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Abstract
This work arises from the need of exploring new features for modeling and optimizing 
water consumption in irrigation processes. In particular, we focus on water flow model 
in unsaturated soils, accounting also for a root water uptake term, which is assumed to 
be discontinuos in the state variable. We investigate the possibility of accomplishing such 
optimization by computing the steady solutions of a �-based Richards equation revised as 
equilibrium points of the ODEs system resulting from a numerical semi-dicretization in 
the space; after such semi-discretization, these equilibrium points are computed exactly as 
the solutions of a linear system of algebraic equations: the case in which the equilibrium 
lies on the threshold for the uptake term is of particular interest, since the system consider-
ably simplifies. In this framework, the problem of minimizing the water waste below the 
root level is investigated. Numerical simulations are provided for representing the obtained 
results.

Article Highlights

•	 Root water uptake is modelled in a Richards’ equation framework with a discontinu-
oussink term.

•	 After a proper semidiscretization in space, equilibrium points of the resultingnonlinear 
ODE system are computed exactly.

•	 The proposed approach simplifies a control problem for optimizing water consumption.
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1 � Introduction to the Physical Problem

Soil water content changes across the unsaturated zone because of inflows of water via 
infiltration from the surface, due, e.g., to rainfall and irrigation, and outflows caused by 
evaporation and root water uptake as well as percolation beneath the root zone. Richards’ 
equation represents the most commonly used model for soil moisture dynamics into the 
unsaturated zone, approximated as a porous medium. Such a model combines the Darcy’s 
law extended to unsaturated soils with mass conservation; it relies on the assumption that 
the gas phase does not need to be modeled, because its pressure is assumed to be constant 
(see Bear and Cheng 2010). The solution of this equation, both analytical and numerical, 
is complex because of the strong nonlinear relationships that link soil moisture and soil 
hydraulic conductivity to matric-potential.

In this paper, analogously to Roose and Fowler (2004), where the considered state varia-
ble is the relative water saturation, we are going to deal with the �-based form of Richards’ 
equation, as follows:

being the state variable � the volumetric water content , K and D state-dependent hydrau-
lic functions, named hydraulic conductivity and soil-water diffusivity, respectively. In 
particular,

represents the relationship between the soil water potential � and the water content �.
The advection diffusion equation (1) needs to be endowed with proper boundary condi-

tions, for example of Dirichlet type: 

In this framework, the problem of describing the water uptake by roots arises, and it has 
been faced by different empirical and mathematical models. In analogy with Ohm’s law for 
electrical current (Gardner 1991), the uptake by roots can be considered as a resistance to 
the fluid flow into the unsaturated zone; the same author still observes that “the uptake in 
the lower portion of actual root systems was less than one would expect from the number 
of roots found, even after allowing the gravitational factor”; therefore, “water uptake from 
the lower portion of the root system does not occur for some time and then only after sig-
nificant quantities of water have been removed from the soil layers above”. Still in Gardner 
(1991), the moving sink model is proposed: in practice, “uptake may be considered to take 
place in a relatively narrow zone, or sink, which moves down through the soil at a rate ini-
tially determined by the available water and the transpiration rate”.

The starting point for modeling the root water uptake is Richards’ equation, to whom 
a sink term needs to be added; in general, such sink term could depend explicitly on time 
(as in Mathur and Rao 1999) and on space (Mai et al. 2018). As in Broadbridge (1999), 
Difonzo et al. (2021), here it is assumed that plant root density does not depend explicitly 
on time; conversely, as in Jarvis (1989) we assume that the sink term depends not only on 
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the state variable, but also on the depth (implying an implicit dependence on root length 
density), i.e.,

Still following Jarvis approach, we will assume that the sink term—acting, as in Jarvis 
(1989), by a stress index function—has different weights according to depth layers.

In order to simplify Eq. (3), we assume that the Gardner’s relation holds, as in Broad-
bridge et al. (2017), i.e., there exists a constant � such that

as a consequence Eq. (3) is replaced by

The Gardner condition (4) is satisfied, for instance, for D and K chosen as in Table 1 of 
Broadbridge et al. (2017). Without loss of generality, we consider for instance the follow-
ing conductivity function:

which is an increasing function, being m a suitable positive constant, and Ks the saturated 
hydraulic conductivity.

Let us now focus on the uptake term R. As summarized in Broadbridge et al. (2017), 
R(�) is usually very low and close to zero at low moisture contents near the wilting point 
where water uptake closes down. As soil moisture increases, R(�) strongly increases too, 
while it becomes almost constant when the water content approaches its maximum value. 
Accordingly, R(�) may be represented by a convex function ( R��(𝜃) < 0 ) and generally by 
some sigmoid function with R�� = 0 near the wilting point.

Similarly to D’Abbicco et al. (2016), the sink term can be modeled as a Hill function, 
with the following form:

being � a certain threshold depending on the crop under consideration. As in D’Abbicco 
et al. (2016), if the order p of the Hill function is high enough (i.e., if the curve is steep 
enough at the threshold), the dynamics arising from (3) can be treated by a step function, 
whose numerical implementation is much more natural by proper event driven methods 
(see for instance Berardi 2014; Del Buono and Lopez 2015).

We point out that this approach is particularly effective for crops in which the root water 
uptake is function of the water content alone, such as horticultural crops (see Broadbridge 
et al. 2017, for instance), and does not take into account variations depending on the depth. 
In the following, we will merge these observations into the model (3).

For general and complex hydraulic functions, a numerical solution to Richards’ equa-
tion is often the only way to obtain a solution.

The literature on numerical methods of Richards’ equation is extremely rich, both in 
fundamental and in recent papers, and different issues arise in the numerical treatment of 
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such problem; it is worth citing, for instance, studies on time-stepping techniques (mainly 
low-order implicit methods, as implicit Euler, see Pop 2002; Kavetski et  al. 2001; Keita 
et al. 2021), or different spatial discretization techniques such as mixed finite element or 
finite volume methods—endowed also with rigorous error estimates—(Arbogast et  al. 
1993, 1996; Eymard et al. 1999, 2006; Manzini and Ferraris 2004; Radu et al. 2004, 2008), 
discontinuous Galerkin (e.g., Clément et al. 2021; Li et al. 2007), gradient discretization 
schemes (Eymard et al. 2014), and virtual element methods (da Veiga et al. 2021). Equally 
challenging is the problem of solving the nonlinear system arising from the time integra-
tion: to this purpose, many schemes have been proposed, as L-scheme (List and Radu 
2016; Mitra and Pop 2018), Newton and nested-Newton (Bergamaschi and Putti 1999; 
Casulli and Zanolli 2010), modified Picard (Celia et al. 1990), and a combination of New-
ton and Picard methods (Lehmann and Ackerer 1998).

Nevertheless, analytical solutions in Richards’ equation have been eagerly investigated 
(see, for instance: Leij et  al. 2021; Broadbridge et  al. 2017; Meunier et  al. 2017; Basha 
1999), both because they are an exact solution to a certain model, and because they provide 
a perfect benchmark to numerical methods.

In particular, the research of exact steady-state solutions for Richards equation has a 
long history and has nowadays a significant relevance. This study has been introduced in 
Warrick (1974), where the steady-state assumptions are justified as an approximation of 
high-frequency irrigation: a semi-infinite column or a saturated bottom boundary condi-
tions are therein considered, together with different extraction functions. Such interest is 
confirmed in the milestone paper Philip (1989), motivated since, even for multidimensional 
unsaturated flows, the steady solutions are approached rapidly if close to the water source 
term, concluding that the application interest for such investigations is more practical than 
it might seem at first glance; on the other hand, the advantage of handling just linear sys-
tems is therein highlighted. More recently, in Basha (1999), the steady solution is derived 
using perturbation expansions methods, with a possibly nonzero water extraction term: as 
in other papers (see for instance Ursino 2000), the solution is represented as the super-
position of the terms: the zero-order part, which is the linear solution, and the first-order 
correction term, which accounts for the nonlinearity. This concept is also reported and gen-
eralized in Severino and Tartakovsky (2014), claiming that “flow in both root systems and 
ambient soils can be represented by a sequence of steady states”: also the aforementioned 
paper makes use of matched asymptotic expansions for steady flows, relaxing or eliminat-
ing classical previous assumptions (infinite soil column and constant hydraulic head pre-
scribed on its surface). On the other hand, the study of steady-state solutions of the Rich-
ards equation is ancillary to the analysis of their stability; for instance, in Van Duijn et al. 
(2004), the authors study the stability of steady, vertically upward and downward flow of 
water in a homogeneous layer of soil, for several classes of soils.

The starting point for this paper, which considers step-wise root water uptake functions, 
is the semi-discretization of second-order partial derivative in (3), obtaining a system of 
differential inclusions; the study of steady-state solutions is therefore accomplished ana-
lytically simply by solving a linear system, under suitable linear constraints. Differently 
from previous papers on steady-state solutions, this study is aimed to an optimal choice 
of boundary conditions for minimizing irrigation and percolation beneath the root zone, 
while keeping at the same time the desired absorption at each depth under consideration: 
in practice, as detailed in the following, this work can be considered as a simplified opti-
mal control approach for managing irrigation and water consumption. On the other hand, 
the presence of discontinuous thresholds allows to represent interesting properties of the 
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eco-hydrological system, allowing to mimic a sort of self-regulation of the root system for 
controlling the uptake.

The paper is organized as follows. In Sect. 2, the model is presented: by applying the 
method of lines we move to study a system of nonlinear ODEs; in Sect.  3.1, the equi-
librium points are described as the solution of an algebraic linear system and we discuss 
which conditions on the boundary values allow to reach a realistic equilibrium; in particu-
lar, in Sect. 3.2, we study the case in which water supply is due only to irrigation: here, 
the problem of minimizing the water waste below the root depth is also investigated. In 
Sect. 4, we specify the aforementioned discussion to the case of a 5-point mesh; finally, in 
Sect. 4.1, some simulations are presented.

2 � The Proposed Model

In Jarvis (1989), an empirical model is used, which assumes that the soil depth is split 
into different layers, and water uptake is given as a function both of the potential tran-
spiration rate and of a weighted stress index which accounts for the effects of the vertical 
distributions of roots and soil water content, for each layer. In Gardner (1991), the uptake 
process is represented by a model based on nonlinear behavior of the root membranes, and 
described by a distributed sink moving downward through the soil profile. Differently from 
Berardi and Difonzo (2020), Berardi et al. (2020), Seus et al. (2018), Suk and Park (2019), 
here a homogeneous soil is considered for simplicity, albeit the root zone is generally made 
of overlapping soil layers with different hydraulic properties. On the other hand, as speci-
fied in Kuhlmann et al. (2012), heterogeneity of media could significantly affect the reli-
ability of classical macroscopic models for root water uptake.

In the light of Gardner (1991), Jarvis (1989), here we propose a model in which the 
sink term R in (3) takes different form according to the depth: we suppose to consider a 
mesh defined by N + 1 points zi = iΔz for i = 0,… ,N , and in each layer [zi−1, zi] we study 
Eq. (5) assuming that the sigmoid function R (defined as in (7), for instance) is replaced by 
a step-wise function defined on [�r, �s] , that is, for any z ∈ (zi−1, zi]:

where 𝜃̄i ∈ [𝜃r, 𝜃s] and �i is a positive constant that is the greater the larger is the density of 
roots at layer [zi−1, zi] ; here, �s denotes the saturated water content and �r the residual water 
content, and both are hydraulic properties of the soil under consideration. On the other 
hand, we assume that there exists z̄ ∈ [zN−2, zN−1] such that for z > z̄ there are no roots, and 
then the sink term becomes zero, that is, R ≡ 0 in [zN−1, zN] , and for any z ∈ (zN−2, zN−1] , it 
holds

where SN−1 is defined by (8) as done for the upper layers; here, for any i ∈ {1,… ,N − 2} , 
by R(𝜃̄i, z) ∈ [0, 𝛾i] we mean that the sink term in 𝜃̄i is represented by a multivalued 

(8)R(𝜃, z) ∈ 𝛾iSi(𝜃), where Si(𝜃) =

⎧
⎪⎨⎪⎩

1 if 𝜃 > 𝜃̄i

0 if 𝜃 < 𝜃̄i

[0, 1] if 𝜃 = 𝜃̄i

(9)R(𝜃, z) = 𝛾N−1

{
SN−1(𝜃) if z ≤ z̄

0 if z > z̄
,
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function which takes values in the interval [0, �i] ; in particular, for any time t and any depth 
z ∈ (zi−1, zi] with i ∈ {1,… ,N − 1} such that 𝜃(t, z) = 𝜃̄i equation (5) reads as

On the other hand, the discontinuity in (8) suggests to study equation (5) as a discontinu-
ous differential equation using Filippov theory, in the frame of Agosti et al. (2016), Agosti 
et al. (2015), Berardi et al. (2020), where novel numerical techniques have been proposed; 
nevertheless, this treatise goes beyond the goals of our work.

A sink term defined by means of a differential inclusion, similarly to (8), was already 
considered, for instance, in Kumar et al. (2014) where a dissolution-precipitation model is 
studied: therein, the sink term does not depend on the depth and a regularization technique 
is used in order to deal with the discontinuity. In our work, following the idea in Jarvis 
(1989), we suppose that the sink term depends explicitly on the depth, and then also the 
discontinuity point is not constant in the whole domain, but it is assumed to be constant 
and equal to 𝜃̄i in each interval (zi−1, zi] ; this can be justified, for example, by the variation 
of the root density distribution at different depths; however, the same approach works if 
one assume that the point of discontinuity remains the same at each depth, or even in the 
case in which it depends continuously on the depth.

In principle, our approach could be applied to a 2D spatial domain, but explicit compu-
tations would become cumbersome, and therefore we do not consider it.

Now, let us resort to the method of lines (MoL), the classical tool for numerically inte-
grating PDEs including Richards’ equation (Berardi and Vurro 2016; Tocci et  al. 1997). 
Consider the standard semi-discretization for the second and the first derivative, i.e.,

Therefore, the right-hand side of (5) can be approximated as follows:

for any i = 1,… ,N − 1 , from which

In particular, by using the notations a− = (2 − �Δz)∕4 and a+ = (2 + �Δz)∕4 , equation 
(11) reads

By (10), we conclude that if 𝜃i = 𝜃̄i for some i ∈ {1,… ,N − 2} , then (12) reads as

(10)0 ≤
�
2

�z2
K(�) + �

�

�z
K(�) − �

��

�t
≤ ��i.

�zK ↦

1

2Δz
(Ki+1 − Ki−1),

�
2
z
K ↦

1

(Δz)2
(Ki+1 − 2Ki + Ki−1).

�
��

�t

||||z=zi
≈

1

(Δz)2

(
K(�i+1) − 2K(�i) + K(�i−1)

)

−
�

2Δz

(
K(�i+1) − K(�i−1)

)
− �R

(
�i

)
,

(11)�
��

�t

||||z=zi
≈ K(�i+1)

(
2 − �Δz

2(Δz)2

)
−

2K(�i)

(Δz)2
+ K

(
�i−1

)(2 + �Δz

2(Δz)2

)
− �R

(
�i

)
.

(12)�(Δz)2
��

�t

||||z=zi
≈ 2K

(
�i+1

)
a− − 2K

(
�i

)
+ 2K

(
�i−1

)
a+ − 2�R

(
�i

)
(Δz)2.
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This work is aimed at studying a simple approach for optimizing water consumption in 
irrigation. In particular, starting from the semi-discredized Richards’ equation with a sink 
term (11), here the goal is to compensate vertical infiltration with root water uptake, in 
such a way that percolation does not occur beneath root zone, and ensuring at the same 
time sufficient uptake by roots.

Loosely speaking, the computation of equilibrium points for the system (11) (see Defi-
nition 1) is based on the idea that water moves and infiltrates through the layers yet keeping 
a balance between uptake and percolation. The solution behavior at the thresholds �i is a 
key factor in such balance. To this purpose, we are interested in looking for the equilibrium 
points of such model. Indeed, the study of equilibrium points of a system paves the way 
to the analysis of turnpike behaviors in optimal control problems. In practice, the turnpike 
property describes the fact that trajectories of optimally controlled systems “most of the 
time” stay close to an equilibrium point. A deep review about the turnpike problem can 
be found in Grüne and Guglielmi (2018) where the authors investigate such properties for 
optimal control problems with linear dynamics and a cost function consisting of quadratic 
linear and constant terms.

The optimization of water consumption can be interpreted as the problem of minimizing 
the increase in water content �N in the last point of the mesh. We will accomplish this goal 
by minimizing the flux in zN−1.

In the last level [zN−1, zN] of the mesh, there is no root water uptake, and then by Eq. (3), 
the Darcian flux in zN−1 can be written as:

Due to the Gardner condition (4) and neglecting the argument for the sake of readability, 
the flux can be expressed as

Then, after a second-order discretization, we can approximate

By using this representation, we will investigate how to manage the irrigation in order to 
have the desired root water uptake at each level with the minimum value of q that corre-
sponds to the minimum water consumption.

3 � Research of the Equilibrium Points as Solution of an Algebraic Linear 
System

In this section, we assume constant boundary conditions �0 and �Z for Eq. (3), and we study 
the corresponding steady solution � = �(t) ; by steady solution, we mean that ��∕�t = 0 for 
t ∈ (t0, T) for suitable T > t0 ≥ 0 . By the spatial discretization introduced in Sect. 2, such 

(13)0 ≤ 2K
(
�i+1

)
a− − 2K

(
�i

)
+ 2K

(
�i−1

)
a+ − �(Δz)2

��

�t

||||z=zi
≤ ��i(Δz)

2.

q
|||z=zN−1 = −D(�N−1)

��

�z

|||z=zN−1 + K(�N−1).

q = −
1

�

�K(�)

�z

|||z=zN−1 + K(�N−1).

(14)q ≈ −
1

2�Δz
(K(�N) − K(�N−2)) + K(�N−1).
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steady solutions can be studied as equilibrium points of the linear ODEs system defined by 
(11) according to the following definition:

Definition 1  Let �0, �N ∈ [�r, �s] ; we say that the vector (�1,… , �N−1) describes an equi-
librium point for system (12) if the (N + 1)−tuple (�0, �1,… , �N−1, �N) satisfies the alge-
braic equation:

for any i = 1,… ,N − 1 such that 𝜃i ≠ 𝜃̄i and the following inequality

holds for any i = 1,… ,N − 1 such that 𝜃i = 𝜃̄i.

In Definition  1 the requirement (16) is an immediate consequence of (13). Due to 
our definition of the sink term R at each level [zi−1, zi] , it is clear by (11) that one should 
investigate the existence of equilibrium points in every possible configuration, each of 
which is distinguished from the other by the relative position of each �i with respect to 
the corresponding threshold 𝜃̄i . More precisely, there are 3N−2 possible configurations.

In the following, we consider in each possible configuration the set of indexes {k1,… km} 
with m ≥ 0 such that 𝜃ki = 𝜃̄ki

 for any i ∈ {1,… ,m} , and we show that there exist a non-
singular diagonal block matrix A ∈ ℝ

(N−1)×(N−1) and a vector b ∈ ℝ
N−1 such that

is an equilibrium point for system (11) if and only if the condition

is satisfied for any i = 1,… ,m ; in particular, in formula (17), the matrix A depends only on 
(i) parameter � , (ii)  mesh width Δz , whereas the vector b ∈ ℝ

N−1 , depends on (i) parame-
ter � , (ii) mesh width Δz , (iii) boundary conditions �0 , �N , iv) thresholds 𝜃̄ki for i = 1,… ,m.

From now on, we denote

For technical reasons, we need to distinguish different cases. 

1.	 Firstly, let us discuss the case m = 0 , that is, no water level �i coincides with the cor-
responding threshold 𝜃̄i if the equilibrium is achieved. In such case, by (12), we deduce 
that the vector (u1,… , uN−1) has to satisfy the following equation: 

 where A and b are, respectively, an (N − 1) × (N − 1) matrix and a vector of ℝN−1 ; 
they have the following representation: 

(15)K
(
�i+1

)
a− − K

(
�i

)
+ K

(
�i−1

)
a+ −

�

2
R
(
�i

)
(Δz)2 = 0,

(16)0 ≤ K
(
�i+1

)
a− − K

(
�i

)
+ K

(
�i−1

)
a+ ≤

�

2
�i(Δz)

2

(17)(𝜃1,… , 𝜃N−1)
⊤, 𝜃j = K−1((−A−1)jb)

(18)0 ≤ K(�ki+1)a− − K(�ki ) + K(�ki−1)a+ ≤
�

2
�ki
(Δz)2,

(19)
ui ∶= K(𝜃i) for i = 0,… ,N.

ūi ∶= K(𝜃̄i) for i = 0,… ,N − 2.

−A ⋅ u = b,
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 and 

 We remark that in this case, for any i = 1,… ,N − 2 , we have R(�i) ∈ {0, �i}.
2.	 If m ≥ 2 with k1 = 1 and km = N − 2 , then we reduce to m − 1 systems; in particular, for 

each j ∈ {2,… ,m} , we have the following system of dimension kj − kj−1 − 1 for the 
vector uj = (ukj−1+1,… , ukj−1)

 where Akj
 has the same representation as in (20) and 

 Moreover, one obtains immediately 

 Thus, we can introduce the block diagonal matrix 

 that is 

(20)A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 a− 0 0 0 … 0

a+ − 1 a− 0 0 … 0

0 a+ − 1 a− 0 … 0

… … … … … … …

… … … a+ − 1 a− 0

… … … … a+ − 1 a−
0 … … … 0 a+ − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

b =

⎛⎜⎜⎜⎜⎝

a+u0 − �∕2R(�1)(Δz)
2

−�∕2R(�2)(Δz)
2

⋮

−�∕2R(�N−2)(Δz)
2

a−uN

⎞⎟⎟⎟⎟⎠
.

(21)Akj
uj = bkj ,

bkj =

⎛⎜⎜⎜⎜⎜⎝

a+ūkj−1 − 𝛼∕2R(𝜃kj−1+1)(Δz)
2

−𝛼∕2R(𝜃kj−1+2)(Δz)
2

⋮

−𝛼∕2R(𝜃kj−2)(Δz)
2

a−ūkj − 𝛼∕2R(𝜃kj−1)(Δz)
2

⎞⎟⎟⎟⎟⎟⎠

.

(22)uN−1 = a−uN + a+ūN−2.

A = diag(−1,Ak2
,−1,Ak3

⋯ − 1,Akm
,−1,−1) ∈ ℝ

(N−1)×(N−1)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 … … … … … … 0

0 Ak2
0 … … … … … 0

0 0 − 1 0 … … … … 0

0 0 0 Ak3
0 … … … 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 … … … … − 1 0 0 0

0 0 … … … 0 Akm
0 0

0 0 … … … … 0 − 1 0

0 0 … … … … 0 0 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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 and the vector b defined as 

3.	 If k1 = 1 and km ≠ N − 2 , then we reduce to m systems; similarly to the previous case, 
for each j ∈ {2,… ,m} , we have the following system of dimension kj − kj−1 − 1 for the 
vector uj = (ukj−1+1,… , ukj−1)

 where Akj
 and bkj have the same form as in (21); on the other hand, the vector 

um+1 = (ukm+1,… , uN−1) satisfies the equation 

 where Akm+1
 is a matrix of dimension N − km − 1 and 

 Analogously to the previous case, we define the block diagonal matrix 

 and the vector bm ∈ ℝ
N−1 given by 

4.	 If k1 ≠ 1 and km = N − 2 , then we reduce to m systems; in particular, the vector 
u1 = (u1,… , uk1−1) satisfies the following equation 

 where Ak1
 is a (k1 − 1) × (k1 − 1) matrix defined as in (20) and 

 On the other hand, for each j ∈ {2,… ,m} , the vector uj = (ukj−1+1,… , ukj−1) satisfies 
the same Eq. (21).

	   Finally, the identity (22) holds. Also in this case, we define the block diagonal matrix 

 and the vector bm ∈ ℝ
N−1 given by 

(23)b =
(
ū1, bk2 , ūk2 , bk3 , … , ūkm−1 , bkm , ūN−2, a−uN + a+ūN−2

)⊤
.

Akj
uj = bkj ,

(24)Akm+1
um+1 = bkm+1 ,

bkm+1 =

⎛
⎜⎜⎜⎜⎜⎝

a+ūkm − 𝛼∕2R(𝜃km+1)(Δz)
2

−𝛼∕2R(𝜃km+2)(Δz)
2

⋮

−𝛼∕2R(𝜃N−2)(Δz)
2

a−uN

⎞
⎟⎟⎟⎟⎟⎠

.

A = diag(−1,Ak2
,−1,Ak3

,⋯ − 1,Akm
,−1,Akm+1

) ∈ ℝ
(N−1)×(N−1)

(25)b =
(
ū1, bk2 , ūk2 , bk3 , … , ūkm , bkm+1

)⊤
.

(26)Ak1
u1 = bk1 ,

bk1 =

⎛
⎜⎜⎜⎜⎜⎝

a+u0 − 𝛼∕2R(𝜃1)(Δz)
2

−𝛼∕2R(𝜃2)(Δz)
2

⋮

−𝛼∕2R(𝜃k1−2)(Δz)
2

a−ūk1 − 𝛼∕2R(𝜃k1−1)(Δz)
2

⎞
⎟⎟⎟⎟⎟⎠

.

A = diag(Ak1
,−1,Ak2

,⋯ − 1,Akm
,−1,−1) ∈ ℝ

(N−1)×(N−1)



479Optimizing Water Consumption in Richards’ Equation Framework…

1 3

5.	 If k1 ≠ 1 and km ≠ N − 2 , then we reduce to m + 1 systems; in particular, the vector 
u1 = (u1,… , uk1−1) satisfies the same equation as in (26), and the vector 
um+1 = (ukm+1,… , uN−1) satisfies the same equation as in (24). Finally, for each 
j ∈ {2,… ,m} , the vector uj = (ukj−1+1,… , ukj−1) satisfies Eq. (21).

	   Here, we define the block diagonal matrix 

 and the vector bm ∈ ℝ
N−1 given by 

In all the cases 1–5, our definition of A ∈ ℝ
(N−1)×(N−1) and b ∈ ℝ

N−1 allows to conclude 
that the vector u = (u1,… , uN−1) satisfies the equation

Regardless of the configuration, the matrix A which we constructed is always the direct 
sum of Toeplitz tridiagonal matrices; thus, by Brugnano and Trigiante (1992), we know 
that a sufficient condition for the nonsingularity of A is that a+a− ≤ 1∕4 that is always veri-
fied for any choice of � and Δz . As a consequence, Eq. (27) has always a unique solution 
that is

Thus, according to Definition 1, the vector (�1,… , �N−1) defined by

is an equilibrium point at time t̄ if and only if condition (16) is satisfied for any 
i ∈ {k1,… km}.

Remark 1  We observe that the matrix (−A)−1 is a block diagonal matrix too, obtained as 
suitable direct sum of the matrices (−Akj

)−1 where the matrix Akj
 is defined in each case 2-5 

in an appropriate way. In particular, for any j ∈ {1,… ,m} , the inverse matrix (−Akj
)−1 can 

be computed explicitly by using a recurrence formula (see Usmani 1994). The same for-
mula can be applied to evaluate (−A)−1 in case 1.

Remark 2  For a fixed choice of bottom boundary condition �N and thresholds 𝜃̄i , the 
discontinuity of R in 𝜃̄1 allows to look for �0min and �0max in [�r, �s] such that for any 
�0 ∈ [�0min, �0max] at the equilibrium, it holds 𝜃1 = 𝜃̄1 and condition (16) is satisfied 
for i = 1 . Then, it is possible to study the steady solutions for (3), for t ∈ (t0, T) even if 
the boundary condition �0 = �0(t) is time-dependent with �0min ≤ �0(t) ≤ �0max for any 
t ∈ (t0, T) . Indeed, since �N remains constant, such a restriction on �0(t) guarantees that 
for any t ∈ (t0, T) , it holds 𝜃1(t) = 𝜃̄1 , and then, even the water content at each level �i 
does not depend on time. In fact, by formula (28), for any t ∈ (t0, T) , the equilibrium point 
𝜃(t) = (𝜃1(t),… , 𝜃N−1(t)) can be written as:

b =
(
bk1 , ūk1 , bk2 , ūk2 ,… , ūkm−1 , bkm , ūN−2, a−uN + a+ūN−2

)⊤
.

A = diag(Ak1
,Ak2

,−1,Ak3
,⋯ − 1,Akm

,−1,Akm+1
) ∈ ℝ

(N−1)×(N−1)

b =
(
bk1 , ūk1 , bk2 , ūk1 , … , bkm , ūkm , bkm+1

)⊤
.

(27)Au + b = 0,

(28)u = (−A)−1b.

𝜃i = 𝜃̄i if i ∈ {k1,… km},

𝜃i = K−1((−A)−1b) otherwise,
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since for any t ∈ (t0, T) , it holds 𝜃1(t) = 𝜃̄1 , then, the vector b(t) is not dependent on �0 (see 
formula (23) or (25) according to the value assumed by �N−2 ) and thus, both the matrix A 
and the vector b(t) are constant with respect to t in the interval (t0, T) ; therefore, we can 
conclude that for any i ∈ {1,… ,N − 1} , also �i remains constant. In Sect. 4.1, an estimate 
of �0min and �0max is given for a certain choice of the parameters (see Fig. 2).

3.1 � A Realistic Equilibrium

Once we have evaluated the equilibrium points �i for our system (11), it is necessary to 
discuss for which choice of boundary conditions (�0, �N) and thresholds 𝜃̄i , such solution 
can really describe a realistic equilibrium in the chosen configuration. Indeed, for any fixed 
configuration, we have to ensure that the obtained equilibrium points are consistent with 
that configuration and with the soil physical properties. In practice, if in the selected con-
figuration we are assuming Si(�i) = 1 for some i ∈ {1,… ,N − 1} , then we have to verify 
that our solution �i satisfies the inequality 𝜃i > 𝜃̄i ; similarly, if Si(�i) = 0 , we have to check 
the inequality 𝜃i < 𝜃̄i for our solution; finally, if 𝜃i = 𝜃̄i , we have to ensure that condition 
(16) is satisfied; finally, we have to require that each �i is not smaller than the residual water 
content �r and not greater than the saturated water content �s . All the described conditions 
lead to impose suitable constraints on the thresholds 𝜃̄i ; once thresholds that meet these 
conditions have been selected, we identify a feasible region for �0 and �N which guarantees 
the existence of an equilibrium point in the desired configuration; such feasible region is 
always described by a system of linear inequalities in the variables K(�0) and K(�N) . In the 
following, we discuss all these conditions in each of the cases 1–5 which we introduced in 
the previous section. 

1.	 In case 1, none of the equilibrium points �j coincides with the threshold 𝜃̄j . Since the 
conductivity function K is increasing, in order to reach a realistic equilibrium, we need 
to impose uj < ūj if 𝜃j < 𝜃̄j and, similarly uj > ūj if 𝜃j > 𝜃̄j , i.e., the following inequality 
has to be satisfied for any j = 1,… ,N − 2

 On the other hand, we have to guarantee that when the equilibrium is reached, the 
water content �i is not greater than the saturated water content and not smaller than the 
residual water content that is equivalent to require 

 for any j = 1,… ,N − 1 , where us = K(�s) and ur = K(�r) . By using (17), we can 
express each uj in terms of u0, uN , ū1,… ūN−2 ; thus, (29) and (30) can be written, 
respectively, as 

𝜃(t) = K−1((−A)−1b(t));

(29)(−1)Sj(𝜃j)uj < (−1)Sj(𝜃j)ūj.

(30)ur ≤ uj ≤ us,
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 and 

 Once we have fixed all the thresholds 𝜃̄j , such inequalities can be read as constraints 
on �0 and �N which allows to get the equilibrium in the desired configuration.

2.	 In case 2, we consider the set of indexes {k1,… , km} such that 𝜃ki = 𝜃̄ki
.

	   Specifically, for each i ∈ {2,… ,m − 1} , inequality (18) has to be satisfied that is the 
following inequalities hold: 

 where 

 Additionally, since k1 = 1 and km = N − 2 condition (18) implies 

 and 

 where 

 and 

(−1)Sj(𝜃j)
(
a+((−A)

−1)1
j
u0 + a−((−A)

−1)N−1
j

uN

)

< (−1)Sj(𝜃j)
(
𝛼

2
(Δz)2

N−2∑
k=1

((−A)−1)k
j
Rk(𝜃k) + ūj

)
,

ur ≤ a+((−A)
−1)1

j
u0 + a−((−A)

−1)N−1
j

uN −
�

2
(Δz)2

N−2∑
k=1

((−A)−1)k
j
Rk(�k) ≤ us.

(31)
a2
+
((−A)−1)

ki−1+1

ki−1
ūki−1 + (a+a−(((−A)

−1)
ki+1

ki+1
+ ((−A)−1)

ki−1

ki−1
) − 1)ūki

+ a2
−
((−A)−1)

ki+1−1

ki+1
ūki+1 ≤ cki

cki =
�

2
(Δz)2

(
�ki

+

ki+1−1∑
k=ki+1

a−((−A)
−1)k

ki+1
Rk(�k)

+

ki−1∑
k=ki−1+1

a+((−A)
−1)k

ki−1
Rk(�k)

)
.

(32)a+u0 + (a+a−((−A)
−1)2

2
− 1)ū1 + a2

−
((−A)−1)

k2−1

2
ūk2 ≤ c1,

(33)a2
+
((−A)−1)

km−1+1

N−3
ūkm−1 + (a+a−(1 + ((−A)−1)N−3

N−3
) − 1)ūN−2 + a2

−
uN ≤ cN−2

c1 =
�

2
(Δz)2

(
�1 + a−

k2−1∑
k=2

((−A)−1)k
2
Rk(�k)

)
,

cN−2 =
�

2
(Δz)2

(
�N−2 + a+

N−3∑
k=km−1+1

((−A)−1)k
N−3

Rk(�k)
)
.
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 On the other hand, for any index j different from each ki , we have to keep in consid-
eration the relative position of �j with respect to 𝜃̄j . Loosely speaking, the following 
inequality has to be satisfied 

 for any j ∉ {k1,… , km} , j ≠ N − 1 ; by (17), this is equivalent to require for any 
i = 2,… ,m , 

 for any index j such that ki−1 < j < ki , where 

 Finally, we have to ensure that ur ≤ uj ≤ us, for any j = 1,… ,N − 1 . By (17), this is 
equivalent to require 

 and 

 for any i ∈ {2,… ,m} and ki−1 < j < ki , where cj was defined in (35), and finally 

3.	 In case 3, the conditions which allow to get a realistic equilibrium can be obtained fol-
lowing the same ideas as in case 2. In particular, we need to fulfill the linear inequali-
ties (31) and (32) related to the thresholds k1,… , km , and the conditions (34), (36) for 
each ki−1 < j < ki to varying of i ∈ {1,… ,m} . Additionally, condition (18) in the last 
threshold point km can be rewritten as: 

 where 

 Finally, for each km + 1 < j < N − 2 , the conditions 

 and (30) correspond to the following conditions on the bottom water content �N : 

(−1)Sj(𝜃j)uj < (−1)Sj(𝜃j)ūj,

(34)(−1)Sj(𝜃j)
(
((−A)−1)

ki−1+1

j
a+ūki−1 − ūj + ((−A)−1)

ki−1

j
a−ūki

)
< (−1)Sj(𝜃j)cj,

(35)cj =
�

2
(Δz)2

ki−1∑
k=ki−1+1

((−A)−1)k
j
Rk(�k).

ur ≤ ūki ≤ us for any i = 1,… ,m

(36)ur ≤ ((−A)−1)
ki−1+1

j
a+ūki−1 + ((−A)−1)

ki−1

j
a−ūki − cj ≤ us

(37)ur ≤ a−uN + a+ūN−2 ≤ us.

(38)
((−A)−1)

km−1+1

km−1
a2
+
ūkm−1 + (a+a−(((−A)

−1)
km+1

km+1
+ ((−A)−1)

km−1

km−1
− 1))ūkm

+ a2
−
((−A)−1)N−1

km+1
uN ≤ ckm ,

ckm =
�

2
(Δz)2

(
�km

+

N−2∑
k=km+1

a−((−A)
−1)k

km+1
Rk(�k)

+

km−1∑
k=km−1+1

a+((−A)
−1)k

km−1
Rk(�k)

)
.

(−1)Sj(𝜃j)uj < (−1)Sj(𝜃j)ūj
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 where 

 and 

 being cj is the same defined in (40).
4.	 In case 4, the same threshold conditions (31) and (33) have to be satisfied, together with 

the linear inequalities (34) which describe the relation between the water content 𝜃̄j and 
the corresponding threshold �j , and conditions (36), (37) which ensure that the water 
content remains not greater than the saturated water content and not smaller than the 
residual water content at each level [zj−1, zj] with j ≥ 2 . It remains to discuss suitable 
conditions for the water contents �j for any 1 ≤ j ≤ k1 . In particular, the condition (18) 
on the first threshold k1 implies the following restriction on �0 : 

 where 

 On the other hand, the following inequalities have to be satisfied by u0 : 

 for any index j such that 1 ≤ j < k1 , where 

 and 

 where cj was defined in (44).
5.	 In case 5, the equilibrium points describe a realistic equilibrium if conditions (31), (34), 

(36) and (38) are satisfied for any i ∈ {2,… ,m − 1} and ki−1 < j < ki by the thresholds 
𝜃̄k1

,… 𝜃̄km
 ; in such case, the equilibrium is reached in the chosen configuration if the 

(39)(−1)Sj(𝜃j)
(
((−A)−1)

km+1

j
a+ūkm + ūj + ((−A)−1)N−1

j
a−uN

)
< (−1)Sj(𝜃j)cj,

(40)cj =
�

2
(Δz)2

N−2∑
k=km+1

((−A)−1)k
j
Rk(�k)

(41)ur ≤ ((−A)−1)
km+1

j
a+ūkm + ((−A)−1)N−1

j
a−uN − cj ≤ us,

(42)
a2
+
((−A)−1)1

k1−1
u0 + (a+a−(((−A)

−1)
k1+1

k1+1
+ ((−A)−1)

k1−1

k1−1
) − 1)ūki

+ a2
−
((−A)−1)

k2−1

k1+1
ūk2 ≤ ck1

ck1 =
�

2
(Δz)2

(
�k1

+

k2−1∑
k=k1+1

a−((−A)
−1)k

k1+1
Rk(�k)

+

k1−1∑
k=1

a+((−A)
−1)k

k1−1
Rk(�k)

)
.

(43)(−1)Sj(𝜃j)
(
((−A)−1)1

j
a+u0 − ūj + ((−A)−1)

k1−1

j
a−ūk1

)
< (−1)Sj(𝜃j)cj,

(44)cj =
�

2
(Δz)2

k1−1∑
k=1

((−A)−1)k
j
Rk(�k),

(45)ur ≤ ((−A)−1)1
j
a+u0 + ((−A)−1)

k1−1

j
a−ūk1 − cj ≤ us
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boundary values �0 and �N satisfy the linear inequalities (39) and (41), related to the 
indexes km ≤ j ≤ N − 1 , and the conditions (42), (43) and (45) related to the indexes 
1 ≤ j ≤ k1.

As described so far, in each of the possible configurations, there are some necessary inequali-
ties that the thresholds 𝜃̄1,… , 𝜃̄N−2 have to satisfy; then, we can investigate which couples 
(�0, �N) fulfill the remaining system of inequalities. When not empty, the corresponding set of 
couples (u0, uN) is a convex subset of [ur, us] × [ur, us] ; indeed, it represents the feasible region 
of a system of linear inequalities. On the other hand, in each configuration, it is possible to 
investigate if there exists a couple of boundary conditions (�0, �N) such that the flux q in zN−1 
is non-positive; in fact, this means that the vertical infiltration is completely compensated by 
the root water uptake. By (14), we obtain that the condition q ≤ 0 is satisfied if

Then, by the previous description, we note that if at least one of the thresholds 𝜃̄i is reached, 
then uN−1 and uN−2 can be expressed in terms of ūkm and uN , where km is the index of the last 
reached threshold; then, the non-positivity of the flux is uniquely determined by the value 
of uN and it is independent on the value of �0 ; instead, if no threshold is reached, the condi-
tion q ≤ 0 introduces a new necessary relation between �N and �0 . A more detailed analysis 
of the flux in zN−1 is presented in Sect. 4 (see Fig. 4).

Remark 3  In Sect.  3.1, we discussed which bounds on boundary conditions �0, �N and 
on thresholds 𝜃̄i are necessary in order to get a realistic equilibrium in each configura-
tion. If we consider a mesh with a very large number N of points it would be more mean-
ingful to write such estimates in terms of the densities, u∗

0
∶= u0∕Δz , u∗N ∶= uN∕Δz and 

ū∗
i
∶= ūi∕Δz , ( i = 1… ,N − 2 ); this allows in some cases to obtain necessary conditions 

on u∗
0
 , u∗

N
 and u∗

i
 which are independent on Δz , and then to get information on such bounds 

even in the asymptotic case, that is Δz → 0.
In order not to burden the presentation, we apply this idea to the simplest case in 

which at each mesh point zi the water content �i coincides with the corresponding thresh-
old 𝜃̄i when the equilibrium is reached; among other things this implies by (15) that 
uN−1 = a−uN + a+ūN−2.

Following the introduction of Sect.  3.1, in this case, we have to ensure that for each 
i ∈ {1,… ,N − 1} , the water content �i is not smaller than the residual water content �r and 
not greater than the saturated water content �s ; additionally, for each i ∈ {1,… ,N − 2} , the 
inequalities in (16) have to be satisfied; more explicitly, we have the following constraints 
on u0 , uN and ūi:

and, by (18)

uN ≥ uN−2 + 2�ΔzuN−1.

ur ≤ ūi ≤ us, for any i ∈ {1,… ,N − 2}

ur ≤ a−uN + a+ūN−2 ≤ us,

0 ≤ ū2a− − ū1 + u0a+ ≤
𝛼

2
𝛾1(Δz)

2,

0 ≤ ūi+1a− − ūi + ūi−1a+ ≤
𝛼

2
𝛾i(Δz)

2 for any i ∈ {1,… ,N − 3},

0 ≤ a2
−
uN − ūN−2(1 − a+a−) + ūN−3a+ ≤

𝛼

2
𝛾N−2(Δz)

2.
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For simplicity, we suppose that the root depth is one meter and then Δz = 1

N
m ; thus, recall-

ing that a− = (2 − �Δz)∕4 and a+ = (2 + �Δz)∕4 , all the given inequalities can be rewrit-
ten in terms of the densities u∗

0
 , u∗

N
 and ū∗

i
 , with i ∈ {1,… ,N − 2} as

where u∗
r
∶= ur∕(Δz) and u∗

s
∶= us∕(Δz) ; additionally, by (16), we have the following 

constraints:

Collecting all together the factors of the same powers of 1/N in each inequality, we rewrite 
that as

analogously, as a consequence of (16), we have

As N tends to infinity, the terms that determine the validity of each inequality are the fac-
tors of the lower power of 1/N which appears in the inequality; as a consequence, also in 
the asymptotic case Δz → 0 , that is N → ∞ , we can write a system of constraints on the 
densities u∗

0
 , u∗

N
 and ū∗

i
 which guarantees the existence of a realistic equilibrium in this con-

figuration. Firstly, the inequalities in (46) have to be satisfied; moreover, (47) and (48) hold 
if and only if one of the following conditions is satisfied:

u
∗
r
≤ ū

∗
i
≤ u

∗
s
, for any i ∈ {1,… ,N − 2}

u
∗
r

N
≤

(
1

2
−

𝛼

4N

)u∗
N

N
+
(
1

2
+

𝛼

4N

) ū∗
N−2

N
≤

u
∗
s

N
,

0 ≤
ū∗
2

N

(
1

2
−

𝛼

4N

)
−

ū∗
1

N
+

u∗
0

N

(
1

2
+

𝛼

4N

)
≤

𝛼𝛾1

2N2
,

0 ≤
ū∗
i+1

N

(
1

2
−

𝛼

4N

)
−

ū∗
i

N
+

ū∗
i−1

N

(
1

2
+

𝛼

4N

)
≤

𝛼𝛾i

2N2
for any i ∈ {1,… ,N − 3},

0 ≤

(
1

2
−

𝛼

4N

)2 u∗
N

N
−

ū∗
N−2

N

(
3

4
+

𝛼
2

16N2

)
+

ū∗
N−3

N

(
1

2
+

𝛼

4N

)
≤

𝛼𝛾N−2

2N2
.

(46)u∗
r
≤ ū∗

i
≤u∗

s
, for any i ∈ {1,… ,N − 2}

(47)
1

2N
(u∗

N
+ ū∗

N−2
− 2u∗

r
) +

𝛼

4N2
(ū∗

N−2
− u∗

N
) ≥ 0,

(48)
1

2N
(u∗

N
+ ū∗

N−2
− 2u∗

s
) +

𝛼

4N2
(ū∗

N−2
− u∗

N
) ≤ 0;

(49)0 ≤
1

2N
(ū∗

2
− 2ū∗

1
+ u∗

0
) +

𝛼

4N2
(u∗

0
− ū∗

2
) ≤

𝛼𝛾1

2N2
,

(50)
0 ≤

1

2N
(ū∗

i+1
− 2ū∗

i
+ ū∗

i−1
) +

𝛼

4N2
(ū∗

i−1
− ū∗

i+1
)

≤
𝛼𝛾i

2N2
for any i ∈ {1,… ,N − 3},

(51)
0 ≤

1

4N
(u∗

N
− 3ū∗

N−2
+ 2ūN−3∗ ) +

𝛼

4N2
(ū∗

N−3
− u∗

N
)

+
𝛼
2

16N3
(u∗

N
− ū∗

N−2
) ≤

𝛼𝛾N−2

2N2
.
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The fulfillment of conditions (49) and (50) is guaranteed by the following constraints:

Finally, the inequality (51) is satisfied if and only if one of the following condition is 
satisfied:

The same approach could be used in all the other configurations in order to get some infor-
mation about the bounds on the density u∗

0
 in the asymptotic case Δz → 0 ; however, in 

order to avoid further technicalities, we omit this discussion.

3.2 � Minimum Percolation Below the Root Depth with Water Supply Only 
by Irrigation

In this section, we want to investigate for which choice of boundary condition �0 at the surface 
it is possible to minimize the percolation below the root depth, assuming that the steady state 
is reached and that the water supply is obtained exclusively by irrigation. In this framework, 
some additional conditions have to be satisfied by our equilibrium points �i obtained by (17) in 
order to guarantee that such equilibrium is realistic; indeed, for any i = 1,…N − 1 , the condi-
tion �r ≤ �i ≤ �s should be replaced by the inequality �r ≤ �i ≤ �0 , that is equivalent to

therefore, similarly to Sect. 3.1, such estimates can be written as a system of linear inequal-
ities which involves the variables 𝜃0, 𝜃N , 𝜃̄1,… , 𝜃̄N−2 . In order not to burden the presenta-
tion, we do not explicitly present all these inequalities; we will study more in details such 
case in Sect. 4 considering a mesh of five points.

We remark that if we assume that there is no capillary rise from soil level below the root 
zone, we cannot expect a non-positive flux q in zN−1 . Indeed, when a steady state is reached, 
we can presume that �N−1 ≥ �N ; instead, by (14), the non-positivity of the flux requires 
uN > uN−1 . Such conjecture is confirmed by the example treated in Sect. 4.1 (see (54)).

4 � An Example

In this section, we apply all the ideas discussed in Sect. 3 to the case of a mesh of five points 
z0,… , z4 . In particular, in each of the nine possible configurations, we firstly discuss explic-
itly which conditions on the boundary values �0 , �4 and on the thresholds 𝜃̄1 , 𝜃̄2 allow to get a 
realistic equilibrium, in the framework of Sect. 3.2; then, we will evaluate such equilibrium 
points. Finally, in Sect. 4.1, we will present some useful simulations in order to discuss for a 

2u∗
r
< u∗

N
+ ū∗

N−2
< 2u∗

s

ū∗
N−2

≥ u∗
N

if u∗
N
+ ū∗

N−2
= 2u∗

r
,

ū∗
N−2

≤ u∗
N

if u∗
N
+ ū∗

N−2
= 2u∗

s
.

ū∗
2
− 2ū∗

1
+ u∗

0
= 0 with u∗

0
− ū∗

2
≤ 2𝛾1,

ū∗
i+1

− 2ū∗
i
+ ū∗

i−1
= 0 with ū∗

i−1
− ū∗

i+1
≤ 2𝛾i.

u∗
N
− 3ū∗

N−2
+ 2ū∗

N−3
= 0 if ū∗

N−3
− u∗

N
< 2𝛾N−2

u∗
N
− ū∗

N−2
< 0 if ū∗

N−3
− u∗

N
= 2𝛾N−2.

ur ≤ ui ≤ u0;



487Optimizing Water Consumption in Richards’ Equation Framework…

1 3

fixed choice of thresholds 𝜃̄1 , 𝜃̄2 which choice of boundary conditions �0 and �4 allows to reach 
the equilibrium in the desired configuration with a minimum flux at the bottom of the root 
level.

Let us suppose that the equilibrium is reached. Therefore, by using the notations introduced 
in Sect. 3, in the general case model, (11) takes the form:

Thus, the hypothetical equilibrium points can be expressed as:

If there exists i ∈ {1, 2, 3} such that 𝜃i = 𝜃̄i , the equilibrium points have a simpler represen-
tations with respect to (52); moreover, in each configuration, the flux can be expressed in 
terms of the boundary conditions and the thresholds 𝜃̄i . Let us discuss each case in detail. 

Case 1:	� �1 and �2 are both below the threshold. In such case, it holds S1(�1) = S2(�2) = 0 . 
Thus, by (52), the equilibrium points are given by 

In order to get a realistic equilibrium, we require that �i ≤ �0 for any i = 1, 2, 3, 4 ; more-
over, we are supposing 𝜃i < 𝜃̄i at each depths. As a consequence, since the conductivity 
function K is increasing, the following inequalities have to be satisfied: 

u1 = a−u2 + a+u0 − �1
�

2
(Δz)2S1(�1),

u2 = a−u3 + a+u1 − �2
�

2
(Δz)2�(Δz)2S2(�2),

u3 = a−u4 + a+u2.

(52)

u1 =
1

1 − 2a−a+

(
a3
−
u4 + a+(1 − a+a−)u0

− (1 − a+a−)�1
�

2
(Δz)2S1(�1) − a−�2

�

2
(Δz)2S2(�2)

)
,

u2 =
1

1 − 2a−a+

(
a2
−
u4 + a2

+
u0 − a+�1

�

2
(Δz)2S1(�1) − �2

�

2
(Δz)2S2(�2)

)
,

u3 =
1

1 − 2a−a+

(
a−(1 − a+a−)u4 + a3

+
u0

− a2
+
�1
�

2
(Δz)2S1(�1) − a+�2

�

2
(Δz)2S2(�2)

)
.

u1 =
1

1 − 2a−a+

(
a3
−
u4 + a+(1 − a+a−)u0

)
,

u2 =
1

1 − 2a−a+

(
a2
−
u4 + a2

+
u0

)
,

u3 =
1

1 − 2a−a+

(
a−(1 − a+a−)u4 + a3

+
u0

)
.
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Case 2:	� 𝜃1 < 𝜃̄1 and 𝜃2 > 𝜃̄2 . In this case, we have S1(�1) = 0 and S2(�2) = 1 . Thus, by 
(52) we get the following representation for the equilibrium points: 

 Here, a realistic equilibrium is reached if �i ≤ �0 for any i = 1, 2, 3, 4 , 𝜃1 < 𝜃̄1 and 𝜃2 > 𝜃̄2 . 
Thus, due to the monotonicity of K, we require 

Case 3:	� 𝜃i > 𝜃̄i for both i = 1, 2 . In this case, the root water uptake is always not zero. 
Thus, if the equilibrium for the water content is reached, then it holds: 

Here, we require �i ≤ �0 for any i = 1, 2, 3, 4 ; additionally, the conditions 𝜃1 < 𝜃̄1 
and 𝜃2 > 𝜃̄2 need to be satisfied. This is equivalent to require the following system of 
inequalities: 

a3
−
u4

1 − 2a−a+
+

(
a+(1 − a+a−)

1 − 2a+a−
− 1

)
u0 ≤ 0,

a3
−
u4 + a+(1 − a+a−)u0 < (1 − 2a+a−)ū1,

a2
−
u4

1 − 2a−a+
+
( a2

+

1 − 2a−a+
− 1

)
u0 ≤ 0,

a2
−
u4 + a2

+
u0 < (1 − 2a+a−)ū2,

a−(1 − a+a−)u4

1 − 2a+a−
+
( a3

+

1 − 2a+a−
− 1

)
u0 ≤ 0.

u1 =
1

1 − 2a−a+

(
a3
−
u4 + a+(1 − a+a−)u0 − a−�2

�

2
(Δz)2

)
,

u2 =
1

1 − 2a−a+

(
a2
−
u4 + a2

+
u0 − �2

�

2
(Δz)2

)
,

u3 =
1

1 − 2a−a+

(
a−(1 − a+a−)u4 + a3

+
u0 − a+�2

�

2
(Δz)2

)
.

a3
−
u4

1 − 2a−a+
+

(
a+(1 − a+a−)

1 − 2a+a−
− 1

)
u0 ≤

a−𝛾2𝛼(Δz)
2

2(1 − 2a−a+)
,

a3
−
u4 + a+(1 − a+a−)u0 < (1 − 2a+a−)ū1 + a−𝛾2

𝛼

2
(Δz)2,

a2
−
u4

1 − 2a−a+
+
( a2

+

2(1 − 2a−a+)
− 1

)
u0 ≤

𝛾2𝛼(Δz)
2

2(1 − 2a−a+)
,

a2
−
u4 + a2

+
u0 > (1 − 2a+a−)ū2 + 𝛾2

𝛼

2
(Δz)2,

a−(1 − a+a−)u4

1 − 2a+a−
+
( a3

+

1 − 2a+a−
− 1

)
u0 ≤

a+𝛾2𝛼(Δz)
2

2(1 − 2a−a+)
.

(53)

u1 =
1

1 − 2a−a+

(
a3
−
u4 + a+(1 − a+a−)u0 −

�

2
(Δz)2((1 − a+a−)�1 + a−�2)

)
,

u2 =
1

1 − 2a−a+

(
a2
−
u4 + a2

+
u0 −

�

2
(Δz)2(a+�1 − �2)

)
,

u3 =
1

1 − 2a−a+

(
a−(1 − a+a−)u4 + a3

+
u0 − a+�1

�

2
(Δz)2(a+�1 − �2)

)
.
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Case 4:	� 𝜃1 > 𝜃̄1 and 𝜃2 < 𝜃̄2 . Here, we are assuming S1(�1) = 1 and S2(�2) = 0 . Thus, we 
get 

 Here, we have the conditions 𝜃1 > 𝜃̄1 and 𝜃2 < 𝜃̄2 . Thus, we want 

Case 5:	� 𝜃1 < 𝜃̄1 and 𝜃2 = 𝜃̄2 . In this case, we are assuming that the water content in z2 is 
known, and it is equal to the threshold 𝜃̄2 ; thus, we have S1(�1) = 0 and S2(�2) 
which can vary in the interval [0, 1]. Thus, we are able to represent the equilib-
rium points in a simpler way, that is 

a3
−
u4

1 − 2a−a+
+

(
a+(1 − a+a−)

1 − 2a+a−
− 1

)
u0 ≤

𝛼(Δz)2((1 − a+a−)𝛾1 + a−𝛾2)

2(1 − 2a−a+)
,

a3
−

(1 − 2a+a−)
u4 +

a+(1 − a+a−)

1 − 2a+a−
u0 > ū1 +

𝛼(Δz)2((1 − a+a−)𝛾1 + a−𝛾2)

2(1 − 2a−a+)
,

a2
−
u4

1 − 2a−a+
+
( a2

+

1 − 2a−a+
− 1

)
u0 ≤

a+𝛾1𝛼(Δz)
2 + 𝛾2𝛼(Δz)

2

2(1 − 2a−a+)
,

a2
−
u4 + a2

+
u0

1 − 2a+a−
> ū2 +

𝛼(Δz)2(a+𝛾1 + 𝛾2)

2(1 − 2a−a+)
,

a−(1 − a+a−)u4

1 − 2a+a−
+
( a3

+

1 − 2a+a−
− 1

)
u0 ≤

a+𝛼(Δz)
2(a+𝛾1 + 𝛾2)

2(1 − 2a−a+)
.

u1 =
1

1 − 2a−a+

(
a3
−
u4 + a+(1 − a+a−)u0 − (1 − a+a−)�1

�

2
(Δz)2

)
,

u2 =
1

1 − 2a−a+

(
a2
−
u4 + a2

+
u0 − a+�1

�

2
(Δz)2

)
,

u3 =
1

1 − 2a−a+

(
a−(1 − a+a−)u4 + a3

+
u0 − a2

+
�1
�

2
(Δz)2

)
.

a3
−
u4

1 − 2a−a+
+

(
a+(1 − a+a−)

1 − 2a+a−
− 1

)
u0 ≤

(1 − a+a−)𝛾1𝛼(Δz)
2

2(1 − 2a−a+)
,

a3
−

(1 − 2a+a−)
u4 +

a+(1 − a+a−)

(1 − 2a+a−)
u0 > ū1 +

(1 − a+a−)𝛾1𝛼(Δz)
2

2(1 − 2a−a+)
,

a2
−
u4

1 − 2a−a+
+
( a2

+

1 − 2a−a+
− 1

)
u0 ≤

a+𝛾1𝛼(Δz)
2

2(1 − 2a−a+)
,

a2
−

(1 − 2a+a−)
u4 +

a2
+

(1 − 2a+a−)
u0 < ū2 +

a+𝛾1𝛼(Δz)
2

2(1 − 2a−a+)
,

a−(1 − a+a−)u4

1 − 2a+a−
+
( a3

+

1 − 2a+a−
− 1

)
u0 ≤

a2
+
𝛾1𝛼(Δz)

2

2(1 − 2a−a+)
.

u1 = a−ū2 + a+u0,

u2 = ū2,

u3 = a−u4 + a+ū2.
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As in the previous cases, we present which conditions have to be satisfied in order to reach 
a realistic equilibrium; in particular, since 𝜃2 = 𝜃̄2 , the inequality (16) has to be satisfied for 
i = 2 ; summarizing, we have the following necessary conditions: 

Case 6:	� 𝜃1 > 𝜃̄1 and 𝜃2 = 𝜃̄2 . The water content in z2 is known and it coincides with the 
threshold 𝜃̄2 ; moreover, the root-water uptake in the first level is maximum, equal 
to �1 . We can represent the equilibrium points as 

Analogously to the previous case, the following inequalities have to be satisfied: 

Case 7:	� 𝜃1 = 𝜃̄1 and 𝜃2 = 𝜃̄2 . Here, we are assuming that when the equilibrium is reached, 
the water content in the first and second levels of the mesh coincides with the 
corresponding threshold. Thus, the sink term in both the levels is defined by 
means of a differential inclusion. The equilibrium is given by 

We require that �i ≤ �0 and that condition (16) is satisfied for i = 2 , that is: 

(a+ − 1)u0 ≤ −a−ū2,

a+u0 < ū1 − a−ū2,

a−u4 − u0 ≤ −a+ū2,

u2 ≤ u0,

(1 − 2a−a+)ū2 ≤ a2
−
u4 + a2

+
u0 ≤ (1 − 2a−a+)ū2 + 𝛾2

𝛼

2
(Δz)2.

u1 = a−ū2 + a+u0 − 𝛾1
𝛼

2
(Δz)2,

u2 = ū2,

u3 = a−u4 + a+ū2.

(a+ − 1)u0 ≤ 𝛾1
𝛼

2
(Δz)2 − a−ū2,

a+u0 > 𝛾1
𝛼

2
(Δz)2 + ū1 − a−ū2,

a−u4 − u0 ≤ −a+ū2,

ū2 ≤ u0,

a2
−
u4 + a2

+
u0 ≥ (1 − 2a−a+)ū2 + a+𝛾1

𝛼

2
(Δz)2,

a2
−
u4 + a2

+
u0 ≤ (1 − 2a−a+)ū2 +

𝛼

2
(Δz)2(a+𝛾1 + 𝛾2).

u1 = ū1,

u2 = ū2,

u3 = a−u4 + a+ū2.
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Case 8:	� 𝜃1 = 𝜃̄1 and 𝜃2 < 𝜃̄2 . In this case there is not root uptake in the second level z2 ; on 
the other hand, the sink term in z1 is defined by means of a differential inclusion. 
The equilibrium is given by 

A realistic equilibrium is obtained if the following conditions hold: 

Case 9:	� 𝜃1 = 𝜃̄1 and 𝜃2 > 𝜃̄2 . In this case, the root uptake in the second level z2 is maxi-
mum, equal to �2 ; on the other hand, the sink term in z1 is defined by means of a 
differential inclusion. The equilibrium is given by 

 In order to guarantee that (�1, �2, �3) describes a realistic equilibrium, the following condi-
tions have to be satisfied: 

ū1 ≤ u0,

ū1 − a−ū2 ≤ a+u0 ≤ 𝛾1
𝛼

2
(Δz)2 + ū1 − a−ū2,

ū2 ≤ u0,

(1 − a+a−)ū2 − a+ū1 ≤ a2
−
u4 ≤ 𝛾2

𝛼

2
(Δz)2 + (1 − a+a−)ū2 − a+ū1,

a−u4 − u0 ≤ −a+ū2,

u1 = ū1,

u2 =
a2
−
u4 + a+ū1

1 − a+a−
,

u3 =
a−u4 + a2

+
ū1

1 − a+a−
.

ū1 ≤ u0,

1 − 2a+a−

1 − a+a−
ū1 ≤

a3
−

1 − a+a−
u4 + a+u0 ≤

1 − 2a+a−

1 − a+a−
ū1 + 𝛾1

𝛼

2
(Δz)2,

a2
−
u4 < ū2(1 − a+a−) − a+ū1,

a2
−
u4 − (1 − a+a−)u0 ≤ −a+ū1,

a−u4 − (1 − a+a−)u0 ≤ −a2
+
ū1.

u1 = ū1,

u2 =
a2
−
u4 + a+ū1 − 𝛾2𝛼∕2(Δz)

2

1 − a+a−
,

u3 =
a−u4 + a2

+
ū1 − a+𝛾2𝛼∕2(Δz)

2

1 − a+a−
.
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4.1 � Numerical Simulations

In this section, we present some MATLAB simulations which allow to understand more 
deeply how the water contents, at each level, are related to the corresponding boundary 
conditions.

The model setup in (5) has been used, with hydraulic conductivity function (6) and 
parameters as in Broadbridge et  al. (2017), i.e., m = 10 , �r = 0 and �s = 0.485 , and 
Ks = 12 cm h −1 . Additionally, we set �1 = 35 ⋅ 10−4h−1 and �2 = 27 ⋅ 10−4h−1 and we fix 
the thresholds 𝜃̄1 = 0.34 and 𝜃̄2 = 0.29 ; finally, we assume � = 1∕7 in (4) and Δz = 6cm.

In this framework, Fig. 1 represents which couples of boundary conditions (�0, �4) allow 
to reach a realistic equilibrium in the desired configuration, given that the linear inequali-
ties presented in Sect. 4 have to be satisfied.

We can investigate how the water flux below the root zone changes, according to 
the chosen configuration. By (14) the flux in the third point can be written has

ū1 ≤ u0,

a3
−

1 − a+a−
u4 + a+u0 ≥

1 − 2a+a−

(1 − a+a−)
ū1 + +

a−𝛾2𝛼(Δz)
2

2(1 − a+a−)
,

a3
−

1 − a+a−
u4 + a+u0 ≤

1 − 2a+a−

1 − a+a−
ū1 +

a−𝛾2𝛼(Δz)
2

2(1 − a+a−)
+ 𝛾1

𝛼

2
(Δz)2,

a2
−
u4 > ū2(1 − a+a−) − a+ū1 + 𝛾2

𝛼

2
(Δz)2,

a2
−
u4 − (1 − a+a−)u0 ≤ 𝛾2

𝛼

2
(Δz)2 − a+ū1,

a−u4 − (1 − a+a−)u0 ≤ 𝛾2
𝛼

2
(Δz)2a+ − a2

+
ū1.

Fig. 1   Mapping from the boundary conditions and the equilibrium configuration
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that is non-positive if and only if

As we explained in Sect. 3.2 if the water supply is due only to irrigation, then we cannot 
expect a non-positive flux below the root level, since this would require u3 < u4 . In fact, 
assuming for instance that �4 ≡ 0.2 we can evaluate in each configuration which is the min-
imum value of �0 which allows to reach a realistic equilibrium with minimum water flux at 
the bottom. We have the following correspondence:

Then, we note that in all the possible configurations, one has positive flux; in particu-
lar, once the root water uptake is nonzero at least at one level, the flux in zN−1 is positive 
and the minimum flux is q ≈ 0.0111 cmh−1 . Additionally, by Eq. (54), we note that if the 
top boundary condition �0 varies arbitrarily in [0.3546,  0.4057), then the corresponding 
steady solution �1 coincides always with the first threshold 𝜃̄1 ; this property allows to apply 
our strategy not only for constant boundary conditions, but also for a time-dependent top 
boundary condition �0 = �0(t) if �0min ≤ �0(t) ≤ �0max for suitable values of �0min and �0max 
(see Remark 2).

Let us suppose to know that the boundary condition at the bottom remains constant 
�4 = 0.2 ; moreover, we assume that the thresholds are 𝜃̄1 = 0.34 and 𝜃̄2 = 0.29 . Finally, 
we suppose that the boundary condition at the top is described by a periodic function; for 
instance

where �0max and   �0min represent, respectively, the maximum and the minimum value 
assumed by the boundary condition �0 . Then, Fig. 2 shows how the equilibrium water con-
tents at each level of the mesh moves in time, choosing �0max = 0.4056 and �0min = 0.3546 
as suggested in (54).

On the other hand, Fig.  3 shows how the steady solutions �i at each level i = 1, 2, 3 
behave when �0 changes in [0, �s] for fixed �4 ≡ 0.2.

Let us assume now less constrains on the boundary conditions �0 and �4 ; in particular, at 
each level zi , we replace the assumption �i ≤ �0 with the assumption �i ≤ �s , as in Sect. 3.1. 
Then, the representation of the feasible region in each configuration is described by Fig. 4.

q ≈ −
1

2�Δz
(u4 − u2) + u3,

u4 ≥ u2 + 2�Δzu3.

(54)

�0 = 0.2 1st configuration; q ∼ 0.0035 cmh−1;

�0 = 0.422 3rd configuration; q ∼ 0.0111 cmh−1;

�0 = 0.2991 5th configuration; q ∼ 0.0111 cmh−1;

�0 = 0.4057 6th configuration; q ∼ 0.0111 cmh−1;

�0 = 0.3546 7th configuration; q ∼ 0.0111 cm h−1.

(55)�0(t) =

⎧⎪⎪⎨⎪⎪⎩

�0max if t ∈ [0 s, 3 s]

�0min +
(�0max−�0min)

2
(sin(�∕2 + 2�∕7(t − 3)) + 1) if t ∈ [3 s, 10 s]

�0max if t ∈ [10 s, 13 s]

�0min +
(�0max−�0min)

2
(sin(�∕2 + 2�∕7(t − 13)) + 1) if t ∈ [13 s, 20 s]

�0max if t ∈ [20 s, 24 s]
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We note that in this case, it is possible to investigate for which choice of bound-
ary conditions it is possible to obtain no percolation below the root zone. Indeed, the 
black line in Fig. 4 represents the set of couples (�0, �4) such that the flux q in zN−1 is 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Fig. 2   Water content at equilibrium at each level of the mesh, with boundary conditions �4 ≡ 0.2 and �0 as 
in (55), with �0max = 0.4057 and �0min = 0.3546 ; tmax = 24h
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Fig. 3   Water content at equilibrium  at each level of the mesh, for constant bottom boundary condition 
�4 ≡ 0.2 , when �0 varies in the interval [0, �

s
] ; tmax = 24h
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approximately zero by formula (14); furthermore, the flux q is negative above such a 
curve, and positive below  it.

5 � Conclusions and Future Work

The introduction of a discontinuous root water uptake function allows us to investigate the 
steady-state solutions of Richards’ equation (3), reduced to the study of an algebraic linear 
system. In particular, we show which conditions on thresholds and boundary values guar-
antee that the obtained equilibrium points are consistent with the hydraulic properties of 
the soil and with the chosen configuration; such conditions can be expressed as a system of 
linear constraints. The same approach is followed for case of water supplied only by irriga-
tion, which needs additional constraints. In the latter case, a deeper study is presented for 
a space discretization made up by five points: we show explicitly the discussed constraints 
and we represent for each configuration the set of admissible boundary conditions; finally, 
assuming that the bottom water content is known and constant, we estimate the water con-
tent value allowing to minimize water percolation below roots level.

In future works, we plan to extend this treatise to more general hydraulic functions, and 
to make use of some tools from bifurcation theory, or even to apply this approach to nutrient 
uptake in unsaturated transport framework. Also, we are interested in pursuing some efforts 
for a deeper mathematical treatise of memory terms in the uptake function, recently investi-
gated, for instance, in Wu et al. (2020). Furthermore, we will investigate the approximation 
of non-steady solutions to (3) in the frame of Filippov theory, making use also of recent 
VEM approaches (da Veiga et  al. 2021). Finally, a challenge would be to integrate such 
physically based models into agricultural DSS as Zaza et al. (2018), Friedman et al. (2016).

Fig. 4   Mapping between the boundary conditions and the equilibrium configuration, when less constraints 
are assumed on �0 and �4 ; the black line represents the zero-flux curve
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