the top and bottom boundaries: 

0 = ej + ∇y+zrj + �y+zsj in Qf,

0 = ∇y+z ⋅ sj in Qf,

0 = sj on �Qf
∪ SQ,

sj, rj are periodic in y,

⎫
⎪⎪⎬⎪⎪⎭

(Pflow(x))

∫
Qf

rj d(y, z) = constant

(51a)Tf1(x, y, z, t) =

2∑
j=1

vN
j
(x, y, z)�xjT0(x, t) +

�(x, t)

�f
z,
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 where vN
j
 and wN

j
 ( j = 1, 2 ) are weights that are to be determined. Note that the last term 

in (51a) and (51b) ensures that the Neumann boundary conditions (37a) and (38a) are ful-
filled. In the case of homogeneous Neumann boundary conditions, the last term is zero. 
By inserting the linear combination (51a) into the second lowest order terms of the energy 
conservation (28) and using the dependencies of Tf0 in (47) as well as the lowest order 
terms of the mass conservation (23), we get

For the grain space, a similar expression can be derived when the linear combination (51b) 
and the respective equation for energy conservation (31) are used:

Suitable boundary conditions result from inserting the linear combinations into the second 
lowest order terms of the existing boundary conditions (37a), (38a), (41) and (44):

By combining the derived equations (52) - (57), we get two coupled cell problems, for 
j = 1, 2:

The weights vN
j
 and wN

j
 are required to be periodic in y due to the periodicity of Tf1 and Tg1 . 

We add the uniqueness constraint

(51b)Tg1(x, y, z, t) =

2∑
j=1

wN
j
(x, y, z)�xjT0(x, t) +

�(x, t)

�g
z,

(52)0 = �y+zv
N
j

for j = 1, 2 in Qf.

(53)0 =�y+zw
N
j

for j = 1, 2 in Qg.

(54)0 = �zv
N
j

for j = 1, 2 on �Qf
,

(55)0 = �zw
N
j

for j = 1, 2 on �Qg
,

(56)vN
j
= wN

j
for j = 1, 2 on SQ,

(57)n ⋅ (�f(ej + ∇y+zv
N
j
)) = n ⋅ (�g(ej + ∇y+zw

N
j
)) for j = 1, 2 on SQ.

0 = �y+zv
N
j

in Qf,

0 = �y+zw
N
j

in Qg,

0 = �zv
N
j

on �Qf
,

0 = �zw
N
j

on �Qg
,

vN
j
= wN

j
on SQ,

n ⋅ (�f(ej + ∇y+zv
N
j
)) = n ⋅ (�g(ej + ∇y+zw

N
j
)) on SQ,

vN
j
,wN

j
are periodic in y.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(Pheat, N(x))

(58)∫
Qf

vN
j
d(y, z) + ∫

Qg

wN
j
d(y, z) = constant for j = 1, 2
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with an arbitrary constant. Note that since we added the inhomogeneous Neumann bound-
ary condition as part of the series expansions (51), we obtain a cell problem which is inde-
pendent of the heat flux applied at the top and bottom boundaries. Hence, ( Pheat, N(x) ) is 
used both for homogeneous and inhomogeneous Neumann boundary conditions.

Dimensionality of the Cell Problem If we consider a pore geometry that is constant with 
respect to z, we find that

which means that we can reduce the three-dimensional cell problem to two spatial dimen-
sions and still obtain the same results. To see this, we start by rewriting

where we have omitted writing the dependence on x to simplify the notation. Conse-
quently, we can rewrite the cell problem, namely the Laplace equation in Qf (52) as well as 
the Neumann boundary condition (54), based on the separation of the variables y and z, as

Hence, we have derived two equations that involve either only y or z:

There exist only two types of solutions for oj
f
(z) that fulfill the z-dependent equation (63) as 

well as the Neumann boundary condition in (62):

Note that since (65) leads to a constant solution in case of c = 0 , we only consider c ≠ 0 
here. Using same arguments for Qg and �Qg

 , we find that ojg(z) has a form corresponding to 
(64) or (65). In case of a constant solution (64), it is trivial that this solution does not 

(59)�zv
N
j
(x, y, z) = 0 in Qf,

(60)�zw
N
j
(x, y, z) = 0 in Qg,

vN
j
(y, z) = m

j

f
(y) ⋅ o

j

f
(z),

wN
j
(y, z) = mj

g
(y) ⋅ oj

g
(z),

(61)
�y+zv

N
j
= o

j

f
�ym

j

f
+ m

j

f
�zo

j

f

!
= 0 in Qf

⇒
1

m
j

f

�ym
j

f
= −

1

o
j

f

�zo
j

f
= � = constant in Qf,

(62)
�zv

N
j
(y, z) = m

j

f
(y) ⋅ �zo

j

f
(z)

!
= 0 on �Qf

⇒ �zo
j

f
(z) = 0 on �Qf

.

�ym
j

f
(y) = m

j

f
(y)�,

(63)�zo
j

f
(z) = −o

j

f
(z)�.

(64)o
j

f
(z) = constant in [0,H], or

(65)o
j

f
(z) = d ⋅ cos

(
�c

H
z

)
in [0,H], for c ∈ ℕ, d ∈ ℝ.
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depend on z and satisfies (62). Hence, we now show that (65) cannot be a solution of our 
problem.

As mentioned above, vN
j
 and wN

j
 need to satisfy a uniqueness condition as given in (58) 

for an arbitrary constant. In the following, we set the constant to one. If we incorporate the 
separation approach (61), we get

However, the first term can be rewritten into

where Qf,2D is a two-dimensional cross section of the fluid domain in the cell. Note that this 
separation can only be done since the geometry does not vary with z. Similarly, we rewrite 
the integral of wN

j
 . The uniqueness condition is calculated as

which is a contradiction. Hence, oj
f
(z) as well as ojg(z) have to be constant functions as stated 

in (64). The three-dimensional cell problem can therefore be reduced to a two-dimensional 
problem if the geometry does not depend on z. Note that we still obtain three-dimensional 
solutions for the cell problem that cannot be reduced to two-dimensional cell problems, if 
the grain shape changes along the z-axis.

4.2.2 � Dirichlet Boundary Conditions on Top and Bottom Boundary �Q

To satisfy the Dirichlet boundary conditions on �Q , we can use a similar linear combina-
tion as for zero-Neumann boundary conditions: 

 where vD
j
 and wD

j
 ( j = 1, 2 ) are weights that are to be determined. We insert the linear 

combinations in the respective equations following similar steps as before and obtain the 
following coupled cell problem for j = 1, 2:

∫
Qf

m
j

f
(y) ⋅ o

j

f
(z) d(y, z) + ∫

Qg

mj
g
(y) ⋅ oj

g
(z) d(y, z) = 1.

∫
Qf

m
j

f
(y) ⋅ o

j

f
(z) d(y, z) = ∫

Qf,2D

m
j

f
(y) dy∫

H

0

o
j

f
(z) dz

= ∫
Qf,2D

m
j

f
(y) dy

[
dH

�c
(sin(�c) − sin(0))

]
= 0,

(66)�
Qf

m
j

f
(y) ⋅ o

j

f
(z) d(y, z) + �

Qg

mj
g
(y) ⋅ oj

g
(z) d(y, z) = 0 + 0 ≠ 1

(67a)Tf1(x, y, z, t) =

2∑
j=1

vD
j
(x, y, z)�xjT0(x, t),

(67b)Tg1(x, y, z, t) =

2∑
j=1

wD
j
(x, y, z)�xjT0(x, t),
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This cell problem differs from the previous case of Neumann boundary conditions in the 
boundary conditions on �Qf

 and �Qg
 . Note that due to the Dirichlet boundary conditions, 

these cell problems cannot be reduced to two-dimensional even if the geometry is not 
depending on z.

5 � Darcy‑Scale Equations

In the following, we integrate the flow equation (50) over its domain Qf . Further, the next 
order terms with respect to � from the mass (24) and energy conservation (29) and (32) are 
integrated over the respective domains within Q. This is done in order to obtain equations 
at the Darcy scale, while including effects from the pore scale through effective quantities.

5.1 � Effective Flow

The derivation of the effective flow, meaning Darcy’s law, can be found in the literature 
(e.g., in Sect.  1.4 of Hornung (1997) in the case of constant viscosity and density, and 
Bringedal et al. (2016) with temperature-dependent viscosity and density) and is again only 
shown for completeness. For the effective flow ū0 in the porous medium, the definition of 
u0 as stated in (50) is integrated

where the components of K are

and the viscosity follows the dependency in (48). The components sj,i follow from solving 
the local, three-dimensional cell problem ( Pflow(x) ). The averaged equation (68) is Darcy’s 
law, where K is the permeability of the porous medium. The matrix K is symmetric and 
positive definite and we refer to Lemma 4.2 in Sect. 1.4 in Hornung (1997) for a detailed 
proof. Note that the permeability in our case is a 2 × 2 matrix, although the cell problem is 
solved in a three-dimensional domain. In Fabricius et al. (2016) and Wagner et al. (2021), 
the authors discuss the applicability of approximate, two-dimensional forms of the cell 
problem, accounting for the porous medium being thin. Hence, under suitable assumptions, 
the resulting permeability for thin porous media can be found more cheaply.

0 = �y+zv
D
j

in Qf,

0 = �y+zw
D
j

in Qg,

0 = vD
j

on �Qf
,

0 = wD
j

on �Qg
,

vD
j
= wD

j
on SQ,

n ⋅ (�f(ej + ∇y+zv
D
j
)) = n ⋅ (�g(ej + ∇y+zw

D
j
)) on SQ,

vD
j
,wD

j
are periodic in y.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(Pheat, D(x))

(68)ū0 =
1

|Q| ∫Qf

u0(x, y, z, t) d(y, z) = −
1

𝜈0
K∇xp0

(69)Kij(x) =
kflow

|Q| ∫
Qf

sj,i(x, y, z) d(y, z) i, j = 1, 2
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By integrating the second lowest order terms of the mass conservation (24) over the 
volume and using Gauss’ theorem, the following equation is derived:

Note that the boundary of the void space was previously defined as �Qf = �Qf
∪ SQf

∪�Q . 
The integral over �Q is zero due to the periodicity of u0 and u1 . In addition to that, the 
integral over �Qf

 and SQf
 disappears because we assumed no-slip boundaries in (34). The 

upscaled equation (70) can be rewritten based on the definition of ū0 in (68) as

where �∶=|Qf|∕|Q| is the porosity.

5.2 � Effective Energy Conservation

To describe the conservation of energy in the void as well as the grain space at the 
Darcy scale, the third lowest order terms in void and grain space (29) and (32) are used. 
If we integrate them over their respective domains, add them up, divide by |Q| and apply 
Gauss’ theorem as well as the definition of the effective flow (68), we obtain

Considering the composition of �Qf = �Qf
∪ SQf

∪�Q and �Qg = �Qg
∪ SQg

 , we first show 
that term C vanishes: For the integrals over �Qf

∪ SQf
 , we make use of the no-slip boundary 

conditions (33) and (34) again. Since all functions within the integral are periodic in y , the 
contributions of the different parts of �Q cancel each other.

Note that �Qf ∩ �Qg = SQ , while the respective normal vectors on this domain point 
in opposite directions for the fluid ( SQf

 ) and the grain component ( SQg
 ). Due to the con-

tinuity condition (45), the contributions from SQ in term B cancel each other. The inte-
gral over �Q is zero due to periodicity. Hence, term B results in

(70)0 = |Qf|�t�f0 + ∫
Qf

∇x ⋅ (u0�f0) d(y, z) + ∫
�Qf

(u0�f1 + u1�f0) ⋅ n d�.

(71)𝜙𝜕t𝜌f0 + ∇x ⋅ (ū0𝜌f0) = 0

(72)

𝜙𝜕t(𝜌f0T0) + (1 − 𝜙)𝜕t(𝜌g0T0) =
1

|Q| ∫Qf

∇x ⋅ (𝜅f(∇xT0 + ∇y+zTf1)) d(y, z)

�������������������������������������������������������������
=∶A1

+
1

|Q| ∫Qg

∇x ⋅ (𝜅g(∇xT0 + ∇y+zTg1)) d(y, z)

���������������������������������������������������������������
=∶A2

+
1

|Q|

(
∫
𝜕Qf

𝜅f(∇xTf1 + ∇y+zTf2) ⋅ n d𝜎 + ∫
𝜕Qg

𝜅g(∇xTg1 + ∇y+zTg2) ⋅ n d𝜎

)

�������������������������������������������������������������������������������������������������������������������������
=∶B

−
1

|Q| ∫𝜕Qf

(𝜌f1(u0Tf1 + u1T0)) ⋅ n d𝜎

���������������������������������������������������
=∶C

−∇x ⋅ (𝜌f0T0ū0).
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where we have introduced n3 = ±1 to denote the third component of the normal vector on 
�Qf

 and �Qg
 , respectively. The following steps depend on the top and bottom boundary of 

the domain. Hence, we consider the case of Neumann boundary conditions first before 
moving on to Dirichlet boundary conditions.

5.2.1 � Neumann Boundary Conditions on Top and Bottom Boundary �Q

In this case, the contributions of the integrals over �Qf
 and �Qg

 in term B as given in (73) 
disappear according to the Neumann boundary conditions (39a) and (40a). Therefore, term 
B is zero.

To simplify the terms A1 and A2 , we insert the linear combinations (51a) for Tf1 and 
(51b) for Tg1 and use that Tf0 as well as Tg0 do not depend on y and z:

with components

We can further simplify these expressions by using the following relation:

This relation is obtained by rewriting the left-hand side of the equation and applying the 
Gauss’ theorem:

The integral over �Q vanishes due to periodicity of vN
j
 , and on �Qf

 the normal component 
ni is zero since the respective normal vector is parallel to the z-axis. If we use the continu-
ity condition (56) of the cell problem, we get

(73)

B =∫
�Qf

�f

|Q| (∇xTf1 + ∇y+zTf2) ⋅ n d� + ∫
�Qg

�g

|Q| (∇xTg1 + ∇y+zTg2) ⋅ n d�

=∫
�Qf

�f

|Q|�zTf2n3 d� + ∫
�Qg

�g

|Q|�zTg2n3 d�,

A1 + A2 = �f∇x ⋅

(
V

N∇xT0 +
�f

�f
ez

)
+ �g∇x ⋅

(
W

N∇xT0 +
�g

�g
ez

)

= �f∇x ⋅

(
V

N∇xT0
)
+ �g∇x ⋅

(
W

N∇xT0
)
,

(74)VN
ij
= �ij� +

1

|Q| ∫Qf

�yi v
N
j
d(y, z) i, j = 1, 2,

(75)WN
ij
= �ij(1 − �) +

1

|Q| ∫Qg

�yiw
N
j
d(y, z) i, j = 1, 2.

(76)∫
Qf

�yi v
N
j
d(y, z) = −∫

Qg

�yiw
N
j
d(y, z) i, j = 1, 2.

∫
Qf

�yi v
N
j
d(y, z) = ∫

Qf

∇y+z ⋅ (v
N
j
ei) d(y, z) = ∫

�Qf

(vN
j
ei) ⋅ n d�

= ∫
�Qf

∪SQf
∪�Q

vN
j
ni d�.
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because SQf
 and SQg

 denote the same surface but with opposite orientation. When applying 
the previous steps in inverse order, we end up with

Hence, we have (76).
Making use of the relation between the integrals (76) and the quantities VN and WN in 

(74) and (75), the upscaled effective heat conductivity is given as

with components i, j = 1, 2

Note that the first term represents the volume-weighted average of the heat conductivities 
in fluid and grain. The second term accounts for the internal structure of the heat transport 
within the cell problem and the interaction with the top and bottom boundaries, which are 
not accounted for by the volume-weighted averages.

If we insert all derived expressions above into (72), we obtain the upscaled form of con-
servation of energy:

5.2.2 � Dirichlet Boundary Conditions on Top and Bottom Boundary �Q

We first consider the simplified form of term B as stated in (73): If we assume that Tf2 and 
Tg2 are symmetric with respect to z, term B is zero since the remaining integrals sum up to 
zero. This assumption is reasonable due to the symmetric boundary conditions and since 
the setup of the discussed problem yields a symmetric behavior.

As done for the case of Neumann boundary conditions, we also insert the respective lin-
ear combinations (67a) and (67b) into the terms A1 and A2 . This results in:

The components of VD and WD are given by:

Note that the integrals of �yi v
D
j
 over Qf and of �yiw

D
j
 over Qg satisfy

∫
SQf

vN
j
ni d� = ∫

SQf

wN
j
ni d� = −∫

SQg

wN
j
ni d�,

−∫
SQg

wN
j
ni d� = −∫

Qg

∇y+z ⋅

(
wN
j
ei

)
d(y, z) = −∫

Qg

�yiw
N
j
d(y, z).

S
N = �fV

N + �gW
N

(77)SN
ij
= �ij(�f� + �g(1 − �)) +

�f − �g

|Q| ∫
Qf

�yi v
N
j
d(y, z).

(78)𝜕t(𝜙𝜌f0T0 + (1 − 𝜙)𝜌g0T0) = ∇x ⋅ (S
N∇xT0 − 𝜌f0T0ū0).

A1 + A2 = �f∇x ⋅ (V
D∇xT0) + �g∇x ⋅ (W

D∇xT0).

VD
ij
= �ij� +

1

|Q| ∫Qf

�yi v
D
j
d(y, z) i, j = 1, 2,

WD
ij
= �ij(1 − �) +

1

|Q| ∫Qg

�yiw
D
j
d(y, z) i, j = 1, 2.
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The relation can be derived analogously to the case of Neumann boundary conditions (see 
(76)). By using this relation as well as the definitions of VD and WD , we define the effective 
heat conductivity

with components i, j = 1, 2

As in (77), we see that the effective heat conductivity can be written as the sum of the vol-
ume-weighted average of the heat conductivities, and of a part accounting for the internal 
structure of the heat transport and interactions with top and bottom boundaries. Hence, we 
obtain the following Darcy-scale equation for the heat transport:

5.2.3 � Remarks Regarding the Effective Heat Conductivities

If we compare the effective heat conductivities SN in (77) for Neumann boundary condi-
tions and SD in (79) for Dirichlet boundary conditions on the top and bottom boundary, 
one finds that they have the same structure. However, they depend on the solution of the 
respective cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ), which are not the same. Hence, we 
obtain different effective heat conductivities depending on the type of boundary conditions.

The effective heat conductivities SN in (77) and SD in (79) are both symmetric and posi-
tive definite, as one also finds for two- or three-dimensional porous media where the top 
and bottom boundary conditions do not have an influence Auriault (1983). To see this, 
one considers the weak form of the cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ). Using 
test functions that also fulfill the top and bottom boundary conditions, the weak form for 
( Pheat, N(x) ) is

for all sufficiently smooth � that are periodic in y and fulfilling �z� = 0 on �Q . Choosing � 
equal to vN

j
 in Qf and to wN

j
 in Qg , and using (76) together with Gauss’ theorem, we obtain

This identity can be used to rewrite the components SN
ij

 to

∫
Qf

�yi v
D
j
d(y, z) = −∫

Qg

�yiw
D
j
d(y, z) i, j = 1, 2.

S
D = �fV

D + �gW
D

(79)SD
ij
= �ij(�f� + �g(1 − �)) +

�f − �g

|Q| ∫
Qf

�yi v
D
j
d(y, z).

(80)𝜕t(𝜙𝜌f0T0 + (1 − 𝜙)𝜌g0T0) = ∇x ⋅ (S
D∇xT0 − 𝜌f0T0ū0).

∫
Qf

�f∇y+zv
N
j
⋅ ∇y+z�d(y, z) + ∫

Qg

�g∇y+zw
N
j
⋅ ∇y+z�d(y, z)

= ∫
SQ

�(�g − �f)�j ⋅ �d�

∫
Qf

�f∇y+zv
N
i
⋅ (∇y+zv

N
j
+ �j)d(y, z) +∫

Qg

�g∇y+zw
N
i
⋅ (∇y+zw

N
j
+ �j)d(y, z) = 0.



758	 L. Scholz, C. Bringedal 

1 3

which is obviously symmetric, and can be seen to be positive definite by considering the 
sum 

∑2

i,j=1
�iS

N
ij
�j for real numbers �i (see also Proposition 3.2 for a diffusion problem in 

Hornung 1997). For the cell problem with Dirichlet boundary conditions ( Pheat, D(x) ), the 
argument follows similar steps, but using test functions � fulfilling � = 0 on �Q . The cor-
responding weak form and components of SD

ij
 can be written the same way as for the Neu-

mann boundary conditions case, using vD
j
,wD

j
 instead of vN

j
,wN

j
.

Note that although the cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ) generally need to be 
solved in three-dimensional domains, the resulting effective matrices SN(x) and SD(x) only 
vary in the horizontal directions, meaning along x = (x1, x2) . A z-dependence of the effec-
tive heat conductivity would appear if higher order terms from the conservation of energy 
in (13) and (14) would be included, which would correspond to a better approximation 
of the original problem. The presented effective model is based on terms up to the order 
O(�0) . In the expressions for A1 + A2 , the divergence with respect to x is zero in the third 
component. Therefore, the third row and column of the effective heat conductivity are zero 
and we only need to consider S ∈ ℝ

2×2.
Hence, in a thin porous medium, the resulting effective heat conductivity for the hori-

zontal heat transfer depends on the three-dimensional structure of the pore scale and on the 
boundary conditions applied to the top and bottom boundaries of the thin porous medium.

5.3 � Summary of Upscaled Model

The derived upscaled model consists of Darcy’s law (68) and upscaled mass conserva-
tion (71), together with an upscaled equation for the effective heat transport (78) or (80) 
depending on the choice of boundary conditions on the top and bottom boundary:

where S = S
N in the case of Neumann boundary conditions on the top and bottom bounda-

ries, and S = S
D in the case of Dirichlet boundary conditions. Equations of state describing 

how the fluid and grain densities and fluid viscosity depend on temperature must also be 
included to close the system. Note that these equations are all defined on two-dimensional 
domains, as the vertical (thin) direction does not need to be resolved. Hence, the effective 
matrices K, S are 2 × 2 matrices. The components of the permeability matrix K are deter-
mined by (69), where the solution of the corresponding cell problems is given through 
( Pflow(x) ). The components of the effective heat conductivity SN and SD are given by (77) 
and (79), which depend on the corresponding cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ), 
respectively. Note that the cell problems are defined on three-dimensional domains, which 
are small portions of the original domain. Despite the strong coupling between the original 
model equations, the cell problems can be solved independently of each other.

SN
ij
= ∫

Qf

�f(∇y+zv
N
j
+ �j) ⋅ (∇y+zv

N
i
+ �i)d(y, z)

+ ∫
Qg

�f(∇y+zw
N
j
+ �j) ⋅ (∇y+zw

N
i
+ �i)d(y, z)

ū0 = −
1

𝜈0
K∇xp0

𝜙𝜕t𝜌f0 + ∇x ⋅ (ū0𝜌f0) = 0

𝜕t(𝜙𝜌f0T0 + (1 − 𝜙)𝜌g0T0) = ∇x ⋅ (S∇xT0 − 𝜌f0T0ū0),
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The upscaled model is valid under the assumptions on the original pore-scale model 
equations stated in Sect. 2.2, and under the assumption of the non-dimensional numbers as 
explained in Sect. 2.3. Note that the (scaled) non-dimensional numbers still appear in the 
resulting upscaled model through the effective quantities K, S and through the cell prob-
lems ( Pheat, N(x) ) and ( Pheat, D(x)).

6 � Effective Heat Conductivity Behavior Based on Cell Problems

In the following, we analyze the effective heat conductivities that are calculated based on 
the solutions of the cell problems ( Pheat, N(x) ) and ( Pheat, D(x) ). For the numerical results 
below, we have used Netgen for mesh generation and the finite element software NGSolve 
to solve the weak form of the cell problems (see Schöberl 2014). Note that the cell prob-
lems ( Pheat, N(x) ) and ( Pheat, D(x) ) are elliptic. To generate the mesh in Netgen, we specify 
the domain and location of the inner boundary and give the maximum mesh size hmax . 
However, Netgen generally employs smaller grid cells near inner boundaries. To discre-
tize the cell problems on these meshes, we use subspaces of H1 , using polynomials up to 
third order as basis functions. The remaining computations to obtain the effective heat con-
ductivities according to (77) and (79) have been performed using NGSolve, as the needed 
solution derivatives are directly available through NGSolve. As mentioned above, the cell 
problem can be reduced to two dimensions whenever we apply Neumann boundary con-
ditions on the top and bottom boundary �Q and consider a setup where the grain shape 
does not change along the z-axis. By reducing hmax , larger accuracy is obtained. We found 
that four significant digits in the cell problem solution and in the effective quantity was 
obtained already by hmax = 0.1 . The number of used grid cells was in this case for the cell 
problems in Sect. 6.1–6.3 in the range 180–400 for two-dimensional cell problems, and 6 
000–144 000 for three-dimensional cell problems. The largest amount of grid cell were 
needed for ellipsoid-shaped grains.

The provided code Scholz and Bringedal (2021) calculates all components of the effec-
tive heat conductivities SN and SD . We will limit our attention to isotropic grain shapes. In 
this case, the off-diagonal components SN

ij
 and SD

ij
 ( i ≠ j ) are close to zero and SN

11
= SN

22
 as 

well as SD
11

= SD
22

 . Therefore, we only present and discuss the first diagonal component in 
the following.

We are interested in which way the use of Neumann or Dirichlet boundary conditions on 
the top and bottom boundary �Q as well as different grain shapes affect the effective heat 
conductivity. Besides that, different ratios of the heat conductivity of the grain �g and the 
fluid �f count among the parameters of interest. To simplify the comparison, we set �f = 1 
and consider different values for k = �g∕�f = �g . Note that if follows from assumptions on 
Pef and Peg that �f and �g are the same order of magnitude. Hence, with �f = 1 , �g have to 
be close to 1 as well. In the following, we consider k between 0.2 and 5.

6.1 � Effect of Boundary Conditions on Top and Bottom Boundary �Q

As shown in Sections 4.3 - 4.4, the cell problems for effective heat conductivities in case 
of Neumann and Dirichlet boundary conditions on �Q differ. Despite the similar structure 
of the equations as given in (77) and (79), the respective cell problems ( Pheat, N(x) ) and 
( Pheat, D(x) ) apply different boundary conditions. In the following, we consider circular 
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cylinder-shaped grains of different radii and compare the results for the two boundary con-
dition types on �Q . The resulting effective heat conductivities are shown in Fig. 3a.

The results for Neumann boundary conditions are consistent with the ones presented 
and discussed in Bringedal and Kumar (2017), where two-dimensional cell problems with-
out the effect of boundary conditions were considered. However, this is due to fact that 
the grain shapes do not vary along the vertical axis in this case. For Dirichlet boundary 
conditions, we obtain a similar behavior with respect to varying the size of the grain, but 
overall larger effective heat conductivities. In the trivial case of k = 1 , fluid and grain have 
the same heat conductivity and we obtain the same constant effective heat conductivity 
for Neumann and Dirichlet boundary conditions. However, for k ≠ 1 the effective heat 

(a) Results for Neumann (dark-colored) and Dirichlet
(ligt-colored) boundary conditions in case of a cylinder-
shaped grain

(b)Difference SD
11−SN

11 for a cylinder-shaped
grain and a cuboid-shaped grain (dotted line)
for comparison. Upper lines are based on k =
5.0, bottom lines on k = 0.2. Note that the
minimum porosity for cylinder-shaped grains
is 0.2, while cuboid-shaped grains can ap-
proach 0

(c) Results for k = 5 (top curves) and k =
0.2 (bottom curves) together with porosity-
weighted averages for cylinder-shaped grains
as a function of porosity

Fig. 3   Comparison of the effective heat conductivities ( SD
11

= SD
22

 and SN
11

= SN
22

 ) for Neumann and Dirichlet 
boundary conditions on the top and bottom boundary �Q
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conductivity is always larger in case of Dirichlet boundary conditions than for Neumann 
boundary conditions on �Q . This positive impact of Dirichlet boundary conditions is due to 
them representing perfect heat conduction on �Q . If we consider the respective difference 
in detail for a cylinder and a cuboid, as shown in Fig. 3b, we observe that for � → 0 and 
� → 1 , meaning the grain fills almost all of the void space or its size is negligible, this dif-
ference goes down to zero. This is the case because the local domain is almost homogene-
ous and therefore equally heat conductive, independently of the boundary conditions. For 
porosities that are neither close to zero nor close to one the choice of Dirichlet boundary 
conditions has a strong, positive effect on the effective heat conductivity.

Note that the surface area between fluid and grain is proportional to the radius when 
considering cylinder-shaped grain. Hence, Fig. 3a can be read as effective heat conductiv-
ity as a function of fluid-grain surface area when scaling the horizontal axis with a factor 
2�H = 2� for this setup. Hence, when one knows that the grains are cylinder-shaped, the 
effective heat conductivity can be determined by the cylinder radius, correspondingly the 
fluid-grain surface area.

Since effective heat conductivities for porous media are often calculated in terms of 
porosity-weighted averages of the individual heat conductivities found in fluid and grain 
(see, e.g., Nield and Bejan 2017), we compare in Fig. 3c the effective heat conductivities 
found through the cell problems with such averages. The averages are calculated through

As seen in Fig.  3c, and as pointed out earlier in Bringedal and Kumar (2017) for two-
dimensional porous media without the influence of top and bottom boundary conditions, 
these porosity-weighted averages offer approximate values for the effective heat conductiv-
ity, but cannot predict the detailed behavior as the porosity varies.

6.2 � Effect of Different Grain Shapes

We are interested in understanding to which extent the effective heat conductivity is 
affected by changes within the cross-sectional shape of the grain along the z-axis. The 
resulting equations for the effective heat conductivities (77) and (79) directly indicate the 
impact of the porosity on the effective heat conductivity. Therefore, we compare different 
grain shapes but always using the same grain volume |Qref

g
| in order to account for effects 

of the detailed shape. Since we consider the same porosity, any porosity-weighted average 
would always give the same value (for fixed �f and �g ) independent of the shape. All con-
sidered shapes are rotationally symmetric with respect to the z-axis. Hence, we can intro-
duce r(z) ∶ [0, 1] → [0, 0.5] to describe the grain radius perpendicular to the axis for differ-
ent values of z. Further, the minimum and maximum radius of a grain are given by

As grain reference volume |Qref
g
| , we use a cylinder with radius rcyl(z) = 0.25 . In addition to 

the cylinder, we construct a cone-shaped as well as an ellipsoid-shaped grain which have 
the same volume as our reference grain. They are defined by

Sarithmetic = �f� + �g(1 − �),

Sgeometric = �
�

f
+ �1−�

g
,

Sharmonic =
1

�

�f
+

1−�

�g

.

rmin = min
z∈[0,1]

r(z), rmax = max
z∈[0,1]

r(z).
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In order to ensure that all grains are of the same volume |Qref
g
| , we obtain the follow-

ing restrictions on the minimum and maximum radii of the cone and the ellipsoid for 
rmin∕rmax → 0:

In case of the limit rmin∕rmax → 1 , the shapes of ellipsoid and cone approach the shape of the 
reference cylinder. The detailed setup is sketched in Fig. 4. The minimum and maximum 
radius of the different shapes satisfy rcon

min
≤ rell

min
≤ rcyl and rcyl ≤ rell

max
≤ rcon

max
 for any given 

ratio of the radii.
In the following, we compare the effective heat conductivities for different conductiv-

ity ratios k and Neumann as well as Dirichlet boundary conditions on the top and bottom 
boundary �Q . In Fig. 5, we show how the results vary with the ratio rmin∕rmax , the fluid-grain 
interfacial area and the contact area between top and bottom boundary and the more con-
ductive phase. We do not show how the results vary with porosity as in Fig. 3, since the 
porosity is kept constant. Note that since only one cylinder is considered here, the results 
for the cylinder are included either as a reference line or as a reference point.

Neumann Boundary Conditions on Top and Bottom Boundary  �Q The dependence of 
the effective heat conductivity on the grain shape and the corresponding maximum and 
minimum radius is clearly visible: A variation of the grain shape causes larger effective 
heat conductivities. For k < 1 (Fig. 5a), the grain is less conductive than the fluid and there-
fore hinders the overall conduction of heat. Hence, decreasing the minimum radius of the 
grain causes a better connectivity of the fluid which increases the effective heat conductiv-
ity. Recall that in case of an ellipsoid- or cone-shaped grain, the minimum radius is smaller 
than for the reference cylinder. That is why we observe significant changes in the effective 
heat conductivity for the ellipsoid and the cone compared to the effective heat conductiv-
ity of the reference cylinder for small ratios, especially in the case of a cone-shaped grain, 
where the smaller minimum radius is found.

rcon(z) = (rcon
min

− rcon
max

)z + rcon
max

,

rell(z) =

√
(rell

max
)2 − 4[(rell

max
)2 − (rell

min
)2]

(
z −

1

2

)2

.

�Qref
g
� !
=

�

3
(rcon

max
+ rcon

min
)2 ⇒ rcon

max
→

√
3

4
≈ 0.433 for rcon

min
→ 0,

�Qref
g
� !
=

�

3

�
2(rell

max
)2 − (rell

min
)2
�

⇒ rell
max

→

√
6

8
≈ 0.306 for rell

min
→ 0.

(a) Cylinder (b) Ellipsoid (c) Cone

Fig. 4   Setup of the different grain shapes. All are rotationally symmetric with respect to the z-axis. The 
ratio rmin∕rmax for ellipsoid and cone in these figures is approximately 0.3
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For k > 1 (Fig. 5b), the grain is more conductive than the fluid. Consequently, having 
better connected grains, meaning a smaller distance between neighboring grains, increases 
the effective heat conductivity. This is obtained when the maximum radius of the grains 

(a) Results for k = 0.2 as a function of the
ratio rmin/rmax

(b) Results for k = 5.0 as a function of the
ratio rmin/rmax

(c) Results for k = 0.2 as a function of the
fluid-grain surface area

(d) Results for k = 5.0 as a function of the
fluid-grain surface area

(e) Results for k = 0.2 as a function of
the fluid contact area with top and bottom
boundary

(f) Results for k = 5.0 as a function of
the grain contact area with top and bottom
boundary

Fig. 5   Comparison of the effective heat conductivities for grains with a volume of |Qref
g
| = � ⋅ (0.25)2 and 

different shapes based on the ratio rmin∕rmax . The curves represent the results for Neumann (dark-colored) and 
Dirichlet (light-colored) boundary conditions on the top and bottom boundary �Q . Results for the respective 
cylinder are given as reference
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is increased. As mentioned above, the cone and the ellipsoid are characterized by a larger 
maximum radius compared to the cylinder, which indicates a better connection between the 
grains in neighboring cells. Therefore, we obtain larger effective heat conductivities also in 
this case when varying the grain shape, in particular for the cone where a larger maximum 
radius is found.

The increasing eccentricity of the cone- and ellipsoid-shaped grains corresponds to 
larger interfacial area between fluid and grain. Hence, for the Neumann boundary condi-
tions, the effective heat conductivities generally increase with increasing surface area 
between fluid and grain, as seen in Fig. 5c and 5d. However, the interfacial area and value 
of k alone are not sufficient to determine the effective heat conductivity, and knowledge 
about the shape (cone or ellipsoid in this case) is also necessary. As seen from Fig. 5e and 
5f, although the effective heat conductivity varies with the contact area between top and 
bottom and the more conductive phase, no specific trend can be determined when using 
Neumann boundary conditions.

Dirichlet Boundary Conditions on Top and Bottom Boundary �Q By changing the 
boundary conditions on �Q , we expect the effective heat conductivities to increase due to 
the positive impact of Dirichlet boundary conditions as discussed in the previous Sect. 6.1. 
However, the magnitude and overall importance of the positive impact of Dirichlet bound-
ary conditions depends on the surface area of the fluid (for k < 1 ) or the grain (for k > 1 ), 
respectively, toward �Q . In case of k < 1 , the grain hinders the conduction of heat. Hence, 
the impact of Dirichlet boundary conditions is expected to be larger if the fluid has a larger 
surface area toward �Q . This corresponds to r(z) being smaller on �Q . For k > 1 , the oppo-
site holds: A larger surface area of the grains toward �Q increases the effective conductivi-
ties under Dirichlet boundary conditions. That is achieved by a larger radius r(z).

We observe the same behavior for k < 1 (Fig. 5a) as in the corresponding case of Neu-
mann boundary conditions but with the mentioned general increase based on the different 
boundary conditions. However, the interplay between increased fluid-grain interface area 
and the contact area between fluid and top and bottom is not straightforward. In Fig. 5c and 
5e, we see how the ellipsoid generally shows an increasing trend with both interfacial area 
and contact area to top and bottom, while the cone is dominated by the increased interfacial 
area.

For k > 1 (Fig. 5b), the effective heat conductivities are still always larger than in the 
corresponding case of Neumann boundary conditions on �Q . However, the values for an 
ellipsoid-shaped grain are now significantly smaller than for the reference cylinder. An 
ellipsoid-shaped grain has less surface area toward �Q , especially for small ratios and there-
fore small rell

min
 . In case of a cylinder, the grains exhibit a larger surface area toward �Q since 

rcyl ≥ rell
min

 . The results for a cone-shaped grain remain above the ones for the cylinder since 
the cone-shaped grain has a large surface area to the bottom boundary. This is visible in 
Fig. 5d and 5f. The effective heat conductivities for the cone- and ellipsoid-shaped grains 
are dominated by the increased contact area between grain and top and bottom boundaries. 
Here, the ellipsoid’s effective heat conductivity therefore decreases with increased fluid-
grain interfacial area.

Summary and Implications for Effective Heat Conductivities Both in the case of Dirichlet 
and Neumann boundary conditions at the top and bottom boundaries, information about the 
fluid-grain surface area and/or contact area to the top and bottom boundaries and porosity 
are not sufficient to determine the effective heat conductivitiy. Knowledge of the grain shape 
is also needed. Depending on the shape, different trends or dependencies on these surface 
areas are expected. As observed in Sect. 6.1 for circular cylinders, common porosity-weighted 
averages of the fluid and grain give at best an approximation of the overall effective heat 
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conductivity and cannot account for different shapes nor boundary conditions. Hence, if accu-
rate knowledge of the effective heat conductivity is required, solutions of the cell problems 
( Pheat, N(x) ) and ( Pheat, D(x) ) are necessary.

6.3 � Comparison Between the Original and Upscaled Model

We here address the influence of the upscaling procedure by comparing the results from 
the original pore-scale model on an oscillating three-dimensional domain with the upscaled 
model on an effective two-dimensional domain using the estimated effective heat conductiv-
ity. Since we want to focus on the effective heat conductivity, we design a simplified setup 
employing heat conduction only. Comparison between pore-scale and upscaled approaches for 
flow can be found, e.g., in Wagner et al. (2021). The domains for the original pore-scale and 
upscaled models are shown in Fig. 6. The full pore-scale domain consists of 14 × 10 cylinders, 
with radius 0.2 and 0.4 in the left and right half of the domain, respectively. This domain cor-
responds to � = 0.1.

We consider steady-state heat conduction, hence we solve

on the three-dimensional pore-scale domain (Fig. 6a), and

on the two-dimensional upscaled domain (Fig. 6b). The temperatures Tf and Tg from the 
pore-scale model will give the full variability, including any local oscillations, while the 
effective temperature T from the upscaled model can only account for the average behavior. 
For the left and right boundaries, we apply Dirichlet boundary conditions, using T1 = 0 and 

∇ ⋅ (�f∇Tf) = 0 in ��

f
,

∇ ⋅ (�g∇Tg) = 0 in ��

g
,

�f∇Tf = �g∇Tg on S
�

�
,

Tf = Tg on S
�

�
,

∇x ⋅ (�∇xT) = 0

(a) Three-dimensional pore-scale domain.
The planes A and B indicate where solutions
will be plotted along later

(b) Two-dimensional upscaled domain

Fig. 6   Computational domains for the pore-scale (left) and upscaled (right) models. The pore-scale domain 
consists of 14 × 10 cylinders, with two different radii. The upscaled domain hence has two different effec-
tive heat conductivities, denoted S(1)

11
 and S(2)

11
 . The left and right boundaries have Dirichlet boundary condi-

tions, using T1 = 0 and T2 = 1 . The other boundaries have homogeneous Neumann boundary conditions
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T2 = 1 (see Fig. 6), while the long-sides boundaries have homogeneous Neumann boundary 
conditions. For the pore-scale domain, the top and bottom boundaries fulfill homogeneous 
Neumann boundary conditions. We set �f = 1 and �g = 5 , which is also used to find the 
effective heat conductivity in the two halves of the upscaled domain through ( Pheat, N(x) ) 
and (77). Since the upscaled heat conductivites are isotropic tensors, we only need the first 
component and we have that S(1)

11
= 1.183 and S(2)

11
= 2.021 for the left and right halves of 

the upscaled domain, respectively. Both domains are meshed using Netgen and solved with 
finite elements through third order subspaces of H1 using NGSolve. Since hmax = 0.1 was 
found to be sufficient for the accuracy of the cell problems, we employ that here for the full 
pore-scale domain. This leads to a total of 782 201 grid cells as many internal boundaries 
need to be resolved by the mesh. The upscaled domain is two-dimensional and meshed 
with 318 grid cells. By comparing with (upscaled) solutions on finer meshes, we estimate 
the accuracy of the upscaled model to be five significant digits on this coarse mesh.

Since the temperatures in the pore-scale domain do not vary with the vertical direction 
(but with both horizontal directions), we can plot the solution along the planes A and B 
(marked in Fig. 6a) as lines. The effective temperature in the upscaled model does not vary 
in the x2-direction. The full solutions along the planes A and B and the effective solution 
from the upscaled model along the x1-direction are shown in Fig. 7. The temperatures are 
found to match very well, although small-scale oscillations are found in the full solution 
which are not captured by the upscaled model. This is expected since we use a nonzero 
value of � . From the difference plot in Fig. 7b, the changes are found to be larger when 
considering a plane crossing through both fluid and grains in the pore-scale domain (plane 
B). However, the average of the deviations for each unit cell is close to zero, showing that 
the upscaled model captures the average behavior almost perfectly. Increased deviations 
near the external boundaries and near the transition at x1 = 7 are not observed. Compar-
ing the heat flux in the x1-direction (not shown) gives a similar deviation between the full 
pore-scale solution and the effective solution as shown in Fig. 7b, with maximum deviation 
around 0.08.

Note in particular that for the same estimated accuracy, the full pore-scale domain 
needed over 780 000 grid cells, while the upscaled domain was discretized using only 318 
grid cells. To find the effective heat conductivities, we have to solve local cell problems as 
well. For this setup, the cell problems were discretized using 218 and 184 grid cells. Here, 

(a) Temperature across respective domains
from the upscaled model and along two
planes in the full pore-scale model

(b)Difference between the full pore-scale so-
lution and the effective solution from the up-
scaled model

Fig. 7   Effective solution from upscaled model and full solution from pore-scale model
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only two different pore-scale geometries had to be accounted for, but even if more types of 
different (three-dimensional) geometries are used, the computational gain of rather solving 
several small, local problems followed by the upscaled problem is significant compared to 
solving the full pore-scale problem.

7 � Conclusion

In this paper, effective heat transport through thin porous media has been considered. Start-
ing with a pore-scale description, upscaled equations at the Darcy scale have been derived 
using formal homogenization, while accounting for the porous medium being thin. The 
Darcy-scale equations rely on the effective permeability as well as the effective heat con-
ductivity of the porous medium which are found through solving local cell problems at the 
pore scale. These quantities account for the pore geometry as well as the boundary condi-
tions on the top and bottom boundaries of the porous domain.

As a consequence, the effective heat conductivity can be used as an assessment tool for 
a material’s local heat conduction properties without requiring to solve the whole model 
at the Darcy scale nor at the pore scale. Instead, only small local cell problems need to 
be solved. Since the cell problems are generally solved on smaller portions of the original 
domain, they are cheap to solve compared to discretizing and solving the full pore-scale 
domain. Also, the original pore-scale model is highly coupled, while the cell problems can 
be solved independently of each other. For homogeneous media, the cell problem solutions 
and hence effective parameters can be reused, while for heterogeneous media, many cell 
problems need to be solved. However, solving many small problems is generally cheaper 
than solving one larger problem from a computational perspective. Furthermore, the cell 
problems can be straightforwardly solved in parallel. The corresponding upscaled problem 
is two-dimensional and can be solved on a much coarser grid than the original pore-scale 
domain. In addition, we have shown that under certain assumptions, the three-dimensional 
cell problems can be reduced to two-dimensional ones. Hence, the computational costs of 
solving the cell problems can be further decreased in those cases.

The derived formulation emphasizes the dependence of the effective heat conductivity 
on the individual heat conductivities of fluid and grain, on the detailed pore geometry as 
well as on the boundary conditions on the top and bottom boundary. If the grains in a porous 
medium have a higher heat conductivity than the fluid occupying the void space, we can 
increase the effective heat conductivity either by decreasing the porosity or, for a constant 
porosity, by decreasing the minimum distance between the grains, i.e., establishing a better 
connection of the grains. Furthermore, the application of Dirichlet boundary conditions on 
the top and bottom boundary has a positive impact on the effective heat conductivities com-
pared to Neumann boundary conditions. This positive impact is in particular strong when 
the surface area of the more conductive grains toward the top and bottom boundary remains 
large. However, the effective heat conductivity also depends on the grain shapes and cannot 
be quantified exclusively by simple parameters such as surface area and porosity.

Hence, to assess the effective heat conductivity of thin porous materials based on their 
properties at the pore scale, the derived strategy offers equations for determining such 
effective heat conductivities. These equations are cheap to solve and provide the effective 
heat conductivity locally, while incorporating the effect from the top and bottom boundary 
conditions and the pore-scale geometry.
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