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Abstract
Connectivity and connectedness are nonadditive geometric functionals on the set of pore 
scale structures. They determine transport of mass, volume or momentum in porous media, 
because without connectivity there cannot be transport. Percolativity of porous media is 
introduced here as a geometric descriptor of connectivity, that can be computed from the 
pore scale and persists to the macroscale through a suitable upscaling limit. It is a meas-
ure that combines local percolation probabilities with a probability density of ratios of 
eigenvalues of the tensor of local percolating directions. Percolativity enters directly into 
generalized effective medium approximations. Predictions from these generalized effec-
tive medium approximations are found to be compatible with apparently anisotropic Archie 
correlations observed in experiment.

Keywords Connectivity · Percolation · Upscaling · Local porosity theory · Porous media · 
Pore scale transport · Pore scale geometry · Anisotropy · Geometric characterization

1 Introduction

Advances of a fundamental nature in theories of transport in porous media rely on upscal-
ing microstructural information from the pore scale to larger-scale models (Blunt 2017; 
Keller and Holzer 2017; Samouelian et al. 2007). Despite experimental and computational 
progress predictive upscaling is often hampered by a lack of microstructural foundations or 
clear pore scale concepts for quantities related to the connectivity of porous media.

Many attempts to characterize connectivity, e.g., the concept of percolation probability 
as an order parameter for connectedness (Essam 1980, Fig. 7) (Ohser et al. 2012), originate 
from percolation theory (Broadbent and Hammersley 1957; Stauffer and Aharony 1992). 
Another example from percolation theory is the pair-connectedness function (Essam 1980; 
Stauffer and Aharony 1992). In Hilfer (1991) local percolation probabilities were intro-
duced to combine concepts from percolation theory with ideas from finite size scaling 
theory (Binder 1992; Hilfer 1994) resulting in a successful explanation of Archies’s law 
(Archie 1942) for the resistivity of porous media. Other suggestions include n-connected-
ness (Ohser and Schladitz 2009) or the Euler characteristic (Schlüter and Vogel 2011; Chiu 
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et  al. 2013; Jiang and Arns 2020). Recently (Berg 2012; Hauskrecht 2018; Slotte et  al. 
2020), tortuosity (Krüger 1918; Scheidegger 1957; Bear 1972) and constrictivity (Owen 
1952; Boyack and Giddings 1963) have found some attention. Except for nonintersect-
ing capillaries however, the latter quantities cannot be computed from the geometry alone 
(Ghanbarian et al. 2012; Hauskrecht 2018). More specifically, they require the solution of a 
physical boundary value problem.

Due to experimental difficulty and lack of theoretical concepts the connectivity of 
porous media has remained one of the key sources of uncertainty. Extending pore scale 
concepts such as local percolation probabilities (Biswal et al. 1999; Keller et al. 2013) is 
thus of paramount importance. In this conceptual work we introduce percolativity as an 
upscaled quantity related to local percolation probability.

Geometric characterization of connectivity requires a definition of porous media as a 
starting point. Let us emphasize that in this paper, contrary to common practice, we do not 
define porous media as realizations of random sets (Chiu et al. 2013). Our starting point 
is rather a given and fixed sufficiently large (ideally infinite) pore space p ⊂ R3 . Regard-
ing porous media as random sets requires one to specify their probability distribution. In 
applications this distribution is usually not known. Accordingly, in this paper upscaling 
proceeds by volume averaging (Whitaker 1999) instead of averaging over an unknown dis-
tribution of pore scale geometries (Chiu et  al. 2013). Macroscopic quantities emerge as 
limits of sequences of volume averaged microscopic functions.

2  Objective and Problem Statement

The objective of this work is to upscale the local percolation probabilities of local porosity 
theory from the pore scale to the Darcy scale. To state the problem more clearly recall the 
definition of local percolation probabilities (Hilfer 1991, 2002).

Let K denote the set of all compact and convex subsets of R3 and let R be the set of 
countable unions of sets from K . Heterogeneous or porous samples S = p ∪m ⊂ R3 are 
assumed to consist of a pore space p ∈ R and a matrix space m ∈ R , each of which belong 
to the convex ring R . Let K ∈ K be a convex and compact set with centroid at the origin 
0 ∈ R3 . Then

denotes its translate by a vector r ∈ R3 . If the measurement cell K = K(0,�) =

{(x, y, z) ∈ R
3 ∶ |x| ≤ �∕2, |y| ≤ �∕2, |z| ≤ �∕2} is a cube of sidelength � , then its 

boundary

may be decomposed into its six faces, where �K±
�
 denotes the pair of opposite faces per-

pendicular to the �-direction ( � = x, y, z ). In (Biswal et al. 1998; Hilfer 2002) such a meas-
urement cell K(r,�) was called percolating in the �-direction (with � = x, y, z ) if there 
exists a continuous path

with 

(1)K(r) = r +K = {r + q ∈ R3 ∶ q ∈ K}

(2)�K = �K+
x
∪ �K−

x
∪ �K+

y
∪ �K−

y
∪ �K+

z
∪ �K−

z

(3)
p ∶ [0, 1] → R3

t ↦ p(t) = pt
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Three basic local percolation indicators were defined in (Biswal et al. 1998; Hilfer 2002) as 

for � = x, y, z , and two additional ones

indicate percolation in all three directions ( �3 ), resp. in at least one direction ( �c ). The 
local percolation probabilities are defined as

where the summation runs over all centroids (i.e., placements) of measurement cells,

is the local porosity in the measurement cell K(r,�) , and

the Kronecker symbol. The local percolation probabilities give the fraction of measure-
ment cells of sidelength � with local porosity � that percolate in the �-direction, where 
� = x, y, z, 3, c.

Three problems arise from this definition. Firstly, the local percolation probability λ� 
depends on the size and shape of the measurement cell � . This problem arises also for the 
local porosity distributions. Secondly there are five scalar quantities λ� . Their definition 
seems to depend on the ability to identify “opposite” boundaries of a measurement cell � . 
And thirdly the local percolation probabilities are not tensorial, although transport coef-
ficients are in general tensors.

3  Method

The problems will be approached using the method of weak scaling limits from Hil-
fer (2018). The method of weak limits is based on mathematical theorems arising in 
the problem of finding minimizers of nonlinear functionals formulated as integrals over 

(4a)p0 ∈ p ∩ �K−
�
(r,�)

(4b)p
t
∈ p ∩K(r,�) for all t ∈ [0, 1],

(4c)p1 ∈ p ∩ �K+
�
(r,�).

(5a)��(r,�) =

{
1 ifK(r,�) is percolating

0 otherwise

(5b)�3(r,�) = �x(r,�)�y(r,�)�z(r,�)

(5c)�c(r,�) = sgn(�x(r,�) + �y(r,�) + �z(r,�))

(6)λ�(�;�) =

∑
r ��(r,�)��,�(r,�)
∑

r ��,�(r,�)

(7)�(r,�) =
|p ∩K(r,�)|

|K(r,�)|

(8)��,�(r,�) =

{
0 if � = �(r,�)

1 otherwise
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infinite dimensional spaces (Ball 1989). It was successfully used in Hilfer (2018, Sec. 
VI) for local porosity distributions.

For local percolation probabilities the method of weak scaling limits becomes appli-
cable upon a modification of the percolation criterion in Eq.  (4). A measurement cell 
�(r) = r + � is now called percolating, if there exists a continuous path as in Eq. (3) 
with 

where B(x, a) = {r ∈ R3 ∶ |r − x| ≤ a} denotes a ball of radius a centered at x . This per-
colation criterion is illustrated in Fig. 1. The dashed path is percolating, while the dash-
dotted path is not. The new criterion (9) applies equally to spherical, ellipsoidal or other 
convex measurement cells.

Let R3 = p ∪m be a sufficiently large (ideally infinite) microstructure at the pore 
scale consisting of a pore space p and matrix m being its complement. A Darcy scale 
porous medium S with this pore scale substructure is represented as the cartesian prod-
uct S × R3 . At each macropoint r ∈ S the set {r} × R3 represents the pore scale sub-
structure with pore space p and matrix m such that R3 = p ∪m . The dimensionless posi-
tion vectors at the pore scale, denoted as r ∈ R3 , and the Darcy scale, denoted as r ∈ S , 
are related as r = ar by a scale separation factor a ≫ 1 (ideally a → ∞ ). Let 1 ≤ ai < ∞ 
be a sequence of scale separation factors diverging to infinity, ai → ∞ as i → ∞ , and let 
ri ∈ R3 be a sequence of points such that �ri� ≤

√
ai . The sequence of mappings ( i ∈ N)

(9a)p0 ∈ p ∩ ��(r)

(9b)pt ∈ p ∩K(r) for all t ∈ [0, 1],

(9c)p1 ∈ p ∩
{
�K(r) ⧵B

(
p0, |r − p0|

)}

Fig. 1  Two paths starting at p0 
on the left boundary. The grey 
hatched circle centered at p0 
represents the forbidden ball 
�
(
p0, |r − p0|

)
 . The dashed 

path is percolating accord-
ing to percolation criterion (9) 
while the dash-dotted path is 
non-percolating. Both paths are 
non-percolating in the x-, y- or 
z-direction according to (4)



5Percolativity of Porous Media  

1 3

is now used for upscaling geometric quantities from the pore scale to the Darcy scale. Here 
and in the following r ∈ S is always assumed to be an interior point of S , i.e., not on its 
boundary.

Let g ∶ R3
→ G ⊂ Rm be the bounded and non-random geometric quantity that is to 

be upscaled to the Darcy scale. Its values fall into the bounded set G ⊂ Rm . They repre-
sent m pore scale geometric parameters such as porosity. To every g is associated a func-
tion g× ∶ S × R3

→ S ×G that maps (r, r) ↦ (r, g(r)) . Then the sequence �i gives rise to a 
sequence G( ⋅ ;i) = �◦g×◦�i of Darcy scale functions ( i ∈ N)

where � is the projection onto the second component. Note, that the sequence G( ⋅ ;i) need 
not converge. Let K(r) denote a Darcy scale measurement cell centered at r ∈ S on the 
Darcy scale, and let 0 < bi ≤ 1 be a sequence of shrinkage factors with bi

i→∞
�����������������→ 0 . If the 

sequence G( ⋅ ;i) is uniformly bounded, and if A ⊂ G is measurable, then the limit

exists (Hilfer 2018, Theorem 3). The number 0 ≤ �r(A) ≤ 1 gives the probability to find 
the values (G1, ...,Gm) ∈ A for the m geometrical quantities on the Darcy scale. The family 
of measures �r parameterized by r is a family of probability measures whenever �r(G) = 1 
for all r in the interior of S.

4  Results

4.1  Local Connectivity

This section applies Eq.  (12) to connectivity. The geometric quantities g ∶ R3
→ G in the 

previous section are specified here as g = (�, d, e) and G = {0} ∪ ({1} × [0, 1] × [0, 1]) . To 
define the three geometric quantities �, d and e that will be used to characterize local aniso-
tropic connectivity in a clear way, local percolation clusters and local percolating directions 
need to be introduced first.

Local percolating clusters pp

i
⊂ K(r) ∩ p , i ∈ N are defined as connectedness com-

ponents containing a percolating path in the sense of Eq. (9). The superscript p stands for 

(10)
�i ∶ S → S × R3

r ↦ (r, ri + air)

(11)G( ⋅ ;i) ∶ S
�
i

�������→ S × R
3

g
×

���������→ S ×G
�

������→ G

r ↦ (r, r
i
+ a

i
r) ↦ (r, g(a

i
r + r

i
)) ↦ g(a

i
r + r

i
) =∶ G(r;i)

(12)�r(A) = lim
i→∞

|
|
|
|

{

s ∈ bi K(r) ∶ G(s;i) ∈ A
}|
|
|
|

|
|
|
bi K(r)

|
|
|
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“percolating”. The total number of percolating clusters in K(r) is denoted as np(K(r)) . The set 
of local percolating directions for a measurement cell K(r) centered at r is defined as

where S2 = �B(0, 1) is the unit sphere.
With these preparations the first geometric quantity � , called the local percolation indi-

cator, is defined as

using the set L(K(r)) of local percolating directions. In other words, it is defined to be 0 for 
non-percolating cells and 1 for percolating cells.

To define the remaining two geometric quantities d, e let �(r) = r⊗ r denote the simple 
tensor obtained as the tensor product of r with itself. The set L of local percolating direc-
tions then defines a tensor 

obtained for every cell by integration over its (two-dimensional) set of local percolating 
directions. It is normalized as

by dividing with the trace. The non-negative eigenvalues Jpa(K(r)) , Jpb(K(r)) , 
Jpc(K(r)) obey Jpa(K(r)) + Jpb(K(r)) + Jpc(K(r)) = 1 , and are assumed to be ordered as 
1 ≥ Jpa ≥ Jpb ≥ Jpc ≥ 0 . Then the remaining two local connectivity characteristics are 
defined as the ratios

of these eigenvalues. By definition they fall into the unit interval. When � = 0 the set L 
is empty and hence d, e do not exist. This concludes the definition of the three geometric 
quantities g = (�, d, e).

To illustrate the generality and flexibility of the three geometric quantities g = (�, d, e) 
for the characterization of local connectivity it is pointed out, that meaningful modifica-
tions are possible by modifying the definition of the set of local percolating directions. An 
alternative definition is

where p0 ⇝ p1 means that p0 is the starting point and p1 is the end point of a percolation 
path in the sense of Eq. (9). Experimental observations or numerical calculations of the 

(13)L(K(r)) =

⎧
⎪
⎨
⎪
⎩

q − r

�q − r�
∈ S2 ∶ q ∈

np(K(r))
�

i=1

p
p

i
∩ �K(r)

⎫
⎪
⎬
⎪
⎭

(14)�(K(r)) =

{
0 if L(K(r)) = �

1 otherwise

(15a)�p(K(r)) =
1

4� ∫

L(K(r))

�(q)d2q

(15b)�p(K(r)) =
�p(K(r))

Tr �p(K(r))

(16)d =
Jpb

Jpa
, e =

Jpc

Jpb

(17)L(K(r)) =

{
p0 − p1

|p0 − p1|
∈ S2 ∶ p0, p1 ∈ �K(r), p0 ⇝ p1

}
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sets L(K(r)) must answer the question whether Eqs. (13) or (17) is better suited to charac-
terize anisotropic connectivity of porous media.

The family of probability measures �r parametrized by the macropoint r can be 
used to characterize local connectivity. The local percolation probability function is 
defined as the conditional probability �r({� = 1}|{d = dp, e = ep}) that a measurement 
cell is percolating given the condition that the local anisotropy parameters have the 
values d = dp, e = ep . One finds

because the local anisotropy parameters are defined only for cells with � = 1 and thus 
�r({d = dp, e = ep}) equals �r({� = 1, d = dp, e = ep}) . The total percolation probability

is independent of the anisotropy parameters. Both quantities, pr and λr(dp, ep) , character-
ize connectivity at the Darcy scale.

4.2  Percolativity

Applying Eq. (12) to a uniformly bounded but not necessarily convergent sequence of 
functions G( ⋅ ;i) yields a measure �r parametrized by r ∈ S with the following prop-
erty. If A ∶ G → R is any continuous function of the pore scale connectivity character-
ized by g, then

for all integrable functions f ∶ S → R . Here the notation

was introduced. In other words the measure �r(G) can be used to compute Darcy scale 
expectation values of any continuous function of pore scale connectivity or connectedness. 
In this sense the measure �r(G) characterizes connectivity on the Darcy scale. For this rea-
son it is given a new name, and called percolativity.

Four types of percolativity can arise in porous media. Percolativity of porous media 
can be homogeneous and non-random, if d�r(G) = �(G − G) for all r , where G is a 
fixed macroscopic parameter. It is homogeneous and random if d�r(G) = d�(G) inde-
pendent of r . Percolativity is heterogeneous and non-random if d�r(G) = �(G − G(r)) 
where G(r) is a given function. In all other cases it is heterogeneous and random.

(18)λr(dp, ep) = �r({� = 1}|{d = dp, e = ep}) =

{
1 dp, ep ∈ supp(�r)

0 otherwise,

(19)

pr =

1

∫

0

1

∫

0

λr(dp, ep)�r(1, dp, ep)depddp =

1

∫

0

1

∫

0

�r(1, dp, ep)depddp

=
∫

G

d�r(� = 1, d, e) = �r({1} × [0, 1] × [0, 1]) = 1 − �r({� = 0})

(20)lim
i→∞∫

S

A[g(r;i)]f (r)dr =
∫

S

f (r)
∫

G

A(G)d�r(G) dr =
∫

S

f (r)A(r)dr

(21)A(r) ∶=
∫

G

A(G)d�r(G)
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4.3  Cylindrical Effective Medium Approximation

The new concept of percolativity can be applied straightforwardly in local porosity theory 
(Hilfer 1991) for resistivities, conductivities, permeabilities or other transport parameters 
of disordered systems. Details have been presented elsewhere (Hauskrecht 2021). Because 
local porosity theory is a generalized effective medium approximation of Bruggeman type 
(Bruggeman 1935; Landauer 1978) this application leads directly to new effective medium 
approximations.

Recall the classical effective medium formula for the formation factor of a homogeneous 
and isotropic medium with porosity � in the case of infinite conductivity contrast σ�

m
∕σ�

p
= 0 . 

Here the pore space p of the medium is assumed to be filled with a liquid of dc-conductivity 
0 < σ�

p
< ∞ , the matrix is assumed to have vanishing dc-conductivity σ�

m
= 0 . The forma-

tion factor F = σ�
p
∕σ

� is the ratio of the pore space dc-conductivity to the effective dc-con-
ductivity σ� of the medium. The Bruggemann formula reads F = 2∕(3� − 1) for 𝜙 > 1∕3 and 
F = ∞ for � ≤ 1∕3 (Bruggeman 1935; Landauer 1978) and it exhibits a percolation singu-
larity at � = 1∕3 . This formula for isotropic media was generalized to anisotropic media 
where p is a homogeneous mixture of aligned oblate ellipsoids (x∕a)2 + (y∕b)2 + (z∕c)2 ≤ 1  
with half axes a = b ≥ c (Schwartz 1994). In this case the formation factor F is a tensor 
whose eigenvalues Fx , Fy , Fz obey Fx = Fy , �(Fx − 1)∕[1 + Na(Fx − 1)] = (1 − �)∕(1 − Na) 
and �(Fz − 1)∕[1 + Nc(Fz − 1)] = (1 − �)∕(1 − Nc) where 1 = 2N

a
+ N

c
 ,  

R = [Fxb
2∕(Fzc

2) − 1]1∕2 , and Nc = R−3(1 + R2)(1 − arctanR) [Schwartz 1994,  Eq. (8)]. 
These coupled equations exhibit again a percolation singularity at � = 1∕3.

To illustrate the applicability of the percolativity concept as an upscaled local percolation 
probability consider a constant local percolation probability function λ(r) = �

1∕3
 as in the cen-

tral pore model from Hilfer (1991, eq.(6.12)). More discussion of the theoretical background 
of this function as well as other types of functions can be found in Hilfer (1991, Sec.VI.C.2). 
Experimental measurements of λ were given, e.g., in Biswal et al. (1998). For general d and e 
the formation factor tensor is very complicated, but when d ≈ 0 and e ≈ 1 it simplifies consid-
erably (Hauskrecht 2021). The special case d ≈ 0 and e ≈ 1 is called cylindrical, because an 
ellipsoid with these axis ratios degenerates into a cylinder with circular cross section. In this 
“cylindrical” case the formation factor tensor has eigenvalues (Hilfer and Hauskrecht 2022)

(22a)F
x
=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1

�
4∕3

for
1

8
≤ � ≤ 1

2�
1∕3

3�
4∕3

− �

for
1

27
≤ � ≤

1

8

∞ for 0 ≤ � ≤
1

27

(22b)F
y
= F

z
=

⎧
⎪
⎨
⎪
⎩

2 − �

2�
4∕3

− �

for
1

8
≤ � ≤ 1

∞ for 0 ≤ � ≤
1

8
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in the x-, y- and z-direction. Note, that now the percolation singularity is anisotropic in the 
sense that there appear two percolation thresholds, one at � = 1∕27 for Fx and another at 
� = 1∕8 for Fy = Fz , at which the effective resistivity becomes infinite.

4.4  Anisotropic Archie Correlations

The cylindrical effective medium approximation (22) above resembles certain empirical 
correlations between formation factor and porosity in electrical resistivity logs observed 
by Archie (1942). For a detailed discussion of Archie’s law within local porosity theory 
the reader is referred to Hilfer (1991, Sec.V.D.). Recently it has been suggested in Table 1 
of Nguyen et al. (2015) that the formation factors reported by Waxman and Smits (1968) 
and Hill and Milburn (1956) are anisotropic and normal-to-transversal ratios as large as 5 
have been reported for that data set. If their suggestions hold, and if the anisotropy of shaly 
sands is oblate, then a percolativity based on oblate effective medium approximation might 
be expected to be applicable to the experimental measurement.

Such an application is shown in Fig. 2. The negative logarithm of formation factors for 
several shaly sands from Table 1 in Waxman and Smits (1968) are plotted as squares and 
those from Table  3 in Waxman and Smits (1968) as circles against the porosities. Note 
that Waxman and Smits excluded the effect of surface conduction. The percolativity-based 

Fig. 2  Influence of percolativity on effective medium predictions for the normalized electrical resistivity 
(formation factor) F of anisotropic shaly sands as a function of porosity � . The experimental data are from 
Table 1 (squares) and Table 3 (circles) in Waxman and Smits (1968) (see pages 110-112 in this reference 
for a detailed description of the samples). The two curves bounding the data points are solutions of a gen-
eralized effective medium approximation based on anisotropic percolativity with d = 1 and e = 0.45 . The 
short-dashed upper bound is Fx = Fy and the short-dash-dotted lower bound is Fz . The three curves on the 
right are the Bruggeman effective medium theory and its anisotropic generalization to aligned oblate ellip-
soids. The isotropic Bruggeman (1935) theory with Fx = Fy = Fz is shown as the solid line. The general-
ized anisotropic effective medium approximation from Schwartz [1994, eq.(8)] for aligned oblate ellipsoids 
with d = 1 and e = 0.45 is shown as the long-dashed line for Fx = Fy and the long-dash-dotted line for Fz
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effective medium approximation for oblate anisotropy with d = 1 and e = 0.45 is shown 
as a short-dashed curve for Fx = Fy and a short-dash-dotted curve for Fz . As before, a 
constant local percolation probability function λ(r) = �

1∕3
 was used. For comparison the 

isotropic Bruggeman (1935) effective medium equation is shown as the solid line. The 
percolation threshold at � = 1∕3 is clearly incompatible with the experimental data. The 
same holds for the generalized anisotropic effective medium approximation from Schwartz 
(1994). The long-dashed curve and the long-dash-dotted curves with percolation threshold 
at � = 1∕3 in Fig. 2 were computed using the equations in the previous section for aligned 
oblate ellipsoids with the same half-axis ratios d = 1 and e = 0.45 . If the suggestion from 
Nguyen et al. (2015) holds true, that the sandy shale samples are indeed anisotropic, and if 
it is assumed the sample orientations are uniformly distributed, then the experimental data 
are seen to be compatible with a percolation threshold at � = 1∕27 as predicted by apply-
ing local porosity theory [Eq. (22)] with anisotropic percolativity.

5  Conclusion

Three problems were enunciated in Sect.  2: Firstly, the dependence of local percolation 
probabilities on the size and shape of measurement cells. Secondly, the dependence of 
local percolation probabilities on the identification of “opposite” boundaries. And thirdly, 
the problem that connectivity in anisotropic media might reasonably be expected to be a 
tensorial quantity, but local percolation probabilities are scalar, not tensorial, quantities. 
Two of these problems have been solved by introducing the general geometric concept of 
percolativity.

The first problem is solved, because the quantity �r , known as a Young measure, is 
independent of the shape or form of the measurement cell K(r) . The second problem is 
solved, because the percolation criterion introduced here requires a path to enter “suffi-
ciently deeply into the arbitrarily shaped cell” and exit on a boundary point that is “suf-
ficiently far away” from its entry. Percolation no longer requires exit from the “opposite” 
boundary and hence it no longer requires the identification of “opposite” boundaries.

Concerning the third problem, the local percolation probabilities remain scalar quantities 
in this work. However, the new concept of percolativity does capture the tensorial character of 
transport in anisotropic media. Percolativity is related with a tensor of local percolating direc-
tions. Two definitions were given to illustrate the flexibility and generality of the concept.

The concept of percolativity is a general and purely geometric concept. Percolativity 
can be determined for a given porous medium without solving a specific physical transport 
problem. It is therefore expected to be important for all forms (i.e., electrical, hydrody-
namical, mechanical, chemical, etc.) of physical transport.

Application of the percolativity concept in effective medium theories gives anisotropic 
percolation thresholds for anisotropic porous media. Assuming that shaly sands have aniso-
tropic formation factors suggests that percolativity might be a useful concept to explain the 
experimental scatter of Archie correlations quantitatively, and to deduce anisotropy param-
eters by inversion. We emphasize, however, that the objective of this work has not been to 
model the anisotropic connectivity of specific examples. Instead, this work introduces the 
concept of percolativity and illustrates its applicability by demonstrating its consistency 
with well known experimental data.

In summary, the general and purely geometric concept of percolativity, introduced here, 
combines local percolation probabilities with a probability density of ratios of eigenvalues 



11Percolativity of Porous Media  

1 3

of the tensor of local percolating directions. Experiments are encouraged to further explore 
which of two suggested alternatives is more suitable for realistic media, and the degree to 
which percolativity as a directly observable measure of connectivity is a useful concept.
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