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Abstract
This work aims to describe the spatial distribution of flow from characteristics of the 
underlying pore structure in heterogeneous porous media. Thousands of two-dimensional 
samples of polydispersed granular media are used to (1) obtain the velocity field via direct 
numerical simulations, and (2) conceptualize the pore network as a graph in each sample. 
Analysis of the flow field allows us to distinguish preferential from stagnant flow regions 
and to quantify how channelized the flow is. Then, the graph’s edges are weighted by 
geometric attributes of their corresponding pores to find the path of minimum resistance 
of each sample. Overlap between the preferential flow paths and the predicted minimum 
resistance path determines the accuracy in individual samples. An evolutionary algorithm 
is employed to determine the “fittest” weighting scheme (here, the channel’s arc length 
to pore throat ratio) that maximizes accuracy across the entire dataset while minimizing 
over-parameterization. Finally, the structural similarity of neighboring edges is analyzed to 
explain the spatial arrangement of preferential flow within the pore network. We find that 
connected edges within the preferential flow subnetwork are highly similar, while those 
within the stagnant flow subnetwork are dissimilar. The contrast in similarity between 
these regions increases with flow channelization, explaining the structural constraints to 
local flow. The proposed framework may be used for fast characterization of porous media 
heterogeneity relative to computationally expensive direct numerical simulations.

Article Highlights

1.	 A quantitative assessment of flow channeling is proposed that distinguishes pore-scale 
flow fields into preferential and stagnant flow regions.

2.	 Geometry and topology of the pore network are used to predict the spatial distribution 
of fast flow paths from structural data alone.

3.	 Local disorder of pore networks provides structural constraints for flow separation into 
preferential v stagnant regions and informs on their velocity contrast.
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1  Introduction

Flow channelization is an ubiquitous phenomenon in subsurface media with implications 
in many engineering endeavors including groundwater management (Charbeneau 2006; 
Freeze and Cherry 1979; Šimnek et al. 2003; LeBlanc et al. 1991), oil and gas recovery 
(Middleton et  al. 2015; Orr and Taber 1984; Wong 1988), and geotechnical engineer-
ing (Dullien 1992; Bear 1988). Observations of nonuniform flow distribution have been 
reported at the pore- and continuum-scales in laboratory studies (Kurotori et  al. 2019; 
Datta et  al. 2013; Carrel et  al. 2018; Morales et  al. 2017; Holzner et  al. 2015; de Anna 
et al. 2021), field experiments (Goeppert et al. 2020; Bianchi et al. 2011; Zheng et al. 2011; 
Abelin et  al. 1991; Guihéneuf et  al. 2014; Le Borgne et  al. 2006; Rasmuson and Neret-
nieks 1986; Winograd and Pearson 1976; Flury et al. 1994; Hendrickx and Flury 2001) and 
numerical simulations (Alim et al. 2017; Meyer and Bijeljic 2016; Tyukhova and Willmann 
2016; Siena et al. 2014, 2019; Nissan and Berkowitz 2019; Puyguiraud et al. 2019; Kang 
et  al. 2014; Bijeljic et  al. 2013; Fiori et  al. 2011, 2013; Zinn and Harvey 2003; Hyman 
2020). The multi-scale structural heterogeneity of porous and fractured media gives rise to 
complex flow patterns that contain pronounced regions of preferential flow associated with 
fast local velocities, and areas of flow stagnation where velocities are slow (Siena et  al. 
2019). Independent of the scale considered, a well-accepted hallmark of channelized flow 
is the non-Gaussian distribution of the underlying velocity field, which has strong implica-
tions for anomalous transport and incomplete mixing (Alim et al. 2017; Dentz et al. 2011).

A formal quantitative definition of preferential flow is warranted to evaluate its occur-
rence in different samples and to identify the geologic properties that prompt it (Renard 
and Allard 2013; Hyman 2020; Le Borgne et al. 2006; Su et al. 2001). In weakly hetero-
geneous subsurface environments, relatively uniform flow is well described and upscaled 
by Darcy’s law. For these media, pedotransfer functions provide a convenient way to esti-
mate hydraulic properties from basic information of the geologic formation (Price et  al. 
1911; Carman 1937; Schaap et  al. 2001). In strongly heterogeneous subsurface environ-
ments, however, neither the flow nor the medium’s variability follow spatial stationarity 
rules (Chakraborty et al. 2020; Bradford et al. 2017). To accurately resolve the flow, direct 
numerical simulations of the governing equations in the detailed pore space are required. 
These calculations are associated with high computational costs and are not trivial to 
upscale (Dentz et  al. 2011). As a consequence, the elusive link between medium struc-
ture attributes and complex flow distribution presents a challenge for accurate predictions 
of field-scale flow and transport problems. Relatable connectivity measures for static and 
dynamic metrics have been proposed to elucidate this link (Knudby and Carrera 2005; 
Renard and Allard 2013; Hobé et al. 2018; Hyman 2020; Rizzo and de Barros 2017). Static 
connectivity measures are defined from structural information, while dynamic connectiv-
ity measures reflect the system’s response in its flow field and/or solute transport. In this 
framework, the principal aim is to infer dynamic flow properties from static connectivity 
measures (Knudby and Carrera 2005).

Recent work has focused on splitting the heterogeneous structure-flow relationship 
into its two main components—one for the preferential flow paths of high conductivity 
and another for low conductive layers of stagnant flow (Knudby and Carrera 2005). For 
the link in regions of high conductivity, Siena et  al. (2019) propose an analytical func-
tion to describe how the velocity distribution in preferential flow paths is related to the 
pore size distribution and the spatial correlation. At the pore-scale, Jimenez-Martinez and 
Negre (2017) take advantage of network analysis and graph theory to build a model that 
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accounts for anisotropy in multiphase systems. Through eigenvector centrality metrics of 
static connectivity, the authors are able to infer reasonably well the fraction of the porous 
medium that behaves as stagnation zones and/or preferential paths. For gas-injection prob-
lems, Yeates et al. (2020) optimize a weighted graph representation of the pore space to 
predict preferential foam flow from shortest path analysis. At the continuum-scale, Rizzo 
and de Barros (2017) provide a connectivity link for heterogeneous permeability fields. In 
their work, the authors represent static connectivity as a graph in which the least resistance 
path is found and used to estimate the time of first arrival for risk analysis. By contrast, less 
attention has been paid to the link in regions of low conductivity. The work by de Anna 
et al. (2017) shows that local low velocities in disordered media are well described by a 
power-law distribution function with an exponent obtained from the pore throat size distri-
bution. Similarly, Matyka et al. (2016) present work on the velocity distribution function 
in random porous media, where their distributions are described by a power-exponential 
distribution whose parameters depend on the porosity. For regions of low conductivity, it 
remains to be determined if the suggested conductivity links are valid in highly correlated 
porous matrices.

The principal focus of this study is to understand how flow is spatially distributed in 
and constrained by the underlying microstructure in samples of arbitrary heterogeneity. 
Our first aim is to predict the location and strength of preferential flow regions from pore 
network topology and channel geometry. Our second aim is to explain the structural con-
straints for preferential and stagnant flows that give rise to variable velocity distribution 
contrasts between these two regions. To do this, we consider an extensive dataset of two-
dimensional samples of polydispersed porous media whose flow classification spans highly 
uniform to highly channelized.

The remainder of the paper is structured as follows. Section 2 details the methods used 
to extract static and dynamic connectivity measures and graph theory approaches used to 
find their link. Section 3 reports and discusses findings from the three major analyses. The 
first proposes a metric to quantify the degree of flow channelization and spatially distin-
guishes preferential from stagnant flow regions. The second reports the optimized short-
est path (least resistance curve) to identify preferential flow paths from information of the 
underlying microstructure. The third shows how the (dis)order of the structural arrange-
ment of the network constrains flow development. Section  4 provides conclusions and 
main take home messages.

2 � Methods

2.1 � Image Preparation and Flow Simulations

The porous medium consists of well-sorted Nafion grains with an average diameter of 
3.6 mm that are wet-packed into a cubic flow cell of 3.8 cm in length (Morales et al. 2017). 
Micro-computed tomography is used to obtain the cross section images of a three-dimen-
sional porous structure at a resolution of 25 µm, producing an image of 15403 voxels. Each 
tomographic image is cropped to exclude approximately 100 µm on all edges of the porous 
medium to exclude wall effects as much as possible (see Figure S1) while maximizing the 
structural information retained. Image segmentation identifies each voxel as either solid or 
void. To improve the connectivity in the 2D cross sections, each image is modified slightly. 
First, watershed segmentation is applied to ensure the pore space is permeable for flow 
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simulation. Next, select samples are subjected to varying steps of solid erosion (from 1 to 9 
pixels) to create samples of variable pore geometry while preserving the original topology. 
Altogether, 3620 unique 2D samples are used in this study. The average pore throat across 
the 2D samples is 480 µm, the full pore-throat distribution is shown in Figure S2.

To obtain the Eulerian velocity field �(�) in each unique porous sample, we solve the 
Navier–Stokes equations using the finite element numerical model, COMSOL (www.​
comsol.​com). In COMSOL, we simulate laminar flow where the inlet boundary condition 
is a line at the left border of the domain (broken where grains are at the edge) specified 
to achieve a mean velocity of 0.001 m/s. The outlet boundary condition is a line at the 
right border set at zero pressure. The top and bottom boundaries (perpendicular to the flow 
direction), as well as the grain surface boundary conditions, are set to no-slip.

2.2 � Percolation Threshold and Flow Region Identification

A modified critical thresholding method is used to quantitatively evaluate the degree of 
flow channeling observed and to identify regions of preferential or stagnant flow (Otsu 
1979; Ambegaokar et al. 1971; Kirkpatrick 1971). Briefly, points � of the pore space are 
excluded if the local velocity vector normalized by the mean of the modulus, �(�)∕⟨���⟩ , 
is smaller than a given threshold p. That threshold value is iteratively lowered until a value 
p = pc is reached for which a continuous subdomain is first established that connects inlet 
and outlet boundaries (i.e., a percolating path is found). Pore space points are then classi-
fied as being part of the preferential or stagnant flow as follows:

The percolating subdomain along with any disconnected high-velocity regions is collec-
tively classified as the preferential flow region (PFR). The remainder of the flow field is 
classified as the stagnant flow region (SFR). The percolating threshold ( pc ) measures how 
channelized the flow is (high pc ≫ 1 corresponds to channelized flow, low pc ≤ 1 corre-
sponds to uniform flow) and also indicates how much earlier particle breakthrough times 
might be expected in each sample. An advantage of this definition of flow channelization 
is that all flow fields are placed into a relative context using a dimensionless form of the 
percolation parameter.

Lastly, k-means clustering (Wilmott 2019) was applied to the values of pc for each sam-
ple to group them into three characteristic flow regimes: uniform, intermediate, and chan-
nelized. The number of flow regimes in the dataset was estimated via the gap statistic (Tib-
shirani et al. 2001). This simplified classification of the flow will be useful for qualitative 
comparison of different samples. The authors note that pc cutoffs found here for different 
flow classes are specific to this dataset.

2.3 � Extracting Graphs from the Pore‑Network

We use a graph-based approach to examine the topology and geometry of the pore space in 
a mathematical framework. Each porous media sample is first represented by its equivalent 
graph, G(V, E), using a medial axis method [Skeletonize FIJI plugin (Arganda-Carreras 
et al. 2010)]. Here, V is a set of nodes and E is a set of edges. In this reduced representa-
tion of the pore space, the nodes in V correspond to pore bodies and edges in E corre-
spond to pore channels. Then, the produced skeleton is used to determine the topological 

if �(�)∕⟨���⟩ ≥ pc then �(�) = 1 (preferential) else �(�) = 0 (stagnant).

http://www.comsol.com
http://www.comsol.com
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characteristics and channel properties of the network with the method developed by Pérez-
Reche et al. (2012).

From this approach, we obtain an adjacency matrix with stored topologic information 
about node degree (k), and edge geometric information, including arc-length (L), Eucledian 
distance (D) and pore width statistics (S(x)) (mean, minimum, maximum, range). Various 
combinations of the topological and geometric characteristics define the set H of network 
structural attributes used in our study (summarized in Table 1). These attributes are subse-
quently used to identify the pathway where channelized flow occurs from structural infor-
mation alone.

2.4 � Path Prediction

2.4.1 � Shortest Path Analysis

Each edge e ∈ E of the pore space network connects two nodes and can have a weight we 
that we describe below as a linear combination of the defined structural attributes from 
Table 1 (e.g., distance, width, or local resistivity). Because the magnitude of each attribute 
is widely different, their population is normalized to span a [0,1] range by the maximum 
value observed in the full dataset. We shall denote the normalized quantities as Hi , where 

Table 1   Structural attributes of 
individual channels used to bias 
the shortest path analysis

a Channel weight was also tested in its inverse form
b From Yeates et  al. (2020). Narrow throats result in greater edge 
weight than wide pore throats and the rate of change in weight is 
greater for narrow pore throats than wide pore throats
c From Jimenez-Martinez and Negre (2017). Similar effect as S̄−𝛼 , but 
more amplified.
d From Ewing and Hunt (2009).
e k favors low connectivity regions, 1/k favors hubs in the network

Interpretation Structural attributes ( H
i
)

Arc length L
Euclidean distance D
Mean widtha

S̄

Mean width
�b

S̄
𝛼 , � = −2.5

Minimum width (pore throat)a
S
m

Maximum widtha
S
M

Range of widtha
S
M
− S

m

Exponential decay of pore throatc exp(S−1
m
)

Mean resistanced
L∕S̄

Mean resistance� (L∕S̄)𝛼 , � = −2.5

Minimum resistance L∕S
M

Maximum resistance L∕S
m

Poiseuille’s law for resistance (
S̄

2

)4
∕L

Curvaturea
1 − (D∕L)

Node degreea,e k
Volumea

L
(
S
m

2

)2
�
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i = 1,… , #H is the index for each quantity, following Table 1. The weight of a given edge 
is then expressed as a linear combination of the normalized structural attributes as follows:

Here, � = {xi}
#H
i=1

 are the coefficients whose values will be determined using a genetic algo-
rithm as described below.

A path Γ in G(V, E) is a sequence of nodes connected by edges. Assigning a weight 
to the edges generates a weighted graph R(V, E), which is then used to approximate the 
path of minimum flow resistance. The authors note that the shortest path generally coin-
cides with the path of minimum resistance, but not always. A source s and target t node 
are chosen to define the possible paths Pt

s
 on the graph R(V, E). Since source and target 

nodes cannot be clearly identified in R(V, E), we augmented each graph to include a com-
munal source and a target node. For every channel that emanates near the inflow (outflow) 
boundary, an edge is added between the most distant node in the graph and the node rep-
resenting the source (target) to use a single position of entry (exit) to the graph similar to 
the approach by Hyman (2020). Figure S3 illustrates the graph augmentation. Edges con-
nected to the source or target node are given no weight and thereby do not contribute to a 
path’s resistance. Then, the approximate minimum resistance is given by the minimum of 
an objective function defined as the sum of edge weights along all possible paths connect-
ing source to target, viz. Rizzo and de Barros (2017):

This problem can be solved using shortest path analysis (SPA) with Dijkstra’s algorithm 
(Dijkstra 1959). The goal is to identify the most appropriate weighting scheme (i.e., the 
coefficients � ) for the graph such that the predicted shortest path mapped onto the PFR has 
maximal agreement.

2.4.2 � Differential Evolution

A metaheuristic approach is used to search for potential weighting schemes to optimize 
R(�) . More specifically, we use differential evolution (DE) which is a genetic algorithm 
that uses a greedy approach to minimize a given objective function by adjusting a popula-
tion of coefficients � (Storn and Price 1997). In doing so, the algorithm evolves the coef-
ficients in search of a better solution from a population of candidates. Briefly, a candidate 
solution is composed of a set of coefficients for different channel structural attributes which 
are mutated in each generation. Evolution starts from a population of randomly generated 
initial solutions whose fitness is measured in each generation. Fitness is here assessed via 
a modified Akaike information criterion (AIC), as described below. More fit solutions are 
stochastically selected from the current population and are both recombined and randomly 
mutated to form the next generation. The new generation of solutions is then used to iterate 
the algorithm. The generational process is terminated once the standard deviation of the 
population’s fitness function falls below a user-defined threshold. In this work, the thresh-
old was 0.01. More details about the DE implementation are provided in section S1 of SI.

The initial population contains n candidate solutions {mk =
∑

i∈Hk
xiHi}

n
k=1

 , where 
Hk ⊂ H . The set of initial populations is explicitly designed to cover the entire parameter 
space, i.e., ∪n

k=1
Hk = H . In particular, the coefficients in an initial solution are randomly 

(1)we(�) =
∑

i∈#H

xiHi.

(2)R(�) = min
Γ∈Pt

s

∑

e∈Γ

w
e
(�).
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sampled from a uniform distribution U(0, 1]. To prevent over-parameterization, each ini-
tial solution was limited to contain a maximum of three nonzero xi coefficients chosen at 
random (i.e., the set Hk of structural attributes for a candidate solution j contains three ele-
ments from H ). The initial population was checked to ensure that every structural attribute 
appeared with a nonzero coefficient in at least one solution. Figure S4 illustrates an exam-
ple initial population.

Fitness of a candidate solution is determined by the trade-off between goodness of fit 
of the weighting scheme across the entire dataset and the simplicity of the model. Good-
ness of fit is the arithmetic mean of accuracy for all samples in the dataset, �a . Accuracy, 
az , is evaluated for each individual sample and is estimated as the fraction of spatial over-
lap between the biased shortest path predicted (static connectivity) and the known PFR 
(dynamic connectivity). K, is the number of nonzero coefficients in the evolved solution 
given by K = #{i|xi > 0, i = 1,… , #H} . The modified AIC that the evolutionary algorithm 
minimizes is given by:

To test each proposed weighting scheme, the samples were split into sets for training (80%) 
and testing (20%) sets via 5-fold cross-validation (see details in section S2 of SI). This 
step is implemented to assess how well the model results generalize to independent data-
sets. Model variability is captured by the accuracy distribution spread across the tested 
iterations.

2.5 � Assortativity

To explain the spatial arrangement for preferential flow within a pore network, we measure 
the order between neighboring edges in terms of the conductance Sm . Our hypothesis is 
that edges that make up the preferential flow subnetwork are more similar (i.e., ordered in 
some way) than those that make up the stagnant flow subnetwork. To test this hypothesis, 
we define an assortativity coefficient, r ∈ [−1, 1] , using Sm as a scalar characteristic for 
edges (not for nodes as is typically done) (Newman 2018). Section S3 of the SI provides a 
detailed description of how assortativity is calculated. Positive values of r indicate order, 
and negative values indicate disorder between edges of different Sm . To compare and con-
trast the degree of order in the system, three measures of assortativity are obtained for each 
sample: the preferential flow subnetwork (network edges overlapping with the percolat-
ing cluster, r1 ), the stagnant flow subnetwork (network edges overlapping with the stagnant 
regions, r2 ) and the entire pore network, rW.

3 � Results and Discussion

In this section, we report the measurements of connectivity in virtual experiments to infer 
dynamic flow quantities from static structural measures.

3.1 � Quantitative Degree of Flow Channelization

The percolating threshold metric ( pc ) proposed here allows objective quantification of the 
spectrum of flow channelization in any sample. From a dynamic standpoint, this approach 

(3)AIC = 2K − 2 ln(�a).
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measures the strength of the percolating flow path that connects the boundaries of a given 
flow field. It is reasonable to expect that, in porous media, only a fraction of the porosity 
participates in bulk flow, however, uniform this is. Intuitively, one would expect increas-
ingly strong preferential flow paths (determined by large pc ) to be restricted to a diminish-
ing fraction of the pore space. An illustrative example is provided in Fig. 1 (Right) for two 
velocity fields of uniform and channelized flow and the spatial extent of the preferential 
pathway. The quantitative relationship between pc and the fraction of porosity occupied by 
the PFR, �1 , is illustrated in Fig. 1 (Left). We find that �1 decreases exponentially with pc 
and increases linearly with porosity � . Since the PFR in our dataset is limited to a fraction 
�
1
∈ (0,�) of the sample, this exponential relationship captures the notion that only a frac-

tion of the pore space can carry the bulk flow within the preferential flow paths for chan-
nelized flows of a given strength. While additional testing on numerous independent data-
sets is required to generalize this exponential relationship, similar behavior was observed 
for different 2D geometries of granular porous media, as shown in Figure S7.

The samples in our dataset are grouped into one of three pre-defined flow classes: uni-
form ( pc ≤ 1.1 ), intermediate ( 1.1 < pc < 2.0 ), or channelized ( pc ≥ 2.0 ) (see Figure S8 
for the full histogram). This flow classification allows one to contrast velocity probabil-
ity distribution in the PFR versus the SFR for the extreme cases as shown in Fig. 2. The 
uniform flow samples (red) show that velocities experienced in the PFR (solid lines) are 
similarly distributed as those in the SFR (dashed lines). Conversely, the channelized flow 
samples (green) show large differences in the velocity distributions of the two flow regions. 
While this is not a surprising finding, it permits an explicit definition for the strength and 
spatial location of preferential flow paths, and the expected velocity distributions associ-
ated with PFR and SFR.

3.2 � Prediction of Shortest Paths via Differential Evolution

The DE-SPA approach identified the fittest edge weighting scheme as we(�) =
∑

i∈#H xiHi 
with H = {L∕Sm} across all five iterations of the cross-validation scheme. An exem-
plary weighting scheme evolution for one tested iteration is shown in Fig.  3 (Top). In 
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Fig. 1   (Left) Exponential function relating the porosity fraction associated with preferential flow, �
1
 , the 

normalized velocity percolation threshold, p
c
 , and the porosity, � . (Right) Velocity field for two typical 

realizations of pore structures with comparable porosity � ∼ 0.34 . Included is the corresponding segmenta-
tion as per the velocity percolation threshold. This distinguishes the system’s preferential flow region (in 
white) from the stagnant flow region (in gray)
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this example, the most fit solution from the initial population was we =
∑

i∈#H xiHi with 
H = {L∕Sm,

(
S̄

2

)4
∕L,

(
L
( Sm

2

)2
𝜋
)−1

} , shown for generation 0. At each subsequent genera-
tion, the most fit solutions are recombined and mutated. As can be seen, within four gen-
erations, the algorithm determined that the contribution by the attributes {L∕S̄,

(
S̄

2

)4
∕L} did 

not produce a better result. That is, AIC decreased and �a increased, but not as much as a 
mutated solution with different coefficients [see Fig. 3 (Bottom)]. Likewise, various com-
binations of contributions by the characteristic {

(
L
( Sm

2

)2
�
)−1

} were explored, but removed 
from the working population by generation 15. It is worth noting that from generations 
14–15, the evolved solution became simpler (depending on one attribute instead of two) 
at the minor expense of �a (loss of 6 × 10−4 accuracy). Altogether, this goodness of fit and 
penalty for over-parameterization yielded the lowest AIC, which is the objective function 
this approach aims to minimize.

A pictorial view of the shortest paths corresponding to potential solutions at select 
generations is shown in Fig. 4. Generations g = {0, 1, 4, 15} are shown by different line 
types. Results are provided for three representative samples from the uniform, interme-
diate and channelized flow class. In these figures, the solid grains are shown in black, 

Fig. 2   Probability distribution 
function (PDF) for the average 
channel velocity determined 
at the narrowest width of each 
channel in a subset of samples 
whose flow is characterized as 
highly uniform (red) or highly 
channelized (green). The line 
type indicates whether the 
distribution pertains to velocities 
in the preferential flow region 
(solid) or stagnant flow region 
(dashed)

Fig. 3   (Top) Evolving weights 
for different structural attributes 
tested (individual attributes are 
shown in different colors) at the 
end of each differential evolution 
generation. (Bottom) Evolution 
of corresponding model per-
formance parameters (AIC and 
mean accuracy, �

a
 ) at the end of 

each generation. Data shown are 
for a single iteration of the 5-fold 
cross-validation. Convergence 
is reached after 39 generations. 
Section S1 of the SI provides 
more details on the convergence 
criteria used
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the SFR in gray, and the PFR in white. Generally, the shortest paths become better 
aligned with the preferential flow region in all samples as generations increase. Note 
that, the predicted shortest path between generations 4 and 15 is the same for the sam-
ples shown, demonstrating that a simpler model performs equally well. We also assess 
the possible correlation between accuracy of the shortest path predicted and the strength 
of the flow channelization. A low anticorrelation (Spearman correlation coefficient of 
− 0.06, see Figure S9) is found between az and pc that verifies the unbiased ability to 
accurately predict the preferential flow path in samples of all channelized flow strength.

To assess the performance of our graph-based approach in identifying the minimum 
resistance path, we compare with a null unweighted model we = 1 for all edges. This 
comparison sheds light on flow-structure dependence on the pore geometry while pre-
serving the underlying topology. Figure  5 illustrates the complementary cumulative 
distribution function (CCDF) of the accuracy az in each sample for the fittest weight-
ing scheme based on L∕Sm and the null model in each of the 5-fold cross-validation 
sets. From these distributions, it is evident that the accuracy of the optimized weight-
ing scheme (yellow) significantly outperforms the null model (blue). Neither weighting 
scheme can capture the full percolating path for all samples considered in this study. 
However, the improved performance is notable at, e.g., CCDF = 0.5 where one finds 
that az ≳ 0.6 for the null model whereas az ≳ 0.9 for the most fit weighting scheme.

Fig. 4   Comparison of different weighted shortest paths in typical structures of uniform, intermediate and 
channelized flow class. Solid grains are in black, preferential flow regions are in white, and stagnant flow 
regions are in gray. The shortest paths shown correspond to the evolving weighing scheme at select genera-
tions of Fig. 3

Fig. 5   Complementary cumula-
tive distribution function (CCDF) 
of individual sample accu-
racy a

z
 from the shortest path 

analyses for graphs weighted 
by w

e
(�) =

∑
i∈#H x

i
H

i
 with 

H = {L∕S
m
} (the most fit solu-

tion) or w
e
= 1 (the null model). 

Individual lines correspond to 
each of the 5-fold cross-valida-
tion sets
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3.3 � Inferring Velocity Distribution from Network Structure

To understand why flow becomes channelized, we evaluate the networks’ edge assor-
tativity in terms of their pore throat size, Sm . Assortative mixing ( r > 0 ) is found in all 
samples’ PFR and SFR subnetworks, as well as in their full pore network (see Fig. 6). 
For all samples, the contrast in assortativity between subnetworks corresponding to the 
PFR and the SFR is r1∕r2 > 1 . This corroborates our hypothesis that the underlying pore 
structure where preferential flow develops is structurally more ordered than that where 
flow is stagnant.

To evaluate how this contrast changes with flow channelization, we investigate 
the correlation of r1∕r2 with pc , as shown in Fig.  6. A significant positive correlation 
between these parameters is found (Spearman coefficient of 0.68). From these data, 
we can infer that samples of characteristically high pc (with channelized flow) tend to 
exhibit large contrast between subnetwork assortativity ( r1∕r2 ≫ 1 ). This suggests that 
channelized flow is constrained to edges that are structurally ordered (relative to disor-
dered edges corresponding to stagnant flow). Consequently, flow paths would greatly 
differ between the two flow regions. In contrast, samples of characteristically low pc 
(with uniform flow) tend to display small contrast between subnetwork assortativity 
( r1∕r2 ∼ 1 ). This implies that uniform flow is not structurally constrained given that 
edges in the two subnetworks are similarly ordered. Hence, flow paths in the two flow 
regions would bear high resemblance. This structural arrangement and flow channeliza-
tion relationship is consistent with the velocity variability observed in PFR and SFR of 
uniform (red) vs channelized (green) flow fields (see Fig. 2) and sheds light on the rela-
tionship between static and dynamic connectivity properties.

The correlation between a global measures of static and dynamic connectivity, here 
taken as the assortativity of the full pore network, rW , and pc , respectively, is explored 
in Figure S10 (top). Their correlation is weak (Spearman coefficient of 0.32), which is 
insufficient to properly assess the flow heterogeneity from global structural characteris-
tics. The correlation between global and local connectivity, rW and r1∕r2 , respectively, is 
shown in Figure S10 (bottom), finding no significant correlation (Spearman coefficient 
of 0.05). This suggests that it is not possible to infer the distribution of flow from the 
structural order of the entire system.

Fig. 6   Scatter plot of the assorta-
tivity ratio, r

1
∕r

2
 , and percola-

tion threshold, p
c
 , of individual 

samples, colored according to 
r
W

 value. A positive correlation 
between the terms is found, as 
indicated by the Spearman coef-
ficient � of 0.68 and a p value 
of 0.00. The data suggest that 
the order between pore network 
regions associated with prefer-
ential vs stagnant flow grows in 
contrast for samples of increasing 
flow channelization
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4 � Conclusion

Resolving the full flow field in porous media is computationally expensive and requires 
detailed information of the pore structure. The precise link between pore-scale flow and 
the underlying structural attributes has extensively been studied but remains elusive. 
In this work, we presented and analyzed a set of methods designed to probe how the 
pore structure impacts flow channelization in two-dimensional pore networks. Diverse 
samples were used with developed flow ranging from very uniform to very channelized. 
Each sample was characterized by its flow properties under steady state and its pore-
space recast as a graph with unique topology and channel geometry. We used these 
measurements to (1) quantify the spectrum of flow channeling occurring in each sample 
based on a percolation parameter, (2) define regions of the flow field that describe pref-
erential and stagnant flow by velocity thresholds, (3) link the location of preferential 
pathways to structural properties of the graph through a biased shortest path analysis, 
and (4) explain the structural constraints for preferential and stagnant flow formation by 
evaluating the (dis)order in regions of the pore network. Specifically, graphs weighted 
by the channel’s arc length to pore throat ratio ( L∕Sm ) gave the most accurate repre-
sentation of structural flow resistance when the path length was minimized. Likewise, 
the structural order of networks based on edge conductivity, Sm , delineated accurately 
where and how much contrast there is between preferential and stagnant flow regions. 
Based on this flow-structure relationship, we found greater order in the pore subnet-
work associated with preferential flow compared to the subnetwork corresponding to the 
stagnant flow. This structural order contrast increased with flow channelization. Ascer-
taining how pore structural properties trigger preferential pathway formation, even in 
simple porous media like the ones here studied, is critical to characterizing many sub-
surface processes of critical importance at the pore and the field scale.
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