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Abstract
Uncertainty is ubiquitous with multiphase flow in subsurface rocks due to their inherent 
heterogeneity and lack of in-situ measurements. To complete uncertainty analysis in a 
multi-scale manner, it is a prerequisite to provide sufficient rock samples. Even though the 
advent of digital rock technology offers opportunities to reproduce rocks, it still cannot 
be utilized to provide massive samples due to its high cost, thus leading to the develop-
ment of diversified mathematical methods. Among them, two-point statistics (TPS) and 
multi-point statistics (MPS) are commonly utilized, which feature incorporating low-order 
and high-order statistical information, respectively. Recently, generative adversarial net-
works (GANs) are becoming increasingly popular since they can reproduce training images 
with excellent visual and consequent geologic realism. However, standard GANs can only 
incorporate information from data, while leaving no interface for user-defined properties, 
and thus may limit the representativeness of reconstructed samples. In this study, we pro-
pose conditional GANs for digital rock reconstruction, aiming to reproduce samples not 
only similar to the real training data, but also satisfying user-specified properties. In fact, 
the proposed framework can realize the targets of MPS and TPS simultaneously by incor-
porating high-order information directly from rock images with the GANs scheme, while 
preserving low-order counterparts through conditioning. We conduct three reconstruc-
tion experiments, and the results demonstrate that rock type, rock porosity, and correla-
tion length can be successfully conditioned to affect the reconstructed rock images. The 
randomly reconstructed samples with specified rock type, porosity and correlation length 
will contribute to the subsequent research on pore-scale multiphase flow and uncertainty 
quantification.
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1  Introduction

Due to the scarcity of observations, uncertainty exists in hydrogeological problems and 
should be considered when modeling flow and transport in subsurface porous media. Dur-
ing the modeling process, some material properties, such as permeability, possessing huge 
stochasticity due to the heterogeneity of porous media, usually serve as input parameters of 
the physical model, and thus lead to uncertain model outputs. To evaluate the uncertainty 
in a systematic and multi-scale manner, some researchers focused on how randomness in 
the micro pore structure will affect macro permeability and eventually determine model 
outputs, such as pressure head (Icardi et  al. 2016; Wang et  al. 2018a; Xue et  al. 2019; 
Zhao et al. 2020). In terms of such uncertainty analysis workflow, the rapid and accurate 
reconstruction of porous media for random realizations constitutes the initial step and is 
critically important.

In the last few decades, advances in three-dimensional imaging techniques, e.g., X-ray 
computed tomography (e.g., Micro-CT and Nano-CT) (Bostanabad et al. 2018; Chen et al. 
2013; Li et  al. 2018), focused ion beam and scanning electron microscope (FIB-SEM) 
(Archie et  al. 2018; Tahmasebi et  al. 2015) and helium-ion-microscope (HIM) for ultra-
high-resolution imaging (King Jr et al. 2015; Peng et al. 2015; Wu et al. 2017), have con-
tributed to the development of digital rock technologies, which provide new opportunities 
to investigate flow and transport in rocks via numerical simulation based on digital rep-
resentation of rock samples. Constrained by the high cost of three-dimensional imaging, 
digital rock technologies remain unsuitable for uncertainty analysis because of the lack of 
random rock samples, thus leading to the development of diversified mathematical meth-
ods for random reconstruction of digital rocks. These methods can be divided into the fol-
lowing three groups: object-based methods; process-based techniques; and pixel-based 
methodologies (Ji et  al. 2019). Object-based methods treat pores and grains as a set of 
objects which are defined according to prior knowledge of the pore structure (Pyrcz and 
Deutsch 2014). Such methods can be stably implemented, because they have relatively 
explicit objective functions, so that optimization methods, such as simulated annealing, can 
converge easily. However, the disadvantage is that they cannot reproduce long-range con-
nectivity of the pore space because they only utilize low-order information. Process-based 
techniques, on the other hand, can produce more realistic structures than object-based 
methods through imitating the physical processes that form the rocks (Biswal et al. 2007; 
Øren and Bakke 2002). This process is relatively time-consuming, however, and necessi-
tates numerous calibrations.

Pixel-based methodologies work on an array of pixels in a regular grid, with the pixels 
representing geological properties of the rocks. Within these methods, geostatistics is the 
core technique that contributes to the reconstruction of rock samples, primarily including 
two-point statistics (TPS) and multi-point statistics (MPS) (Journel and Huijbregts 1978; 
Kitanidis 1997). One of the most commonly used TPS methods is the Joshi-Quiblier-
Adler (JQA) method, which is named according to its three contributors (Adler et al. 1990; 
Joshi 1974; Jude et al. 2013; Quiblier 1984). The JQA method was designed to truncate 
the intermediate Gaussian field that satisfies a specified two-point correlation, and finally 
obtain a binary structure with given porosity and two-point correlation function (Jude et al. 
2013). Even though TPS is a very common concept in geostatistics and its related methods 
are easy to implement, it cannot reproduce the full characteristics of the pore structures 
because only low-order information is adopted. Under this circumstance, MPS was pro-
posed to address this issue. Unlike TPS, MPS is able to extract local multi-point features 
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by scanning a training image using a certain template, leading to the incorporation of high-
order information, and thus better reproducing performance (Okabe and Blunt 2005). Moti-
vated by multiple applications, MPS methods are flourishing and have diversified variants, 
mainly comprising single normal equation simulation (SNESIM) (Strebelle 2002), direct 
sampling method (Mariethoz et al. 2010), and cross-correlation-based simulation (CCSIM) 
(Tahmasebi and Sahimi 2013). Although MPS features sufficiently capture global informa-
tion, it is challenged by the conditioning of local information, or equivalently honoring 
low-order statistics as TPS does. As a consequence, certain fundamental properties, such 
as volumetric proportion, may not be satisfied even though they should have been honored 
in the generated samples (Mariethoz and Caers 2014).

In recent years, deep learning has achieved great success in image synthesis, primarily 
for facial, scenery, and medical imaging (Abdolahnejad and Liu 2020; Choi et  al. 2018; 
Nie et al. 2018). Due to the similar data format and task object, the success of deep learn-
ing in image synthesis inspired its application to digital rock reconstruction. The biggest 
advantage of deep learning is that it constitutes purely data-driven workflow with no prior 
information needed, and the totally learnable machine avoids complex hand-crafted feature 
design. Another significant benefit is that once the deep learning model is trained, predic-
tion (generating new structures) can be accomplished within a few moments, which is pre-
cisely the bottleneck of traditional methods, such as MPS. Among deep learning methods, 
generative adversarial networks (GANs) (Goodfellow et al. 2014) have achieved the most 
popularity in digital rock reconstruction, since they can learn images in a generative and 
unsupervised manner, and eventually reproduce highly realistic new images that are similar 
to the training ones.

Concerning GANs-related applications in reconstructing digital rocks, the early work 
is that Mosser et al. applied GANs to learn three-dimensional images of micro structures 
with three rock types, i.e., bead pack, Berea sandstone and Ketton limestone, and success-
fully reconstructed their stochastic samples with morphological and flow characteristics 
maintained (Mosser et al. 2017, 2018). On top of GANs, Shams et al. (2020) integrated it 
with auto-encoder networks to produce sandstone samples with multiscale pores, enabling 
GANs to predict inter-grain pores while auto-encoder networks provide GANs with intra-
grain pores. Some other representative applications also exist, such as adopting GANs to 
reconstruct shale digital cores (Zha et al. 2020), utilizing GANs to augment resolution and 
recover the texture of micro-CT images of rocks (Wang et al. 2019, 2020), and reconstruct-
ing three-dimension structures from two-dimension slices with GANs (Feng et al. 2020; 
Kench and Cooper 2021; You et al. 2021).

Although GANs are successfully verified to reconstruct several kinds of rocks, the infor-
mation source for learning may be excessively single, i.e., only the rock images, and prior 
information about the rocks cannot be incorporated in the current GANs workflow. As a 
result, the generated samples could be too random and less representative, which may limit 
their potential for downstream research about pore-scale flow modeling. For instance, it is 
easy to produce sandstone samples with realistic porosity in previous work, but hardly pos-
sible to synthesize plentiful samples with specified porosity or other user-defined proper-
ties. In addition, current GANs are strictly developed for reconstructing rocks of a specific 
type, which means that it is necessary to restart GANs training when a new rock image is 
prepared for random reconstruction. Such kind of processing will invisibly aggravate com-
putational burden, and thus needs to be improved.

To enable GANs to study images of different rock types simultaneously and enhance the 
representativeness of generated samples according to user-defined properties, we leverage 
the GANs in a conditioning manner, which was originally proposed by Mirza and Osindero 
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(2014). In this study, we adopt progressively growing GANs as a basic architecture (Karras 
et al. 2017), which has demonstrated excellent performance in image synthesis (Liang et al. 
2020; Wang et al. 2018), and has been successfully applied in geological facies modeling 
(Song et al. 2021). Inspired by the work of generating MNIST digits based on class labels 
with conditional GANs (Mirza and Osindero 2014), we make the rock type as one of the 
conditional information, aiming to generate samples with respect to a specified rock type. 
Moreover, the two basic statistical moments, i.e., porosity and two-point correlations, usu-
ally adopted to describe morphological features, also serve as another conditional infor-
mation to produce samples with user-defined first two moments. Compared with object-
based, process-based, pixel-based methods and standard GANs, the conditional GANs in 
our work can incorporate information not only from the data but also user-defined statisti-
cal moments (i.e., the prior information), which cannot be realized by any of the afore-
mentioned approaches. Specifically, the proposed framework can integrate the advantages 
of commonly used MPS and TPS, since it is able to obtain high-order information from 
rock images using the GANs scheme and honor low-order moments through the condition-
ing manner simultaneously. The randomly reconstructed samples with specified low-order 
moments can bring benefits for the subsequent research on multiphase flow modeling and 
uncertainty analysis. For example, the moment-based stochastic models can be developed 
for modeling pore-scale flow and transport (Zhang 2001), and further help characterize 
the uncertainties of macro properties, e.g., relative permeability. Moreover, 3D printing 
techniques can be applied to reconstructing realistic samples with specified porosity or cor-
relation length, which can be used to study mechanism of pore-scale flow and transport 
through experiments.

The remainder of this paper is organized as follows. Section 2 reviews the fundamental 
concepts and loss functions of the original GANs, and their conditional variants. Section 3 
introduces the experimental data and the network architectures used in this study, and then 
demonstrates the experimental results with three conditioning settings. Finally, conclusions 
are given in Sect. 4.

2 � Methods

2.1 � Generative Adversarial Networks

GANs were initially proposed by Goodfellow et al. (2014) to learn an implicit represen-
tation of a probability distribution from a given training dataset. Suppose that we have 
a dataset �, which is sampled from Pdata . Our goal is to build a model, named generator 
( G ), to generate fake samples that nearly support the real distribution Pdata . The generator 
is parameterized by � , and takes the random noise z ∈ Pz as inputs to generate the fake 
samples G�(z) . In order to discern the real samples from the fake samples, another model, 
named discriminator ( D ), is adopted. The discriminator D� with parameters � can be 
viewed as a standard binary classifier, aiming to label the fake samples as zeros and the 
real samples as ones. Therefore, the generator and the discriminator are placed in a com-
petition, in which the generator wants to deceive the discriminator, while the discriminator 
attempts to avoid being deceived. When the discriminator exceeds the generator, it will 
also provide valuable feedback to help improve the generator and, upon reaching the Nash 
equilibrium point, they can both learn maximum knowledge from the training dataset.
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More formally, the two-player game between G and D can be recast as a min–max opti-
mization problem, which is defined as follows (Goodfellow et al. 2014):

In practice, G and D are trained iteratively with the gradient descent-based method, 
with the purpose of approximating Pdata with PG(�) , or equivalently, narrowing the dis-
tance between the two distributions. In the original GANs, the distance is measured by 
Jensen-Shannon (JS) divergence. However, JS divergence is not continuous everywhere 
with respect to the generator parameters, and thus cannot always supply useful gradients 
for the generator. Consequently, it is very difficult to train the original GANs stably. To 
stabilize the training performance, Wasserstein GANs (WGANs) were proposed by switch-
ing the JS divergence with Wasserstein-1 distance, which is a continuous function of the 
generator parameters under a mild constraint (Arjovsky et al. 2017). Specifically, the con-
straint is Lipschitz continuity imposed on the discriminator, and it is realized by clamping 
the parameters of the discriminator to a preset range (e.g., [− 0.01, 0.01]) during the train-
ing process. In order to enforce the Lipschitz constraint without imprecisely clipping the 
parameters of the discriminator, Gulrajani et al. (2017) proposed to constrain the norm of 
the discriminator’s output with respect to its input, leading to a WGAN with gradient pen-
alty (WGAN-GP), whose objective function is defined as:

where P
�̂
 is defined as sampling uniformly along the straight lines between pairs of 

points sampled from Pdata and PG(�) ; and � is the penalty coefficient ( � = 10 is common in 
practice).

Apart from stabilizing training in the form of modifying loss function as WGAN-GP 
did, there is another kind of method that aims to speed up and stabilize the training process 
via revolutionizing its traditional scheme. Progressively growing GAN (ProGAN), pro-
posed by Karras et al. (2017), is the most representative framework of such kind. The key 
idea in ProGAN lies in training both the generator and the discriminator progressively, as 
shown in Fig. 1, i.e., starting from low-resolution data, and progressively adding new lay-
ers to learn finer details (high-resolution data) when the training proceeds. This incremen-
tal property allows the models to firstly discover large-scale features within the data distri-
bution, and then shift attention to finer-scale details by adding new training layers, instead 
of having to learn the information from all scales simultaneously. Compared to traditional 
learning architectures, the progressive training has two main advantages, i.e., more stable 
training and less training time. In this work, we adopt ProGAN as a basic architecture, and 
also utilize the loss of WGAN-GP to further ensure stable training.

2.2 � Conditional ProGAN

Although GANs are confirmed to work well in reproducing data distributions, or equiva-
lently, generating fake samples that closely approximate the real ones, it is still worth not-
ing that such kind of workflow is totally unconditional, which means that the training data 
provide the whole information that GANs can learn. However, in many cases, some con-
ditional information needs to be considered for some specified generations, e.g., generat-
ing MNIST digits conditioned on class labels or generating face images based on gender. 
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Likewise, in digital rock reconstruction, we aim to not only reproduce the training samples, 
but also allow them to satisfy some user-defined properties, e.g., porosity and two-point 
correlations, which can be viewed as conditional information in the generating process. 
Moreover, in previous work, the GANs are always trained on datasets from a single rock 
type and, as a consequence, the trained GANs can only generate rock samples of this kind. 
If one wants to obtain samples from n rock types, it is necessary to separate GANs training 
n times according to previous practice, which means a large amount of computational cost. 
Motivated by how to generate samples with different rock types using one trained GAN 
and enable these samples to incorporate user-defined properties, we propose a new Pro-
GAN in a conditioning manner for digital rock reconstruction.

Conditional GANs (cGANs) were initially introduced by Mirza and Osindero (2014), 
aiming to generate MNIST digits conditioned on class labels. The framework of cGANs is 
highly similar to that of regular GANs. In the simplest form of cGANs, some extra infor-
mation � is concatenated with the input noise, so that the generation process can condition 
on this information. In a similar manner, the information � should also be seen by the dis-
criminator, because it will affect the distance between the real and fake distributions, which 
is measured by the discriminator. The original cGANs adopted the loss function in the 
form of JS divergence, which are deficient in training stability, as discussed in the above 
section. Therefore, in this work, we only borrow the conditioning manner in cGANs, and 
build a new loss function on top of WGAN-GP loss.

As shown in Fig. 2, the generator of conditional ProGAN takes as input the three-dimen-
sional image-like augmented noises, which are composed of random noise with known 
distribution and conditional labels, and they are concatenated along the channel axis. 
Regarding why the input noise should be formulated as image-like data, this is because the 
generator adopts fully convolutional architectures in order to achieve scalable generations, 
i.e., generate images with changeable sizes by taking noise with different shapes as input. 

Fig. 1   Schematic of the progressive training process. The original training data in our study are shaped as 
64 × 64 × 64 voxels, and they are down-sampled to several low-resolution versions, i.e., from 32 × 32 × 32 
voxels to 4 × 4 × 4 voxels with the rate as half of the previous edge length. The training procedure starts 
from the data with the lowest resolution, i.e., 4 × 4 × 4 voxels, and then goes to the subsequent stage to 
learn data with higher resolutions through adding new network layers, until the data reach the largest reso-
lution, i.e., 64 × 64 × 64 voxels
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Followed by the objective function defined in Eq. (2), the loss function of the generator and 
the discriminator in conditional ProGAN can be written as follows:

where � represents the conditional labels containing rock types, porosity, and parameters of 
two-point correlation functions.

3 � Experiments

3.1 � Experimental Data

To evaluate the applicability of the proposed conditional ProGAN framework for recon-
structing digital rocks, we collect five kinds of segmented rock images, i.e., Berea sand-
stone, Doddington sandstone, Estaillade carbonate, Ketton carbonate and Sandy multiscale 
medium, from public datasets, i.e., the Digital Rocks Portal (https://​www.​digit​alroc​kspor​

(3)
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[
D�
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G�(z, c), c

)]
,LD = �z∼Pz

[
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(
G�(z, c), c
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]
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,

Fig. 2   Schematic of the proposed conditional ProGAN. The input noise to the generator is augmented by 
conditional labels, i.e., one-hot encoded rock types, porosity, and parameters of two-point correlation func-
tions. The labels should also serve as input of the discriminator by concatenating with the images

Table 1   Basic information of five kinds of rock samples

Rock type Original size Original resolution Sample resolution References

Berea sandstone 1000 × 1000 × 1000 2.25 �m 9.00 �m (Neumann et al. 
2020)

Doddington sand-
stone

700 × 700 × 700 5.40 �m 15.12 �m (Moon and Andrew 
2019)

Estaillade carbonate 650 × 650 × 650 3.31 �m 8.60 �m (Muljadi 2015)
Ketton carbonate 1000 × 1000 × 1000 3.00 �m 12.00 �m (Raeini et al. 2017)
Sandy multiscale 

medium
512 × 512 × 512 3.00 �m 6.14 �m (Mohammadmoradi 

2017)

https://www.digitalrocksportal.org/
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tal.​org/), and their basic information is listed in Table  1. The basic strategy to prepare 
training samples is to extract three-dimensional subvolumes from the original big sample. 
In the condition of limited computational resources, the size of training data cannot be 
very large. Meanwhile, the size of the training sample should meet the requirements of 
representative elementary volume (REV) to capture relatively global features (Zhang et al. 
2000). Consequently, we down-sample the original rock images to 2503 voxels via spatial 
interpolations, and then we extract samples of size 643 voxels with a spacing of 12 vox-
els, whose consequent resolutions are also listed in Table 1. Additionally, we conduct an 
experiment about porosity of extracted samples with respect to their edge lengths, with 
an aim to determine whether 64 voxels can meet the requirements of REV. As shown in 
Fig. 3, when the edge lengths are larger than 64 voxels, the curves become much smoother 
than the previous parts. Even though the Sandy multiscale medium cannot get as smooth 
as the other four kinds of rocks when the edge length exceeds 64 voxels, it becomes much 
smoother than itself with smaller edge lengths. Considering that the edge length cannot be 
very large in order to guarantee a certain amount of extracted samples and save computa-
tional resources, and hence the edge length is determined as 64 voxels in this work. Finally, 
for each kind of rock, we can extract 4096 training samples of size 643 voxels with a spac-
ing of 12 voxels between them in the original image. To further amplify the sample size, 
we rotate the samples by 90◦ along one axis for two times, and then the total size of each 
training dataset can be three times of 4096, i.e., 12,288.

3.2 � Network Architecture

We built the network architecture based on that of (Karras et al. 2017), and made a few 
necessary modifications. As shown in Fig. 4a, the generator network consists of five blocks, 
and they will be added into the network progressively once the training data enter into a 
higher resolution. For example, only block 1 needs to be used in stage 1 to generate fake 
samples with size 4 × 4 × 4 voxels. When the training in stage 1 finishes and enters into 
stage 2, block 2 will be added to the network to produce fake samples with size 8 × 8 × 8 
voxels. Likewise, the subsequent stages will be conducted by introducing new blocks. 
To enable scalable generations, i.e., generate samples with arbitrary sizes, we replace 

Fig. 3   The porosity of cubic subvolumes with different edge lengths extracted from the original sample 
with size 2503 voxels. The vertical red line means that the edge length equals to 64 voxels. For simplicity, 
we take the first word of names of each rock type to represent them, respectively, in this and subsequent 
figures

https://www.digitalrocksportal.org/
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fully-connected layers in original block 1 with convolutional layers, whose kernel size and 
stride are both 1 × 1 × 1 voxel. Consequently, the inputs should be 5D tensors to meet the 
demands of convolutional operations, and here we set it as shape N × C × 4 × 4 × 4 , in 
which N represents batch size and C means channels. In block 1, leaky ReLU activation 
function and pixel-wise normalization are added after the convolutional layer. To feed the 
discriminator single-channel data with resolution 4 × 4 × 4 voxels, a convolutional layer, 
which adopts cubic kernel and stride with edge length as 1 voxel, is added to reduce the 
channels of outputs of block 1 while preserving their size unchanged. After stage 1 train-
ing, the subsequent blocks are the same in network layers, and the only difference from 

Fig. 4   The network architecture of a generator and b discriminator. Due to the progressive training scheme, 
the training process is split into five stages, and they are paired for the generator and the discriminator, 
which means that the output of the generator should share the same size as the input of the discriminator 
in each training stage. When entering new stages, new blocks will be added progressively to handle higher-
resolution data. The input tensor z∗ for the generator, augmented by random noise and labels, firstly goes 
through a convolutional layer (Conv), a Leaky ReLU activation layer (LReLU), and a pixel-wise normaliza-
tion layer (PN) in block 1. The subsequent blocks are the same as block 1 except for the deconvolutional 
layer (Deconv), which is used for enlarging the size of feature maps. In each stage, the output of the final 
block will go through a Conv layer with kernel and stride size as 1 to reduce data channels and obtain fake 
data with the same shape as training data. The discriminator takes multi-resolution data and labels as input, 
which share the same size and concatenate along the channel axis. The input data firstly go through a Conv 
layer with kernel and stride size as 1 to increase channels, and then pass some blocks, which are all com-
posed of a Conv layer (with cubic kernel size as 3 and strides as 2) and a LReLU activation layer. Finally, a 
fully-connected layer (FC) is used to transform the outputs of block 1 to one-dimensional scores
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block 1 is that all of them adopt deconvolutional layers (with kernel size 3 × 3 × 3 and 
strides 2 × 2 × 2 ) to enlarge the size of feature maps by two times of the previous ones. 
The same as in stage 1, there is also a convolutional layer being arranged after each block 
to decrease the channels of their outputs. The input z∗ to the generator is an augmented 
vector, which is obtained by the random noises z concatenated by the conditional labels c 
along the channel axis, i.e., z∗ = z⊕ c , where ⊕ represents the concatenation operation.

The discriminator network (see Fig. 4b) is almost symmetric to the generator network 
with several exceptions. Likewise, the discriminator has the same number of blocks as the 
generator since they should undergo the paired training stages, which means that the out-
puts of the generator and the inputs of the discriminator must have the same resolution in 
each training stage. The input Y∗ to the discriminator is also an augmented vector like that 
to the generator, and the conditional labels c should be reformulated as 5D tensors with 
the same width as training images Y so that they can be concatenated along the channel 
axis, i.e., Y∗ = Y ⊕ c . In each stage, the training data will firstly go through a convolu-
tional layer, whose cubic kernel and stride have edge length as one voxel, to enlarge chan-
nels while maintaining the size unchanged. Subsequently, the outputs will undergo sev-
eral blocks, which all contain a convolutional layer (with kernel size 3 × 3 × 3 and strides 
2 × 2 × 2 ) and leaky ReLU activation. Finally, the outputs of block 1 will be transformed 
to one-dimensional scores by a fully-connected layer. It is worth noting that, when enter-
ing new training stages, the newly added blocks to the generator and the discriminator will 
fade in smoothly, with an aim to avoid sudden shocks to those already well-trained and 
smaller-resolution blocks. For additional details about the network architecture and training 
execution of ProGAN, one can refer to (Karras et al. 2017). In this work, we almost follow 
its network hyper-parameters settings, e.g., activation functions and number of convolu-
tional kernels, since they have been verified to work well in diversified image synthesis 
tasks. Moreover, it is also promising to tune the hyper-parameters with the aim to balance 
the efficiency and accuracy and enable key physical constraints to be satisfied (Zhang et al. 
2020a; b).

3.3 � Experimental results

3.3.1 � Reconstruction Conditioned on Rock Type

Based on the training samples of five rock types prepared above, we train the condi-
tional ProGAN networks using the Adam optimizer (Kingma and Ba 2014). The learn-
ing rate ( lr ) is set based on the current training stage or data resolution, and here we 
set lr = 5e − 3 when the resolution is less than or equal to 163 voxels, lr = 3.5e − 3 for 
resolution as 323 voxels, and lr = 2.5e − 3 for resolution as 643 voxels. In this section, we 
consider the rock type as conditional labels, aiming to study several kinds of rock data 
simultaneously with one model rather than wasting time to build several models. The 
conditional rock type are discretized labels, and thus should be one-hot encoded so as to 
concatenate with random noise. As mentioned in Sect. 3.2, we set the inputs of genera-
tor ( z∗ ) as shape N × C × 4 × 4 × 4 , and thus the random noise z sampled from standard 
Gaussian distribution P

�
 has shape N × 1 × 4 × 4 × 4 . To concatenate with image-like 

noise along the channel axis, the original label with size N × 5 should be reshaped and 
repeated as a tensor with size N × 5 × 4 × 4 × 4 . Likewise, when feeding the discrimi-
nator, the labels should also be reshaped and repeated so as to concatenate with multi-
resolution rock data. Therefore, in this case, the channel C of inputs to the generator and 
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the discriminator is 6. The batch size N is chosen as 32 for each training stage in this 
work. In each stage, we set 320,000 iterations of alternative training when data resolu-
tion is less than or equal to 163 voxels, and 640,000 iterations for all larger resolutions. 
We train the networks for 2,880,000 iterations in total, which requires approximately 
23 h running time on four GPUs (Tesla V100).

With the trained model, we can produce new realizations by feeding the generator 
with new random noise sampled from P

�
 and the specified rock type. Here, in its sim-

plest form, we assign the one-hot code [1, 0, 0, 0, 0] as Berea sandstone, [0, 1, 0, 0, 
0] as Doddington sandstone, and so on in a similar fashion for other rocks. Since we 
utilized a fully convolutional architecture to build a scalable generator, we can produce 
new samples with different sizes by feeding the generator with noise of different shapes. 
During the model training, the input z∗ is shaped as cubic image-like data with edge 
length as 4 voxels, and the output is also cubic data with side length as 64 voxels. To 
make the generated cubic samples become larger, we increase edge length of z∗ as 6, 8, 
and 10 voxels to obtain the corresponding outputs with edge length as 96, 128, and 160 
voxels. We randomly select one sample for each kind of rock to visualize the reconstruc-
tion performance. As shown in Fig. 5, the left column represents training samples, while 
the others are generated samples with different sizes. Firstly, the reconstructed rocks of 
different kinds are distinguishable, but visually similar to their own kinds, which means 
that the conditioning of rock type does work. Secondly, the scalable generator can effec-
tively produce samples with larger sizes than those of training ones without losing mor-
phological realism. It is worth noting that, owing to the great power of the progressive 
training scheme, the multiscale features can be effectively incorporated into the model, 
which endows the model with enormous potential to produce structures with dual poros-
ities, such as Sandy multiscale medium.

Apart from visual realism, we need to quantitatively evaluate the reconstruction perfor-
mance by computing statistical similarities between training samples and generated ones. 
In the original ProGAN work, Karras et al. (2017) asserted that a good generator should 
produce samples with local image structures similar to the training set over all scales, and 
they proposed multi-scale sliced Wasserstein distance (SWD) to evaluate the multi-scale 
similarities. The multi-scale SWD metric is calculated based on the local image patches 
drawn from Laplacian pyramid representations of generated and training images, starting 
at a low resolution of 163 voxels and doubling it until reaching the full resolution. Here, 
we sample 4000 training and generated images, and randomly extract 32 7 × 7-pixel slice 
patches from the Laplacian pyramid representation of each image at each resolution level, 
to prepare 128,000 patches from the training and generated dataset at each level. Since 
each saved model during the training process can be utilized to calculate multi-scale SWD, 
we can obtain the changes of SWD with respect to the iteration steps at each level. In this 
work, we average the multi-scale SWD over different levels to acquire a mean value to 
evaluate the distance between two distributions. Meanwhile, we also calculate the average 
SWD at the highest level of real samples as a benchmark, i.e., similarities between real 
patches, and their values are 7.23 × 103, 7.41 × 103, 7.22 × 103, 7.31 × 103 , and 7.50 × 103 
for Berea sandstone, Doddington sandstone, Estaillade carbonate, Ketton carbonate, and 
Sandy multiscale medium, respectively. As shown in Fig. 6, the average SWD curves of 
generated samples from the five rocks can converge to a relatively small value, and are 
extremely close to the above benchmark values, which means that when we stop training, 
the generator can produce very realistic samples.
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Fig. 5   Training samples (the first column in each subfigure) and synthetic samples (the subsequent four col-
umns in each subfigure) with different sizes of five rock types: a Berea sandstone; b Doddington sandstone; 
c Estaillade carbonate; d Ketton carbonate; and e Sandy multiscale medium
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In addition to using SWD to assess the generative performance, we also conduct geo-
statistical analysis to further verify the morphological realism of reconstructed samples. 
The rock media in this experiment can be defined as a binary field F(x) as follows:

where x represents any point in the image of porous media; and Ωpore and Ωsolid are the 
space occupied by the pores and solid grains, respectively. In order to characterize the 
structures of rocks, the first- and second-order moments of F(x) , defined as follows, can be 
utilized:

where �F represents the porosity; and RF(x, x + r) , termed the normalized two-point cor-
relation function, represents the probability that two points x and x + r , separated by lag 
vector � , are located in the pore phase Ωpore . In addition, we also calculate specific surface 
area to measure morphological similarities, which is expressed as:

where integration occurs at the solid-pore interface S ; and V  is bulk volume.
In order to calculate the above three metrics, we randomly select 200 samples from the 

training dataset with respect to each rock type, and simultaneously generate new realiza-
tions with the same amount. As shown in Fig. 7, the porosity ranges of generated samples 
of size 643 voxels agree well with those of training ones for all rock types. When enlarging 

(4)F(x) =

{
1 x ∈ Ωpore

0 x ∈ Ωsolid

,

(5)�F = F(x),

(6)RF(x, x + r) =

[
�F − F(x)

]
⋅

[
�F − F(x + r)

]

�F − �2
F

,

(7)Sa =
1

V
∫ dS,

Fig. 6   Average sliced Wasserstein distance (SWD) of five rock types during the training process
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the size of generated samples, their porosity ranges become narrower while keeping median 
values close to the real ones. This can be easily understood from the perspective of sto-
chastic process, in which the random field with larger scale is more closely approaching 
ergodicity, and thus its statistical properties, such as porosity, should be more stable than 
that with a smaller size (Papoulis and Pillai 2002; Zhang 2001). The normalized two-point 
correlation curves in three dimensions for each kind of rock are presented in Fig. 8. Obvi-
ously, both the means and the ranges of the two-point correlation functions of generated 
samples can match well with those of the original training ones. When samples become 
larger, the two-point correlation functions have narrower ranges and longer tails, and keep 
the mean curves tightly close to the real ones. This means that the second-order structure 
of rock media can be maintained when we produce larger samples than the training ones. 
The comparisons of specific surface area are shown in Fig. 9. Likewise, this metric also 
matches well between the training samples and the synthetic ones, and approaches median 
values when the sample size becomes larger.

To evaluate the physical accuracy of reconstructed samples, we calculate their abso-
lute permeability using the single-phase Lattice Boltzmann method (Eshghinejadfard et al. 
2016). In this case, we ignore the anisotropy of each kind of rock and plot the results in 
Fig. 10. It is obvious that the permeability of generated samples matches well with that 
of training ones, and also gets closer to median values when enlarging sample size. Such 
a trend is quite similar to that of above three geometric indicators, since they are totally 
dependent on the structure, which can be viewed from the perspective of stochastic pro-
cess. Furthermore, with sample size increasing, the abnormal values of permeability 
become less and less. This means that the larger are the samples, the more probable it is for 
them to achieve realistic and stable morphological and physical properties, which is crucial 
for downstream research of pore-scale flow based on the reconstructed samples.

3.3.2 � Reconstruction Conditioned on Porosity

After validating that the conditioning manner worked successfully on rock type, we con-
tinue to consider the first-order moment, i.e., the porosity, as another kind of conditional 
label with an aim to generate random realizations with a specified porosity. During the 
model training, the scalar porosity labels should be reshaped and repeated as the same 
dimension with inputs for the generator and the discriminator, respectively, just as it was 
done in the last section for rock type. When training the discriminator, i.e., minimizing LD 
in Eq. (3), the conditional porosity should be the corresponding values of the training sam-
ples. Meanwhile, when training the generator, i.e., minimizing LG in Eq. (3), we hope that 

Fig. 7   Comparisons of the porosity of real training samples and synthetic (Sync) samples with different 
sizes of five rock types
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Fig. 8   Comparisons of the normalized two-point correlation function of training samples and synthetic 
samples with different sizes of five rock types: a Berea sandstone; b Doddington sandstone; c Estaillade 
carbonate; d Ketton carbonate; and e Sandy multiscale medium
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the generator can see reasonable porosities with equal possibilities, and thus we extract the 
maximum and minimum values of porosity from the training dataset of each kind of rock, 
and then uniformly sample from that range to feed the generator. In this case, we select 
three rock types, i.e., Doddington sandstone, Estaillade carbonate and Sandy multiscale 
medium, to test the performance of porosity conditioning.

With the trained model, we can produce random rock realizations with specified 
porosity by feeding the generator new random noise z ∼ Pz after concatenating it with 
a given porosity label. In this case, we set different porosity targets with respect to dif-
ferent rock types, i.e., �target = 0.21 for Doddington sandstone, �target = 0.10 for Estail-
lade carbonate, and �target = 0.22 for Sandy multiscale medium. The target values are 
determined according to the porosity distribution of the real dataset. Specifically, they 
are randomly selected from two interval ranges, i.e., one range is between the upper 
quartile and the maximum and the other one is between the lower quartile and the mini-
mum. These ranges are chosen because they are relatively more difficult to access than 
those around median values, with the aim to show conditioning performance as fully as 
possible. To validate the performance of conditioning on porosity targets, we produce 

Fig. 9   Comparisons of the specific surface area of training samples and synthetic samples with different 
sizes of five rock types

Fig. 10   Comparisons of the permeability of real training samples and synthetic samples with different sizes 
of five rock types
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200 samples with different sizes for each rock type, and also randomly select training 
samples with the same amount, to calculate their porosities. It can be seen from Fig. 11 
that the porosities of the generated samples with different sizes all exhibit a global off-
set from those of the training ones to the preset targets, and their median values are 
rather close to the targets. Furthermore, when the samples get larger, their porosities 

Fig. 11   Porosity of the training samples and generated samples with different sizes for three rock types. The 
blue dashed line represents the preset porosity targets

Fig. 12   Synthetic samples of varying porosity with size 1603 voxels. The three rows represent Doddington 
sandstone, Estaillade carbonate, and Sandy multiscale medium, respectively
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will approach targets in a more determinate manner. In other words, the large samples 
are more reliable when we want to reconstruct rock samples with a specified porosity.

To further vividly elucidate the performance of porosity conditioning, we fix the input 
noise and only change the porosity for each rock type when feeding the generator to pro-
duce samples with size 1603 voxels. As shown in Fig. 12, almost all pores become larger 
when gradually increasing the conditional porosity. In contrast, the patterns of the pore 
structure remain almost unchanged from left to right in the figure due to the fixed noise. 
This phenomenon reveals that the conditional information could be disentangled from the 
random noise, and they respectively control different aspects in the reconstructed samples, 
with pore structure generally encoded in the input noise and pore size controlled by the 
conditional label. It is interesting to find that the changes in Sandy multiscale medium 
mainly lie in the inter-grain pores, whose sizes grow dramatically when increasing the 
global porosity, while keeping the inner-grain pores less changed.

Apart from evaluating conditioning performance in terms of porosity, we also investi-
gate the effects of changing porosity on physical property. Based on the same samples used 
in Fig. 11, we calculate the corresponding absolute permeability via the Lattice Boltzmann 
method. As shown in Fig. 13, the permeability of the generated samples of Doddington 
sandstone exhibits a slight increase compared to that of training samples, since its porosity 
target is located above the upper quartile and larger than that of major samples. Estaillade 
carbonate presents a similar, but opposite, trend. Actually, the permeability of these two 
rocks did not respond sensitively to the porosity changes. In contrast, the permeability of 
Sandy multiscale medium presents remarkable decreases when setting the porosity target 
below the lower quartile. To more quantatively clarify the markedly different responses 
in permeability, we calculate the relative deviations of porosity targets with respect to the 
median values of the real dataset for each rock type, and also compute that between two 
permeabilities, i.e., the median values of permeabilities of generated samples with size 
1603 voxels and that of the real dataset. The results demonstrate that the relative deviations 
for porosity targets are 11.8%, − 21.6%, and − 23.8% for Doddington sandstone, Estaillade 
carbonate, and Sandy multiscale medium, respectively. The minus deviations mean that 
the targets are smaller than the median values of real porosities, and vice versa. The corre-
sponding relative deviations for permeabilities are 21.2%, − 18.1%, and − 97.4%. It is obvi-
ous that, for Sandy multiscale medium, even though the porosity deviation is slightly larger 
than that of the other two types, the permeability deviation is quite larger than that of the 
other two. Regarding the reason for this, we guess that the inter-grain pores, which affect 
discharge capacity to a large extent, shrink dramatically when decreasing the porosity, as 

Fig. 13   Permeability of the training samples and the generated samples with different sizes for three rock 
types. The generated samples are the same as those in Fig. 11, which adopt different preset porosity as tar-
gets
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denoted in Fig. 12c, and mainly contribute to the decrease of permeability. On the other 
hand, in Doddington sandstone or Estaillade carbonate, even though the pore sizes are 
changing, the pore throats may change a little, which have direct effects on rock permeabil-
ity. Therefore, we can find that porosity conditioning can actually work through the pro-
posed method. However, whether the changing porosity will affect permeability effectively 
is different among rock types, which requires further and systematic investigations but goes 
beyond the scope of this article.

3.3.3 � Reconstruction conditioned on correlation length

In addition to porosity, we also test the conditioning performance of the second-order 
moment, i.e., the two-point correlations. Considering that the two-point correlation func-
tion is relatively hard to be conditioned on, we instead leverage a more underlying vari-
able, i.e., the correlation length with respect to each correlation function. The normalized 
two-point correlation curves shown in Fig. 8 are close to the exponential model, defined as 
follows:

where r is the lag distance; and � is the correlation length. They both use voxels as units 
in this case. The non-linear least square method can be utilized to fit R(r) to the two-point 
correlation curves, and eventually obtain � corresponding to each sample. In practice, we 
can make use of the Python library, named scipy.optimize, to realize it very conveniently.

In this case, we select Berea sandstone, Ketton carbonate, and Sandy multiscale medium 
to test the conditioning performance. We ignore anisotropy of correlations, since we found 
that it is not obvious in the datasets of selected rock types. Therefore, the conditional label 
� is still a scalar value, and should concatenate with inputs for the generator and the dis-
criminator as done for the porosity in the last section. In the same manner as the last sec-
tion, when feeding the discriminator, the conditional � should correspond to the training 
data; while feeding the generator, � is uniformly sampled from the range that is determined 
by the extremum of real labels.

After training, we can use the learned model to generate realizations by assigning a spe-
cific correlation length. In this case, we set the target correlation lengths as �target = 2.4 
voxels for Berea sandstone, �target = 7.0 voxels for Ketton carbonate, and �target = 3.5 vox-
els for Sandy multiscale medium. We select these target values following the same rule for 
porosity conditioning in the previous section. We generate 200 samples for each rock type 

(8)R(r) = exp (−r∕�)

Fig. 14   Isotropic correlation lengths (voxels) of training samples and generated samples with different sizes 
of three rock types. The blue dashed lines represent the respective preset targets for each rock type
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with different sizes, and randomly select the training samples with the same amount to 
demonstrate the performance of correlation length conditioning. As shown in Fig. 14, the 
correlation length of generated samples with different sizes are approaching the preset tar-
gets, and their ranges become narrower with increasing size, as we found for the porosity 
in the previous section. Meanwhile, we plot the correlation functions of training samples 
and synthetic samples with size 1603 voxels in Fig. 15. We can find that the mean curves of 
the generated samples get very close to the targets, and this is especially obvious for Ketton 
carbonate and Sandy multiscale medium samples.

To further clearly show the conditioning effects of correlation length, we fix the input 
noise and increase the correlation length gradually to produce samples with size 963 vox-
els. Here, we choose 963 since the relatively smaller size is beneficial to visualize the local 
changes. Theoretically, the increase of correlation length will contribute to the connec-
tion of pores. As shown in Fig. 16, the Ketton carbonate sample presents the most visible 
changes, with pores becoming more connected from left to right in the figure. Similar to 
the porosity conditioning, the changes of the Sandy multiscale medium sample mostly lie 
in inter-grain pores, which become larger and thus have better connectivity when increas-
ing correlation length. In contrast, even though the statistical metrics reveal good perfor-
mance (as shown in Figs. 14 and 15), little obvious variations can be found in the Berea 
sandstone sample, which may be partly attributed to its rather small ranges of correlation 
length, i.e., approximately from 2.0 to 2.5.

Furthermore, as we did in the last section, we also evaluate the effects of changing cor-
relation length on permeability. Firstly, we calculate the absolute permeability of the plot-
ted samples in Fig. 16 to prove that correlation length does change. As shown in Table 2, 
the permeability of three rocks generally increases from sample 1 to sample 4 when 
increasing correlation length, which means that their correlation lengths did change even 
though the plotted samples may not reveal it very obviously. In addition, we also calcu-
late the permeability of samples with different sizes, i.e., the samples used in Fig. 14, to 
investigate its statistical trend. As shown in Fig. 17, with preset targets larger than those of 
most samples, the permeability of Berea sandstone and Ketton carbonate samples exhibit a 
growing trend compared to training samples. In contrast, the permeability of Sandy multi-
scale medium samples decreases remarkably due to a relatively lower preset target. There-
fore, it can be validated that the correlation length has a statistically positive correlation 
with permeability.

After validating the conditioning performance of isotropic correlation length, we move 
forward to test whether the model can condition on anisotropic correlation length. We 

Fig. 15   Comparisons of the normalized two-point correlation function of real and synthetic samples of 
three rock types. The size of synthetic samples is 1603 voxels
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adopt Doddington sandstone for this experiment. Based on the initially extracted samples, 
i.e., 4096 samples as stated in Sect. 3.1, we compute the correlation lengths of three direc-
tions according to Eq. (8), and then calculate the standard deviations of correlation lengths 
among three directions of each sample, and rank them. We select the former 2500 samples 
with relatively large standard deviations, aiming to eliminate the samples with no obvious 
anisotropy. Finally, we rotate the selected samples for two times as was done in Sect. 3.1 to 
obtain the eventual training dataset with size 7500.

Upon finishing the training, we use the trained model to generate 200 samples with dif-
ferent sizes by setting the correlation length target as �x = 5.0 voxels, �y = 3.5 voxels, and 

Fig. 16   Synthetic samples with size 963 voxels when only varying correlation lengths � . The three rows rep-
resent Berea sandstone, Ketton carbonate, and Sandy multiscale medium, respectively

Table 2   The permeability (Darcy) of samples in Fig. 16. The correlation length increases from sample 1 to 
sample 4

Rock type Sample 1 Sample 2 Sample 3 Sample 4

Berea sandstone 0.56 0.62 1.08 1.16
Ketton carbonate 0.04 0.35 1.58 8.44
Sandy multiscale medium 0.63 6.04 9.32 22.03
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�z = 3.8 voxels. As shown in Fig. 18, the conditioning performance is excellent for each 
direction, and the samples with larger size also show better matching with corresponding 
targets. To demonstrate the anisotropic conditioning more clearly, we produce samples 
by using a fixed input noise and a gradually changing correlation length in one direction. 
We fix �y = 3.5 voxels and �z = 3.8 voxels, and increase �x from 3.5 voxels to 6.0 voxels 
with roughly equal intervals (i.e., 3.50, 4.13, 4.75, 5.38, 6.00), and randomly select a x–y 
section from the same location of each sample. It can be seen from Fig. 19 that, through 
only changing �x , the pores become increasingly connected along the x-axis while keeping 
the connection almost unchanged along another direction. This means that the anisotropic 

Fig. 17   Permeability of the training samples and the generated samples with different sizes for three rock 
types. The synthetic samples are generated by using the correlation length target set in Fig. 14

Fig. 18   Anisotropic correlation lengths (voxels) of the Doddington sandstone training samples and gen-
erated samples with different sizes. The blue dashed lines represent the respective preset targets for each 
direction

Fig. 19   x–y sections  (160 × 160 ) of generated Doddington sandstone samples extracted at a randomly 
selected but same location, which are produced by one fixed input noise and changing correlation lengths, 
i.e., increasing �

x
 from 3.5 voxels to 6.0 voxels with approximately equal intervals (i.e., 3.50, 4.13, 4.75, 

5.38, 6.00) and maintaining �
y
= 3.5 voxels and �

z
= 3.8 voxels
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conditioning does work, and the pores’ connection can be modified along one specific 
direction. In addition, we also test the effects of conditioning of anisotropic correlation 
length on permeability. We adopt the same samples used in Fig. 18 to calculate anisotropic 
permeability, and plot the results in Fig. 20. From the figure, it can be seen that the perme-
ability of generated samples in the y - and z-axis directions witness an obvious decrease 
compared to that of training ones, while the permeability of generated samples in the x-
axis direction exhibits a slight increase. This phenomenon can further validate that the cor-
relation length is positively correlated with permeability statistically. Through the above 
tests and discussions, we can conclude that the proposed conditional ProGAN can work in 
both isotropic and anisotropic correlation length conditioning, to provide synthetic samples 
with modified pore connections.

4 � Conclusion

In this work, we extended the framework of digital rock random reconstruction with GANs 
by introducing a conditioning manner, aiming to produce random samples with user-spec-
ified rock types and first two moments. In order to stabilize the training process and natu-
rally learn multiscale features, the conditional ProGAN using WGAN-GP loss was adopted 
in this work. Through three experiments, it was successfully verified that rock type, poros-
ity, and correlation length could be effectively conditioned on to guide the morphology 
and geostatistical property of the generated samples without losing visual and geologic 
realism. Due to the conditioning manner, this study offers a new way to simultaneously 
incorporate experimental data and user-defined properties, which can be viewed as prior 
information, when reconstructing digital rocks. Those synthetic samples with user-defined 
rock type, porosity and correlation length, can be provided for researching the pore-scale 
multiphase flow behavior, especially for its uncertainty analysis, since the low-order statis-
tical moments can be honored by the random samples.

Regarding comparisons with previous representative methods, the commonly used two-
point statistics methods can only consider user-defined low-order moments, and subse-
quent multi-point statistics methods extract high-order information directly from the train-
ing images while leaving no interface for users to specify low-order properties. Therefore, 
the proposed framework in this work actually integrated their advantages, i.e., learning 

Fig. 20   Anisotropic permeability of Doddington sandstone training samples and generated samples with 
different sizes. The samples are the same as those used in Fig. 18, which adopt different preset correlation 
lengths as targets in three directions
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high-order information directly from images using the GANs scheme, while honoring low-
order properties through additional conditioning manner. Moreover, the conditioning of 
rock type may provide an alternative solution to previous isolated GANs training developed 
for a specific rock type, and consequently save computational cost. Additionally, a potential 
deficiency exists about rock type conditioning that needs to be mentioned. Since different 
kinds of rocks have different REV sizes, we refer to their maximum value to design the 
shape of training samples, aiming to make it satisfy the REV demands of all rock types 
simultaneously. However, even though the shape may be slightly large for those with small 
REV size, it will not negatively affect the learning performance of the proposed method.

An alternative research about how to manipulate the generated images is disentangled 
representation learning, which has been increasingly promoted to improve the interpret-
ability of GANs (Chen et al. 2016; He et al. 2019; Karras et al. 2019) or other generative 
models, such as variational auto-encoders (Chen et al. 2018; Higgins et al. 2016). The dis-
entanglement of the latent space, including conditional labels, i.e., making them uncor-
related and connected to individual aspects of the generated data, constitutes the key part 
in such kind of research. Inspired by this concept and in order to clearly demonstrate the 
effects of each conditional label, we did not carry out the experiment conditioned on the 
porosity and correlation length together because they are correlated in the binary micro-
structure (Lu and Zhang 2002). If the data are continuous, such as the heterogeneous field 
of geological parameters, it is certain that the first two moments can be conditioned on 
simultaneously since they are uncorrelated. Furthermore, we only consider the reconstruc-
tion of binary structures in this work, which are certain to be less realistic than gray-scale 
reconstructions, such as those in You et al. (2021). However, the digital rock reconstruction 
in this study is mainly developed for the subsequent multiphase flow modeling and uncer-
tainty analysis, which only requires binary structures. Meanwhile, the proposed framework 
can be definitely adapted to gray-scale images if a sufficient investigation of morphological 
characteristics is needed.
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