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Abstract
We investigate the upscaling of diffusive transport parameters using a stochastic frame-
work. At sub-REV (representative elementary volume) scale, the complexity of the pore 
space geometry leads to a significant scatter of the observed diffusive transport. We study 
a large set of volumes reconstructed from focused ion beam-scanning electron microscopy 
data. Each individual volume provides us sub-REV measurements on porosity and the so-
called transport-ability, being a dimensionless parameter representing the ratio of diffu-
sive flux through the porous volume to that through an empty volume. The detected scatter 
of the transport-ability is mathematically characterized through a probability distribution 
function (PDF) with a mean and variance as function of porosity, which includes implic-
itly the effect of pore structure differences among sub-REV volumes. We then investigate 
domain size effects and predict when REV scale is reached. While the scatter in porosity 
observations decreases linearly with increasing sample size as expected, the observed scat-
ter in transport-ability does not converge to zero. Our results confirm that differences in 
pore structure impact transport parameters at all scales. Consequently, the use of PDFs to 
describe the relationship of effective transport coefficients to porosity is advantageous to 
deterministic semiempirical functions. We discuss the consequences and advocate the use 
of PDFs for effective parameters in both continuum equations and data interpretation of 
experimental or computational work. The presented statistics-based upscaling technique of 
sub-REV microscopy data provides a new tool in understanding, describing and predicting 
macroscopic transport behavior of microporous media.

Keywords  Diffusion · REV · Upscaling · Porosity · Probability

1  Introduction

Characterizing flow and solute transport in porous media is essential for numerous appli-
cations in earth science, engineering and industry, including CO2-storage, drinking water 
protection, safe disposal of nuclear waste, and enhanced oil recovery. Diffusion-limited 
transport mechanisms, such as in subsurface gas transport in soils (Jayarathne et al. 2020), 
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preparative chromatography (Schultze-Jena et al. 2020) and heterogeneous catalysis (Ertl 
et al. 2008), depend on available pore space, i.e., porosity.

While the physics of transport are well understood, the complex geometry of natural 
materials poses a challenge for determining bulk transport parameters given the spatial 
heterogeneity of fluxes (Blunt et al. 2013). Even for Fickian diffusion, the impact of the 
complex heterogeneous pore space on transport behavior is not fully captured in an univer-
sal generic mathematical framework. This holds particularly for (observed) irregular pore 
structures, which cannot be described by simplified models, e.g., packings of spherical par-
ticles or bundles (Bear 1972). Or as Bruckler et al. (1989) put it: “It appears that there is 
not a simple and unique relationship between the gas diffusion coefficient and air-filled 
porosity. [...] Predicting the gas diffusion coefficient on a large range of soil samples with-
out complete measurements will probably be quite complicated”.

The development of imaging techniques such as micro-computed X-ray tomography 
(Cnudde and Boone 2013) and electron microscopy (Grunwaldt et al. 2013) offers a novel 
starting point for studying the scaling behavior of transport in complex pore geometry by 
providing large data sets. However, calculating petrophysical properties of complex pore 
geometries requires a sufficient sample number or large sample size to guarantee that 
results are representative in terms of volume and details captured. Still, detailed statistical 
analyses of observational data sets on porous media transport in complex pore geometries 
are rather the exception (de Winter et al. 2016; Jackson et al. 2020; Mehmani et al. 2020; 
Menke et al. 2021) than the rule. Thus, the predictive capability of geometrical parameters 
toward transport properties remains a question (Zhang et al. 2021).

Relating transport properties at macroscale, as Darcy or even Field scale, to structural 
parameters at pore or microscale has a long tradition starting with Hazen (1893); Carman 
(1937); Kozeny (1953) and many others. Central assumption is the existence of a repre-
sentative elementary volume (REV) scale (Bear 1972), where fluctuations at microscale 
cancel out leading to a deterministic value at macro-scale. Innumerable relationships exist 
in the literature, relating bulk transport parameters such as the diffusion coefficient or per-
meability to pore structural parameter, where porosity is typically the main determining 
parameter, complimented by geometrical characteristics, such as tortuosity, constrictiv-
ity, formation factor, grain shape factors, etc. (van Brakel and Heertjes 1974; Berson et al. 
2011; Ghanbarian and Hunt 2014; Gaiselmann et al. 2014 or Devlin (2015) and references 
within). A key challenge is determining the contributions of each parameter to transport 
properties at the Darcy scale, especially for irregular pore geometries. Hence, these param-
eters are often used as fitting parameters in deterministic functional relationships ignoring 
the natural scatter in the data due to geometrical heterogeneity of porous material. To our 
perception, the variety of (semiempirical) relations contradicts the existence of a unique 
relationship.

We hypothesize that a fundamental reason why researchers have not yet succeeded in 
finding an universal correlation between the pore structure and transport properties is the 
misinterpretation of the REV concept and the level at which an REV is reached for trans-
port properties. Transport property variations between volumes having an with similar pore 
volume do not completely vanish at very large domain sizes, unlike geometrical parameters 
such as porosity, due their dependency on the complex pore space topology.

We study that hypothesis through an analysis of a large number of microscopy-based 3D 
domains with irregular sub-REV pore spaces. We refined an upscaling routine of de Winter 
et al. (2016) allowing the stochastic evaluating of the porosity and the diffusive transport 
properties as a function of domain size. The key of our work is using a probability distri-
bution function describing the scatter plot of a large number of data points, as opposed 
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to fitting an explicit equation to the scatter plot. Particularly, probability distributions are 
computed from actual data and not assumed for theoretical expedience.

By showing that the diffusion coefficient in porous media is not a deterministic function 
of pore structure and porosity but is better represented by a stochastic representation we 
are able to investigate domain size effects of observed scatter. We make predictions on the 
REV scale, i.e., the averaging support scale. We further discuss the implications on experi-
mental work, continuum equations and simulations of large-scale processes in the context 
of the REV concept.

2 � Diffusion in Porous Media

Diffusion is the net effect of Brownian motion across a region with a concentration gradi-
ent. Diffusion in porous media is classically described by a modified form of Fick’s law, 
relating diffusive flux JPM to the concentration gradient:

Equation (1) is valid assuming diluted concentration C of the involved species. Note that 
we further assume isotropic diffusive transport (based on an isotropic material structure).

The proportionality constant DPM is interpreted as an effective porous media diffusion 
coefficient being a lumped parameter containing: (1) all the dynamics and interactions of 
the fluid molecules, e.g.,  molecular mass, molecular size, electrostatic interactions and 
thermodynamic properties; (2) the impact of the pore structure; and (3) all interactions 
between the molecules and the porous material. Consequently, the effective diffusion coef-
ficient DPM is a function of pressure, temperature and molecular diameter. In addition, 
characteristics of the pore space geometry, such as porosity, tortuosity and constrictivity, 
are included in the effective diffusion coefficient.

Typically, the effective diffusion coefficient in hydrogeological applications of porous 
media diffusion at macroscale is defined as DPM =

�Dmol

�
 . Here, the molecular diffusion 

constant Dmol of the particular fluid phase occupying the pore space covers the fluid effects, 
while the effective porosity � and tortuosity � represent the impact of pore structure. Note 
that the DPM given here refers to a particular definition of tortuosity, which is not unified 
in the literature (Bear 1972; Clennell 1997; Ghanbarian et al. 2013). The use of an effec-
tive diffusion coefficients is only valid when the diffusion process has reached the REV 
scale. Here, the pure characterization through structural components is misleading since 
their REV scales differ from that of flow and transport properties (Zhang et  al. 2000): 
while porosity as pure volume property converges to REV scale relatively quickly, flow and 
transport of particles depend on the actual pore space topology having much higher REV 
scales.

Extracting geometrical parameters, such as porosity � and tortuosity � from microscopy 
images of the pore space, is not trivial. For example, the total porosity as ratio of pore 
volume to total sample volume differs from the effective porosity, which does not contain 
isolated pore space not contributing to flow. Tortuosity � as a measure for the actual length 
of flow paths is not only ambiguous defined, but also hard to determine experimentally 
(Ghanbarian et al. 2013; Zhang et al. 2021; Fu et al. 2021). Since it is hardly ever avail-
able for porous media samples, empirical values are mostly used for tortuosity, typically in 
the range of � = 1.5 − 3 based on expert knowledge. Also describing tortuosity as explicit 

(1)JPM = −DPM

dC(x)

dx
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function of porosity does not capture the strong scatter of complex pore topologies for 
identical pore volumes. Thus, the use of a deterministic relationship Deff = Dmol�∕� based 
on � measurements has to be critically assessed, since the REV scale is much higher than 
typically anticipated.

We aim to provide a tool to deal with parameter variations in the diffusion coefficient 
below REV-scale through a stochastic description. We will make use of a dimensionless 
parameter representing the effect of the pore structure on diffusive flux: the transport-abil-
ity � . We define it as the ratio of diffusive flow through the porous volume and the flow 
through an empty volume (Sect. 3.3.1). At REV scale, it can be interpreted as a mapping of 
porosity and tortuosity, � = �∕� , and thus DPM = � ⋅ Dmol.

3 � Statistical Description of Observation Data

3.1 � Observation Data

We analyze a data set published by de Winter et al. (2016) on fluid catalytic cracking (FCC) 
particles, which have an average diameter of 100 μ m and pore sizes ranging from 1 nm to 
roughly 2 μ m. The porosity distribution was determined from scanning electron micros-
copy (SEM) images. High-resolution segmented images (resolving power after image pro-
cessing about 10 nm) of cross sections of FCC particles were split in equal sized squares. 
The porosity of each square was determined as ratio pore pixel over total pixels. The his-
togram over all squares yielded the porosity distribution. The analysis was performed with 
grid sizes of 2 × 2 μ m, 8 × 8 μ m and 32 × 32 μm.

Transport properties were identified on diffusion simulations in 3D pore spaces with 
their geometries based on the actual FCC particle’s pore space. First, a focused ion beam-
scanning electron microscope (FIB-SEM) was employed to analyze the pore space in 3D 
with voxel size of about 10 × 10 × 10 nm. An algorithm tuned toward reproducing the 3D 
pore space of the FCC particles allowed for generating thousands of small volumes, called 
’virtual volumes,’ suitable for diffusion simulations. The simulations obtained the steady-
state diffusive flux solving Fick’s equation by an iterative scheme. For each of the complex 
unstructured pore spaces, it was also determined if they are percolating, i.e., if a connected 
flow path exists. All technical details can be found in de Winter et al. (2016).

Here, we make use of the porosity distribution functions for various domain sizes, the 
percolation probability as a function of porosity and a measure for a resistance against dif-
fusive transport as a function of porosity. Details are outlined in the following subsections.

3.2 � Porosity

Porosity, the ratio of pore volume to total volume, has been measured for particle sub-sam-
ples at domain size r of 2 μ m, 8 μ m, and 32 μ m domain size. Although observations refer 
to areal investigation, we consider them as representative for the volume property, assum-
ing isotropy in the third dimension. Statistical analysis of measured porosities revealed a 
normal distribution at all sample scales r. Scale-dependent sample mean �r and sample 
standard deviations �r are listed in Table 1.

The probability of observing a certain porosity � in a sample of domain size r can be 
described with a truncated normal distribution P(r)(�) ∝ N(�r, �r, 0, 1) , limited to the range 
of � ∈ [0, 1]:
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to the parameters �r and �2
r
 . ft = Φ(�r, �r, 1) − Φ(�r, �r, 0) denotes the normalization fac-

tor due to truncation which is given by the difference of values of the normal distribution 
Φ at 0 and 1. The truncation formally changes the actual mean and variance of the distri-
bution P(r)

�
(� = x) . Values differ only slightly from the input parameters �r and �2

r
 , which 

is within the uncertainty of the observation values listed in Table 1. Figure 1 shows the 
truncated normal distributions of porosity’s at all domain size levels for the FCC2 material.

Porosity statistics show a scale dependency. As expected, mean porosity � remains 
quasi constant with increasing domain length r (Table 1), whereas the standard devia-
tion � decreases. For a domain of n units in d dimensions, there are nd copies of the 
porosity. The law of large numbers predicts that the associated variance decreases by 
a factor of 1∕nd when samples are independent. However, the decrease in the sample 
standard deviation is slower, with an actual factor of 1∕nd∕2 . Thus, samples are not inde-
pendent indicating the presence of spatial correlations.

The slow decrease in the standard deviation shows that samples are not independ-
ent due to spatial correlation given the non-uniform and non-random material structure 
innate to porous material. The nonzero value of the standard deviation at �(32) shows 
another effect: domain size has not yet reached the porosity REV level. The slower con-
vergence of the standard deviation to zero increases the porosity REV scale since devia-
tions of porosity observations can still be present at relatively large samples size. Both 
aspects, sub-REV scale and spatial correlation of samples need to be accounted for in 
upscaling processes.

(2)P
(r)

𝜃
(𝜃 = x) =

�
1

ft⋅𝜎r

√
2𝜋

exp
�
−

(x−𝜇r)
2

2𝜎2
r

�
for 0 < x < 1

0 else

Table 1   Statistical quantities of 
porosity observations for FCC1 
and FCC2 catalytic particles as 
function of sample domain size 
r = 2, 8, 32 μm

Domain size r ( μm) FCC1 FCC2

2 × 2 8 × 8 32 × 32 2 × 2 8 × 8 32 × 32

Mean porosity �
r

0.241 0.239 0.239 0.296 0.29 0.28
Standard deviation �

r
0.074 0.048 0.001 0.145 0.09 0.044

Fig. 1   Distribution function of 
porosity depending on domain 
size r = 2, 8, 32 μ m. Solid lines 
show the truncated Gaussian 
PDF of the total porosity. The 
black line shows the connectivity 
probability pcon(�) ∈ [0, 1] . The 
dashed lines indicate the distribu-
tion of connected porosity, and 
the shaded areas between the 
curves indicate the amount of 
non-connected porosity’s
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3.3 � Transport‑Ability

3.3.1 � Definition

For investigating the impact of the pore structure on diffusive transport, we define a 
dimensionless variable transport-ability, mathematically denoted as � , as ratio of the 
flux in the porous medium domain, i.e., a restricted flux JPM (Eq. 1), to the unrestricted 
flux in a free domain J0 = −Dmol

dC(x)

dx
:

The definition (3) of � allows extracting the effect of the porous media structure on dif-
fusive fluxes from a fluid specific impact. Thus, � is a sole property of the porous media 
structure, and we consider it a function of porosity � and the topology of the void space 
� = f (�, topology) . Note that � is scale-dependent. As outlined in Sect. 2, at REV scale � 
can be interpreted as ratio of porosity � to tortuosity � , and thus DPM = � ⋅ Dmol . However, 
we decided against an explicit functional dependency of � on � given the ambiguous defi-
nition and observational limitations of tortuosity. Instead, we reflect the variation of DPM 
below REV scale by defining � as spatial random variable (Sect. 3.3.3).

� ranges between zero and one. For unrestricted domains, i.e., � → 1 , we have 
� → �∕� = 1 . However, � is small for strongly restricted domain, related to small poros-
ities � and highly tortuous pore space. � = 0 covers the case of a disconnected or non-
percolating medium, i.e., no flow path is available through the medium.

� is not a bi-unique property of porosity since various structures with identical 
porosity show significantly different flux patterns, such as straight flow channels or dis-
connected void space. The effect of structure is usually lumped into an "effective poros-
ity", while the portion of void space contributing to transport is particularly critical.

3.3.2 � Transport‑Ability Observations

We use a data set of transport-ability observations from 5128 cubic virtual volumes 
of r = 2μm length based on diffusive transport simulations of de  Winter et  al. (2016) 
(Sect.  3.1). To derive the probabilistic relation of transport-ability as a function of 
porosity � , each volume i is analyzed with respect to: (i) porosity �i , (ii) connectivity, 
i.e., if a flow path through the sample exist to allow a diffusive flux, and (iii) transport-
ability �i for the connected samples. We first focus on connected volumes for which the 
distribution of observed �i versus porosity �i is displayed in Fig. 2.

The data scatter in Fig. 2 shows that the domain scale r = 2 μ m is at sub-REV scale 
for both � and � . Volumes of the same � show large variations in � , ruling out a deter-
ministic one-to-one relation between both, certainly at sub-REV level. Consequently, we 
model � as random function of � with a probability distribution function (PDF) P� (�) 
representing the scatter of � for identical porosities.

(3)� =
JPM

J0
=

DPM

Dmol
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3.3.3 � Descriptive PDF for Transport‑Ability

We examine the frequency of � values for small bin ranges of porosity values (e.g., 
0.16 < 𝜃 < 0.18 ) as displayed in Fig. 3. Details of the statistical analysis, including nor-
mality and log-normality tests are discussed in the Supporting Information.

For each porosity value, the � values follow a log-normal distribution which changes in 
shape depending on � . �-distributions for small �-values show a strong log-normal shape 
while distributions become less skewed with increasing porosity (Fig. 3). We attribute this 
tendency to the impact of pore space topology. The scarce pore space at small porosity 
value is either scattered with several bottlenecks or forms one or few flow channels. In the 
first domain type, flow is hampered and � will be low, while in the latter we observe quasi 
plug flow with a relatively high � values. The effect reduces with increasing pore volume.

We calculated expectation values a(�) and standard deviations b(�) for each log-trans-
formed frequency distribution of �(�) . The log-transformation allows comparing statistics 
given the logarithmic nature of � values. The log-normal distributions also represents the 

Fig. 2   Scatter plot of transport-
ability as function of porosity for 
connected volumes. Dashed line 
indicates maximal � correspond-
ing to plug flow. Vertical gray 
lines indicate positions of indi-
vidual �(�) analysis in Fig. 3

Fig. 3   Statistical analysis of transport-ability � for individual porosity values: normalized frequency distri-
butions of data in normal (top) and log-scale (bottom) compared to normal and log-normal distribution for 
� = 0.17 and � = 0.31 . n is the number of data samples
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frequency for higher porosities, as it converges to the normal-distribution for decreasing 
standard deviations. Results are displayed in Fig. 4.

The log� mean a(�) shows a linear relationship for porosities smaller than 0.6 and then 
a flattening toward 0 since �(� = 1) = 1 . log� standard deviation b is high for small poros-
ities and decreases with increasing � . For porosities beyond 0.6, the scatter is negligible.

The parameters a(�) and b(�) can be used to encapsulate the dependency of � on poros-
ity � through functional description of the probability distribution Pcon

χ
= LN(a(�), b(�)):

Pcon
χ

(� = y, �) describes the probability of � = y given a specific value of porosity � assum-
ing that the domain is connected, i.e., having a flow path through the sample. However, dis-
connected elements exist and have a � of zero.

3.3.4 � Connectivity Statistics

Connectivity is a sub-property of � and depends on porosity: decreasing pore volumes 
lower the probability of having a void space path through the domain. We model connectiv-
ity as probabilistic Bernoulli variable X being either connected ( � ≠ 0 ) or not-connected/
dead-end ( � = 0 ) with the connectivity probability pcon(�) ∈ [0, 1] as function of porosity 
� : P(� ≠ 1) = pcon(�) and P(� = 0) = 1 − pcon(�).

The frequency analysis of the 5128 virtual volumes with regard to connectivity resulted 
in a function pcon(�) as displayed in Fig. 1. Samples of porosity smaller than 0.07 are never 
connected pcon(𝜃 < 0.07) = 0 , whereas samples of 39% porosity or larger are always con-
nected, pcon(� ≥ 0.39) = 1 . For porosities in between, de Winter et al. (2016) determined 
the functional description:

with c3 = 27.362 , c2 = −27.661 , c1 = 9.4256 , and c0 = −0.0927.
Relating the porosity distribution and the probability of connectivity in an ensemble 

allows determining the total number of connected and disconnected samples. The dashed 

(4)Pcon
χ

(� = y, �) =
1√

2�y ⋅ b(�)
exp

�
−
(ln(y) − a(�))2

2b2(�)

�

(5)pcon(𝜃) =

⎧⎪⎨⎪⎩

0 for 𝜃 ≤ 0.07�
c3𝜃

3 + c2𝜃
2 + c1𝜃 + c0

�2
for 0.07 < 𝜃 < 0.39

1 for 0.39 ≤ 𝜃

Fig. 4   Expectation values (mean) a(�) and standard deviation b(�) of log-transformed transport-ability � as 
function of porosity �
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lines in Fig. 1 indicate the distribution of connected porosities. The shaded areas between 
the curves are the number of dead-end samples with zero � : 1 − ∫ 1

0
P
(r)

�
⋅ pcon(�)d� . The 

number decreases with increasing sample size r given the reduction of standard devia-
tion �r and thus less samples of small porosity. For the FCC2 material, the predicted total 
number of disconnected samples is 14.8% for r = 2 μ m; 9.7% for r = 8 μ m; and 6% for 
r = 32 μ m, respectively. Note that the number of disconnected samples is still significant 
for the sample size of r = 32 μ m although the standard deviation is small and most samples 
range around the mean porosity of about 0.3.

Connectivity is closely related to percolation (Berkowitz and Balberg 1993). In the con-
text of percolation theory, the total number of disconnected samples has to be smaller than 
the percolation threshold to guarantee transport through the network. Given the low values 
of disconnected samples, and even decreasing with increasing scale r, most of the networks 
will have at least one connected pathway. The analysis of pcon for the data at domain size 
r = 2 μ m shows that the REV scale is not reached since at REV level, the porosity thresh-
old would separate clearly non-connected to connected samples.

Transport-ability as stochastic function of porosity follows from the statistical descrip-
tions of connectivity (Eq. 5) and connected � (Eq. 4) with

Moments, such as the expectation value and variance of � as function of � can be derived 
based on the characteristics of the log-normal distribution. Theoretical expressions are 
listed in the Supporting Information. Regard that moments refer to ergodic conditions, i.e., 
when the domain size is above REV level for all involved processes.

4 � Upscaling

We upscale observations addressing the questions of interest: To what extend is the scatter 
of transport-ability � and porosity � related to domain size? And at what domain size can 
we consider the REV to be reached? The evolution of porosity statistics for observations 
at increasing domain size are outlined in Sect. 3.2. Since observations of transport-ability 
are not available at domain length beyond 2 μ m, we simulated the scaling behavior of � 
with increasing domain size deriving statistical relations between � and � as function of the 
domain size r.

(6)Pχ(𝜒 = y, 𝜃) =

{
0 with 1 − pcon(𝜃)

y > 0 with pcon(𝜃) ⋅ P
con
χ

(y, 𝜃)

Fig. 5   Upscaling scheme: from 
known porosity distribution at 
small scale (upper left corner) to 
desired description of transport-
ability 𝜒̄(𝜃̄) at larger scale (lower 
right corner). We determine 𝜒̄(𝜃̄) 
numerically through flux adapted 
averaging (lower left corner) and 
derive a probabilistic relationship 
from porosities at larger scale 𝜃̄ 
(upper right corner)
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We follow an upscaling procedure exemplified in Fig. 5. We determine � at increas-
ing scales within sub-REV level making use of numerical diffusive flux simulations in 
a Monte Carlo setting. We study the upscaling behavior in 2D and 3D, since poros-
ity measurements are often taken in a 2D setting, while flow and thus � generally 
requires observation in 3D volumes. Similar upscaling strategies have been pursued by, 
e.g.,  Boschan and Noetinger (2012); Colecchio et  al. (2020) who studied the scaling 
behavior of effective hydraulic conductivity in heterogeneous porous media.

4.1 � Numerical Upscaling Procedure

We generate discrete networks each consisting of N = nd sub-samples, with d being the 
dimension. We decided for n = 16 elements per direction based on network theory and 
preliminary tests showing that boundary effects are negligible for n > 10 (Supporting 
Information). For instance, a domain at size r = 32 μ m consists of 16 sub-samples of 
length 2 μ m within each dimension and a domain of 2048 μ m consists of 16 sub-samples 
of length 128 μ m. An exception is networks at domain size r = 8 μ m which are upscaled 
from n = 4 elements of length 2 μm.

We generate ensembles of 10,000 networks with domain sizes between r = 8 μ m and 
r = 2048 μ m. All networks of an ensemble share the same statistics. Tests on ensemble 
convergence showed that the ensemble size of 10,000 is sufficient to achieve reproduc-
ible results.

The workflow for generating one network within an ensemble comprises:

•	 The network is initialized with N = nd elements.
•	 Porosity of each network element is created by random value sampling from the 

truncated normal distribution (Eq.  2) with mean � = 0.3 and �r according to the 
domain size adapted statistics based on the values determined for the FCC2-1 mate-
rial (Table  1). We account for the spatial correlation of porosity and preserve the 
statistics observed in the data by reducing the number of samples within the network 
to 
√
n instead of n samples per direction. For example, if a network consists of n = 4 

elements per direction, we randomly draw 
√
n = 2 porosity values and assign one to 

the first two elements and the second porosity to the third and fourth element. That 
way the porosity statistics of the entire network scale differently. The variance does 
not decrease at a rate of 1∕nd but at the actually observed rate of 1∕nd∕2 . Assigning 
identical porosity values to neighboring elements properly reflects the impact of spa-
tial correlation. Although, we only have observations available to domain sizes of 
32 × 32μm , we assume that the spatial correlation of the material structure and thus 
of porosity persists at larger scales.

•	 Connectivity of each element is randomly specify as either yes(= 1 ) or no(= 0 ) based 
on its porosity �i and the associated probability of connectivity pcon(�i) (Eq.  5), 
which we considered domain size independent.

•	 A transport-ability value �i of each connected element is drawn from the probability 
distribution Pcon

χ
(�i) (Eq. 4) whose statistics a and b are based on the � value distri-

bution of the domain size r of the elements. Tests using a distribution function based 
in the histograms of �r values instead of imposing a log-normal function showed 
identical results. Note, that we do not explicitly include spatial correlation of � val-
ues - only implicitly through their dependency on the elements’ porosity values.
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For each generated network, we determine upscaled properties 𝜃̄ and 𝜒̄ . The average poros-
ity is the arithmetic mean 𝜃̄ =

∑
i 𝜃i of the elements’ porosities. We compute the effec-

tive transport-ability 𝜒̄ by solving the Laplace equation of steady state diffusion following 
from (1) in a finite differences scheme on each discrete network. The workflow is outlined 
in the Supporting Information. The procedure is identical to determining effective hydrau-
lic conductivities by inverting Darcy’s Law (Sánchez-Vila et  al. 2006). The workflow is 
implemented in python and freely available in the GitHub repository https://​github.​com/​
Alrau​neZ/​Trans​portA​bility (Zech 2021).

4.2 � Numerical Upscaling Results

Figure 6 shows the results of the upscaled transport-ability 𝜒̄ and porosity 𝜃̄ for simulated 
ensembles at domain sizes r = 8 − 2048 μ m. Each dot in Fig.  6a represents one of the 
10000 networks in the ensemble. Displayed results refer to 2D, while similar results for 
the 3D setup are accessible in the Supporting Information. Marginal distributions show the 
normalized frequencies from a histogram analysis of 𝜃̄ and 𝜒̄ data within each ensemble. 
The marginal distributions confirm that porosity and log-transport-ability follow normal 
distributions with scale-dependent parameters.

Porosity distributions of each ensemble are normal distributed and are perfectly in line 
with theoretical upscaling behavior of the FCC particle data (Table 1): constant mean � 

(c)

(a)

(b)

Fig. 6   Results of numerical upscaling for simulated ensembles at different domain sizes r [ μ m] in 2D: a 
Scatter of ensemble transport-ability 𝜒̄ vs porosity 𝜃̄ ; b, c marginal distributions, i.e.,  normalized histo-
grams for porosity and transport-ability. Lighter lines slightly visible in (b, c) show the associated theoreti-
cal distributions based on ensemble parameters

https://github.com/AlrauneZ/TransportAbility
https://github.com/AlrauneZ/TransportAbility
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and decreasing standard deviation �r = 0.15∕ 4
√
Nr where Nr = (r∕r0)

d is the total number 
of elements of size r0 = 2 μ m (the initial value) in each network of total domain size r.

The scaling behavior of transport-ability combines two effects: a decrease in discon-
nected networks and a decreasing mean in connected transport-ability with increasing 
domain size. At a level of r = 512� basically all networks are connected and have 𝜒 > 0 . 
However, these values can be rather small and now contribute to the mean of connected 
transport-ability, which thus decreases. Figure 6c shows that a normal distribution matches 
well the log� data, i.e., log-normal for � , particularly at increasing domain sizes r. Now, 
the distribution represents the entire � behavior, since all elements are connected while for 
small domain sizes the impact of disconnected elements with � = 0 are not included in the 
mean a of log�-values. The standard deviation b of log� decreases with scale.

We investigate the scale dependence of the statistics of porosity 𝜃̄ and transport-abil-
ity 𝜒̄ , in particular that of the standard deviation characterizing the decreasing scatter, mak-
ing use of the coefficient of variation: CV𝜃̄ = 𝜎∕𝜇 scales the porosity standard deviation by 
mean. For � we make use of the geometric coefficient of variation GCV𝜒̄ =

√
exp (b2) − 1 

being more appropriate for a log-normal distribution. We associate a sufficiently low CV 
with reaching the REV level. For porosity, e.g., a CV < 0.025 corresponds to a standard 
deviation of 2.5%� and consequently more then 95% of the porosity values in the PDF lie 
within a range of � ± 2� = [0.95�, 1.05�].

Figure  7 shows the scaling behavior of the statistics of porosity and transport-ability 
for both dimensional analyses, 2D and 3D. The display of CV as function of domain size r 
shows a steeper decrease in 3D due to the larger number of sub-samples with the additional 
dimension. Differences disappear when displaying the scaling behavior for the total num-
ber of elements Nr = (r∕2)d , which is a function of the dimension d.

Parameter scaling of porosity follows the theoretically predicted relation 
CV� = �r∕� =

0.15

0.3 4
√
Nr

 , which is CV(2D)

�
= 1∕2

√
0.5r and CV(3D)

�
= 1∕2(0.5r)3∕4 in 2D and 

3D, respectively. Both relations show a linear fit in log-log display in Fig. 7. The CV is 
below a level of 0.025 for a domain size of n = 512� . Thus, we consider the REV level for 
porosity reached at that domain size in a 2D sample analysis.

Parameter scaling of transport-ability, shows a similar trend with decreasing GCV at 
a rate proportional to 1∕ 4

√
Nr . However, at large domain sizes the trends flattens out and 

(b)(a)

Fig. 7   Evolution of porosity and transport-ability statistics with increasing domain size r: Diamonds show 
coefficient of variation of porosity statistics of simulated ensembles CV𝜃̄ = 𝜎

r
∕𝜇 , circles show geometric 

coefficient of variation GCV𝜒̄ =
√
exp (b2) − 1 for the transport-ability. Lines show theoretical predictions 

by a scaling proportional to 1∕ 4
√
nd  . Left scaling according to domain size r, right scaling to number of ele-

ments in network Nr
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log� standard deviation b does not decrease any further. The asymptotic value lies at 
about � = 0.05 . We relate the fact that the spread of log� does not converge to zero to the 
dependency of transport-ability on spatial structure. Upscaled values 𝜒̄ are identify through 
a process related upscaling procedure not a simple average such as the geometric mean. 
Thus, networks with identical averages of element-� values can lead to different upscaled 
values 𝜒̄ due to the spatial arrangement of elements, including non-connected elements 
with � = 0 . Consequently, there remains a scatter or nonzero variance in 𝜒̄ values between 
networks of the same ensemble.

At the same time, the remaining scatter is small (GCV in Fig. 7 of 5% ) at larger scales. 
When the remaining fluctuations are not detectable or irrelevant for a process at macro-
scale, the value can still be considered as at REV level. We relate the REV of � to the 3D 
upscaling behavior since flow is best determined in volumes. Assuming REV scale for � at 
a GCV level of � = 5% , this is reached at a domain size of r = 2048 μ m which corresponds 
to a domain volume of about 1e10 μm3 . Figure 7 makes obvious that spatial domain sizes 
for reaching REV levels differ significantly between porosity and transport-ability.

4.3 � Theoretical Upscaling

The statistical descriptions of porosity � , connectivity and connected transport-ability � 
allow for theoretical upscaling of � as stochastic function of � . We further make us of the 
findings of numerical upscaling to derive an expression for the stochastic description of � 
as function of � and domain size r.

Starting point is a material at domain size r with a normal porosity distribution P(r)

�
 

(Eq. 2) of mean � and standard deviation �r . The distribution P(r)
χ  of connected � at r can be 

assumed as log-normal distributed to parameters ar(�) and br(�) according to (Eq. 4). Non-
connected elements distribute with pcon(�) (Eq. 5). The probability distribution of trans-
port-ability versus porosities for an ensemble of networks of domain size r then follows as: 
P(r)(� = x,� = y) = P

(r)

�
(x) ⋅ pcon(x) ⋅ P

(r)
χ (y).

Figure 8 shows the pdf-cloud (as continuous counterpart to Fig. 6a) for various input 
parameters of porosity statistics � and � and ar and br depending on domain size r. The 
upper panel shows the isolated impact of the porosity distribution at the small domain size 
r = 2 . The range of potential porosity values reduces with decreasing standard deviation � 
(Fig. 8c), while transport-ability remains a broad distribution for each porosity value.

The combined effect of increasing scale on the � − �−distribution through the reduction 
in value spreading is displayed in the bottom row of Fig. 8. Here, � statistics decrease simi-
larly to those of �r following the scaling behavior identified in the numerical simulations: 
br = max

(
0.05, b2∕(r∕2)

d∕4
)
.

5 � Discussion

The upscaling procedure and CV/GCV graphs (Fig. 7) allow determining a minimum sam-
ple size to be considered an REV for the material studied here which is transferable to other 
observations. In case the experimental equipment or computational resources are insuffi-
cient to handle an REV, the alternative is repeating the measurements sufficiently often 
at similar sub-REV domains. The measurements will reveal a scatter with an unknown 
standard deviation. An appropriate sample size must be estimated during the process using 
standard statistical tools.
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5.1 � REVs of FCC Particles

Figure 7 shows that the investigated FCC particles require a domain size of 512 μ m to guar-
antee an REV for porosity at a level of � = 0.025 . However, FCC particles have an average 
diameter of 100 μ m being below REV scale. The significant differences in the mean poros-
ity of the 5 particles reported in de Winter et al. (2016) confirm that observations are below 
REV scale. It takes about 34 individual particles of 100 μ m diameter to cover the same 
surface area as an REV ( 512 μ m × 512 μm). Considering the spatial correlation of porosity 
and statistical soundness, the minimum number of particles will be much higher than these 
34 samples.

Reaching REV level for transport-ability requires even larger surface areas when 
observing transport in a 2D setting. The domain scale of 512 μ m would provide an accept-
able level of deviation when investigating transport in 3D. When limited to particles of 
100 μ m diameter, 256 particles are needed to cover the same volume. Even this absolute 
minimum number of particles is currently beyond the practical capabilities for effective 
parameter observations in lab studies.

5.2 � Implications for Continuum Equations and Experiments

The observation that the GCV of transport-ability does not reach zero at large domain sizes 
has implications for the use of effective parameters in continuum equations. A certain level 
of scatter remains in upscaled effective transport parameters. Thus, the application of the 

Fig. 8   Probability contours for transport-ability � as function of porosity � with various porosity mean � 
and standard deviation � values (Eq. 2). Upper row has identical � statistics of ar and br of log-normal dis-
tribution (Eq. 4) at r = 2 , while lower row � statistics refer to scales r = 2 μ m, r = 32 μ m and r = 512 μ m 
which correspond to porosity standard deviations �r
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REV concept has to be carefully assessed. When parameter fluctuations as result of the 
pore space complexity impact macro-scale processes, these effects should be accounted for 
in numerical and analytical solutions of continuum equations. This would require a rep-
resentation of parameter variation through uncertainty bands and/or stochastic parameter 
representations which is hardly done.

Diffusion is probably the simplest form of porous media transport. Yet, the scatter in 
transport-ability does not diminish fast nor completely and remains significant at relatively 
large length scales. This explains why fitted relations between an effective diffusion coef-
ficient and porosity for porous materials vary among publications. Not even considering 
experimental errors, a small sample size/number can easily lead to fitting results which do 
not necessarily be representative for the material under investigation.

Although other materials will reveal different statistical relations and scale-develop-
ments as presented here, we conclude that more focus should be given to a sufficient sam-
ple scale and sample number in experimental and computational studies aiming to deter-
mine effective parameters at Darcy scale. Given a limitation in data points, we strongly 
advocate the use of probability distributions for upscaling parameters and property relation 
rather than empirical deterministic fits.

5.3 � Perspectives

Suppose we consider more complex processes than diffusion, such as solute transport by 
advection and dispersion, two-phase flow, evaporation, dissolution-precipitation, coupling 
of free flow over porous media flow, etc. Each process is influenced by the complexity 
of the pore space. Crucial open questions for future research remain: Do all processes 
parameters need their own PDF for a complete description? And how do parameter PDF’s 
develop during upscaling? What are appropriate REV scales given a certain process and 
porous material.

6 � Summary and Conclusions

Applying the REV concept to transport parameters in porous media relies on the reduction 
of scatter with increasing observation scale to a negligible level. If significant scatter in 
observations persists, an effective mean is not a representative parameter for the process 
of interest. We investigated the scatter in observations of porosity and transport-ability, 
the latter representing the effect of porous medium structure on pore scale diffusion, with 
increasing scale from nanometer to micrometer. We made use of FIB-SEM data obtained 
from FCC materials of de Winter et al. (2016).

The statistical analysis of the large collection of diffusive transport observations in 
sub-REV porous domains revealed the relationship between porosity and transport-
ability at multiple length scales. The assessment included the study of connected and 
disconnected volumes, where the latter inhibit diffusive flow at all. We observe strong 
scatter of both, porosity and transport-ability, as expected at sub-REV scale. Conse-
quently, we relate porosity and transport-ability through probability distribution func-
tions (PDFs) instead of attempting to establish an explicit deterministic relation between 
both, which cannot exist due to the variability of the porous media structure. The PDFs 
provide a mathematical description of this variability. While porosity follows a normal 
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distribution, transport-ability is best characterized through a log-normal distribution. 
The statistical descriptions allowed performing numerical and theoretical upscaling.

The scatter in both quantities reduced with increasing scale, but with different con-
vergence behavior. We assess reaching the REV level for porosity by determining the 
coefficient of variation. The latter reduces linearly with increasing domain size due to a 
constant mean and the reduction in standard deviation. However, spatial correlation of 
porosity is observable in the data and reduces the convergence to an REV level.

The scatter of the transport-ability with increasing samples sized does not decrease 
linearly, but levels off at an asymptotic value > 0 . Using the geometric coefficient of 
variation (GCV), the value is in the range of 0.05. Thus, transport-ability measurements 
will always show a scatter around the mean, regardless of the domain size. This can be 
easily explained by the natural variability of void space topology of porous media which 
will be present at all scale leading to a natural scatter in transport characteristics. How-
ever, even when considering the scatter to be small enough at GCV= 0.05 and assum-
ing the REV level is reached, the observation scale is in the range of 2000 μ m = 2 mm. 
Thus, diffusion experiments at microscopic level in heterogeneous porous material must 
result in scattered observations not leading to representative results unless experiments 
are repeated for sufficient samples.

The influence of local heterogeneity to the transport behavior has consequences for 
the application of the REV concept which is key factor for (i) experimental work; (ii) 
continuum equations; (iii) simulations of large scale processes. Our results lead us to 
the major conclusions:

•	 Although porosity observations converge to an effective value with increasing obser-
vation scale and/or number of samples; spatial correlation of samples lead to higher 
REV levels as typically assumed.

•	 The length scale of the REV for (diffusive) transport in porous media is significantly 
underestimated when based on porosity measurements only.

•	 Diffusion parameters for microscopic samples will always show a scatter in meas-
urements for heterogeneous porous material given the tortuous and non-unique pore 
space topology. In the example of FCC particles, we found a minimum scatter of 5% . 
However, the level was only reached for large domain sizes leading to an REV level 
at mm scale.

•	 There is no one-to-one deterministic relationship between porosity and transport 
characterizing parameters, like the diffusion coefficient, in complex porous struc-
tures. Instead a probabilistic relation of these parameters to porosity is warranted 
to capture the effect of the complex pore space, particularly—but not exclusively—
below REV level.

Generally, the application of the REV concept in porous media research has to be care-
fully assessed for each process and process-related quantity. Our results suggest that the 
REV level is typically underestimated for effective parameters particularly when they 
are integrating geometrical as well as topological aspects of the porous medium struc-
ture. Furthermore, REV scale does not necessarily mean complete absence of scatter 
in upscaled quantities, but some variation might persists even at large scale given the 
complexity of porous media structure. However, when these fluctuation are below mac-
roscopic detection level or do not necessarily impact the large scale process behavior, 
the concept of REV is valid and useful for applications. This should, however, be care-
fully investigated.
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